JPS6050122A - Cooling method of high temperature steel sheet - Google Patents

Cooling method of high temperature steel sheet

Info

Publication number
JPS6050122A
JPS6050122A JP15989183A JP15989183A JPS6050122A JP S6050122 A JPS6050122 A JP S6050122A JP 15989183 A JP15989183 A JP 15989183A JP 15989183 A JP15989183 A JP 15989183A JP S6050122 A JPS6050122 A JP S6050122A
Authority
JP
Japan
Prior art keywords
cooling
temperature
pattern
water
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15989183A
Other languages
Japanese (ja)
Other versions
JPH0448851B2 (en
Inventor
Yoshihiro Yamaguchi
喜弘 山口
Masakazu Nakao
中尾 正和
Akinori Otomo
朗紀 大友
Takeshi Tanaka
毅 田中
Yoshikazu Oobanya
嘉一 大番屋
Akira Kobayashi
章 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15989183A priority Critical patent/JPS6050122A/en
Publication of JPS6050122A publication Critical patent/JPS6050122A/en
Publication of JPH0448851B2 publication Critical patent/JPH0448851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To prevent generation of cooling strain by segmenting the range of cooling start temp. and stop temp. to plural temp. regions, and cooling a steel sheet while changing the spray pattern of cooling water from the top and bottom surfaces in the transverse direction of the steel sheet in accordance with the temp. region in each segment. CONSTITUTION:A high-temp. steel sheet formed by hot rolling is cooled with water from the top and bottom surfaces thereof. Water cooling of the high- temp. steel sheet is accomplished while the range of cooling start temp. and stop temp., for example, the water spray pattern in the distribution A of the water flow rate in the transverse direction, is changed to a pattern I , pattern IIand pattern III. More specifically, the pattern I is the same as in the conventional method but the distribution of the water flow at the edge is made slightly higher like in the pattern II unlike the pattern I in the temp. distribution in the transverse direction from the cooling start temp. of about 550 deg.C to the cooling stop temp. of about 300 deg.C. The distributions of the water flow in most of the transverse direction are made the same in the pattern III.

Description

【発明の詳細な説明】 本発明は、熱同圧延された高温鋼板をその上下面から水
冷却する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for water cooling a co-rolled high-temperature steel plate from its upper and lower surfaces.

この種の冷却方法は、技術的に難易度が高く、解決すべ
きテーマが多く、当業界において各方面から種々の研究
、開発がなされ、又、実用に供されているものもある。
This type of cooling method is technically difficult, and there are many problems to be solved, and various research and developments have been carried out from various fields in the industry, and some methods have been put into practical use.

即ち、板厚方向、表面〜中心〜裏面で、冷速か一様では
ないため、座屈波、反り等の変形が起りやすいこと。
That is, since the cooling speed is not uniform in the thickness direction from the front surface to the center to the back surface, deformations such as buckling waves and warping are likely to occur.

板幅が広いため、上面に大量の板上水が溜り。Because the board is wide, a large amount of water collects on the top surface of the board.

流出するため、上下面及び幅方向の冷却均一性がくずれ
やすく、座屈波、反り等の変形が生じやすいこと。
Because of the outflow, the cooling uniformity in the upper and lower surfaces and in the width direction is likely to be disrupted, and deformations such as buckling waves and warping are likely to occur.

圧延鋼板は、温度、サイズ(プレートクラウン等)、形
状、表面性状が均一でなく、冷却のバラツキが生じやす
いこと。
Rolled steel plates are not uniform in temperature, size (plate crown, etc.), shape, and surface texture, and are prone to variations in cooling.

等々の解決すべきテーマが多いものである。There are many topics that need to be resolved.

ところで、高温鋼板のオンライン制御冷却において、従
米技術の現状t@1図(al [bl k参照して説明
すると、第1図falは、板幅方向の冷却水分布をつけ
ずに、冷却した場合を示しており、これでは室温時の鋼
板形状は図示の通り、耳部が変形するのである。
By the way, in online controlled cooling of high-temperature steel plates, the current state of conventional technology is shown in Figure 1 (al As shown in the figure, the shape of the steel plate at room temperature is deformed at the edges.

この冷却歪防止対策として、第1図fblで示す如く、
板幅方向の冷却水分中ケ、板端側の方が少ない分布をつ
けることによって、冷却開始温度、即ち、冷却前の鋼板
幅方向温度分布が約800℃から、冷却停止温度、即ち
、冷却後の鋼板幅方向温度分布、約550℃までの冷却
では大きな冷却歪か発生しないものとなる。
As a measure to prevent this cooling distortion, as shown in Fig. 1 fbl,
By creating a distribution of cooling water in the width direction of the steel plate, which is smaller on the edge side of the plate, the cooling start temperature, i.e., the temperature distribution in the width direction of the steel plate before cooling, changes from approximately 800°C to the cooling stop temperature, i.e., after cooling. With the temperature distribution in the width direction of the steel sheet, only large cooling strain occurs when cooling to about 550°C.

ところで、冷却開始温度勿より低くすると、嘉2図に示
す如く冷却歪が大きくなり、製品として不良となるばか
りですく、ホットレペラにかけることかで@ないという
ような操業トラブルとなるのである。
By the way, if the cooling start temperature is lower than it should be, cooling distortion will increase as shown in Figure 2, which will not only result in a defective product, but also cause operational troubles such as not being able to use a hot repeller.

一方、材質側から見ると、@6図で示す如く、機械的性
質と冷却停止温度の関係がある。
On the other hand, from the material side, as shown in Figure @6, there is a relationship between mechanical properties and cooling stop temperature.

即ち、冷却停止温度?下げると、降伏応力(YS)、。In other words, the cooling stop temperature? Lowering yield stress (YS),.

引張応力(TS)の向上となるのであり、また、Ceq
の低下は添加成分の減少につながり、溶接性向上となる
等メIIットが大きいことになる。
This results in an improvement in tensile stress (TS), and also increases Ceq
A decrease in the amount of added components leads to a decrease in the amount of added components, resulting in significant benefits such as improved weldability.

即ち、Ceq ’z低下さぜ、かつ、冷却停止温度を低
くすることで、機械的性質を満足する材料が製造できる
ことになる。
That is, by lowering Ceq'z and lowering the cooling stop temperature, a material that satisfies mechanical properties can be manufactured.

なお、第6図の成分表は次の通りである。The ingredient list in FIG. 6 is as follows.

斯様に、Ceq ’j(低下させ、かつ、冷却停止温度
を低くすることは有効ではあるけれども、前述の如く冷
却歪発生という問題があり、冷却停止温度全550℃以
下に低下するには限界がある。
In this way, although it is effective to lower Ceq 'j (and lower the cooling stop temperature), as mentioned above, there is the problem of cooling distortion, and there is a limit to lowering the cooling stop temperature to a total of 550°C or less. There is.

即ち、厚板工場を考えた場合、約500℃で冷却全停止
し、ホットレベラで矯正すれば、平坦度良好な鋼板が製
造できるが、それ以下の停止温度にて冷却を停止した場
合、従来技術にあっては以下の理由で製造が不可能であ
る。
In other words, if we consider a plate factory, if cooling is completely stopped at about 500°C and straightened with a hot leveler, steel plates with good flatness can be manufactured, but if cooling is stopped at a lower temperature than that, the conventional technology It is impossible to manufacture it for the following reasons.

■ たとえば、600℃のときには、ホットレベラ前で
鋼板は変形しており、強力な矯正が必要であるとともに
、たとえ、平坦に矯正が可能であっても、鋼板に大@な
不均一温度分布が生じているため、鋼板を室温まで冷却
したとき、形状不良となる。
■ For example, when the temperature is 600°C, the steel plate is deformed before the hot leveler, requiring strong straightening, and even if straightening is possible, a large uneven temperature distribution will occur on the steel plate. Therefore, when the steel plate is cooled to room temperature, it becomes defective in shape.

■ 室温近くまで冷却した場合、鋼板温度分布は均一に
近いが、冷却過程に生じた変形は大きく、かつ、鋼板強
度が高くなるため矯正が十分できず形状不良となる。
■ When the steel plate is cooled to near room temperature, the temperature distribution of the steel plate is nearly uniform, but the deformation that occurs during the cooling process is large and the strength of the steel plate increases, so that it cannot be straightened sufficiently and the shape becomes defective.

第4図、箔5図?参照して従来例ケ今一度説明すると、
第4図において、(5)は幅方向水量分布であり、注水
分布はエツジ側の方が水量が少ない分布とされている。
Figure 4, foil figure 5? Referring to the conventional example, I will explain it once again.
In FIG. 4, (5) is the water volume distribution in the width direction, and the water injection distribution is such that the water volume is smaller on the edge side.

fBlは幅方向温度分布であり、約り00℃→約550
℃→約300℃→100℃→室温で示されており、(C
)は鋼板形状全示し、■)はホットレベラである。
fBl is the temperature distribution in the width direction, approximately 00℃ → approximately 550℃
℃→approximately 300℃→100℃→room temperature, (C
) shows the entire shape of the steel plate, and ■) shows the hot leveler.

即ち、芳4図において、幅方向水量分布(Nで、冷却開
始温度約800℃から約550℃にて冷却停止温度とす
ることにより、第4図にて示す如くホ゛ソトレベラFD
)にかけ、空冷すれば室温における鋼板形状は正常とな
るが、これでは、冷却停止温度が差程低いものでないた
め、機械的性質、CeqO点で十分満足するものとはい
えない。
That is, in Fig. 4, by setting the water flow distribution in the width direction (N) and setting the cooling stop temperature from the cooling start temperature of about 800°C to about 550°C, the
) and then air cooled, the shape of the steel sheet at room temperature becomes normal, but in this case, the cooling stop temperature is not that low, so it cannot be said that the mechanical properties and CeqO point are fully satisfied.

而して、幅方向水量分布(3)の!まで約800℃の冷
却開始温度、約550℃での冷却停止温度、約600℃
での冷却停止温度にすれば、ホットレベラにかける前で
変形が生じこれ?矯正できたとしても空冷すると変形す
るのであり、又、ホットレベラでは矯正できないものと
なるのである。
Therefore, the width direction water amount distribution (3)! Cooling start temperature of about 800℃, cooling stop temperature of about 550℃, about 600℃
If the cooling stop temperature is set to , deformation will occur before the hot leveler is applied. Even if it can be straightened, it will deform when air cooled, and it cannot be straightened with a hot leveler.

この原因は、鋼板に注水した冷却水の冷却と、冷却後の
水が鋼板上を流れていくときの冷却をめてみると、嘉5
図の関係が明らかとなり、又、この結果は、箒4図にて
示す如く約500℃以下の冷却では、幅方向の注水分布
ヶつけていることが逆に幅方向温度分布の不均一を招く
ことになるからである。
The cause of this is the cooling of the cooling water poured into the steel plate and the cooling when the cooled water flows over the steel plate.
The relationship shown in the figure becomes clear, and this result also shows that when cooling at temperatures below about 500°C, as shown in Figure 4, adding water to the width distribution causes uneven temperature distribution in the width direction. This is because it will happen.

ところで、鋼板幅方向の温度分布許容値について第14
図を参照して考察すると、横軸は鋼板幅であり、縦軸は
幅方向温度差(鋼板巾員中心と鋼板両端との温度差)と
の関係が示されてなジ、板幅が小さければ幅方向温度差
が大であっても鋼板の平坦度は良好であるけれども、板
幅が大きければ幅方向温度差が小さくても座屈変形が発
生することがわかる。
By the way, regarding the temperature distribution allowable value in the width direction of the steel plate, the 14th
When considered with reference to the figure, the horizontal axis is the steel plate width, and the vertical axis shows the relationship with the temperature difference in the width direction (temperature difference between the center of the steel plate width and both ends of the steel plate). For example, even if the temperature difference in the width direction is large, the flatness of the steel plate is good, but if the plate width is large, buckling deformation occurs even if the temperature difference in the width direction is small.

本発明は上記のような現象、知見に鑑み、Ceq’i低
下し、かつ、冷却停止温度?低くしても冷却歪の発生が
少ない高温鋼板の冷却方法?提供しようとするものであ
る。
In view of the above-mentioned phenomena and findings, the present invention has been developed to reduce Ceq'i and reduce the cooling stop temperature. Is there a cooling method for high-temperature steel plates that causes less cooling distortion even at low temperatures? This is what we are trying to provide.

即ち、本発明にあっては、熱間圧延された高温鋼板をそ
の上下面から水冷却する方法において。
That is, in the present invention, a hot-rolled high-temperature steel plate is cooled with water from its upper and lower surfaces.

高温鋼板を水冷却する過程で、冷却開始温度と冷却停止
温度との範囲を複数の温度域に区分し、各区分の温度域
に対応して鋼板幅方向の冷却水注水パターンを変更しつ
つ冷却すること全特徴とするのである。
In the process of cooling a high-temperature steel plate with water, the range of cooling start temperature and cooling stop temperature is divided into multiple temperature ranges, and cooling is performed while changing the cooling water injection pattern in the width direction of the steel plate corresponding to each temperature range. It is a feature of all that it does.

以)、本発明に係る高温鋼板の冷却方法につき図面?参
照して詳述する。
Is there a drawing regarding the method for cooling high-temperature steel sheets according to the present invention? Refer to and explain in detail.

第6図は本発明実施例の模式図?示しており、該第6図
で明らかな如く、幅方向水量分布(3)における注水パ
ターンを、本例ではパターンエ、パターン■、パターン
■に変更しつつ冷却するものが例示されている。
Is Fig. 6 a schematic diagram of an embodiment of the present invention? As is clear from FIG. 6, in this example, cooling is performed while changing the water injection pattern in the width direction water amount distribution (3) to pattern E, pattern (2), and pattern (2).

即ち、パターン■は第4図で示した従来例と同様である
が、幅方向温度分布が約550℃の冷却開始温度から約
600℃の冷却停止温度にあっては、パターンIと異な
りパターンHの如くエツジの水量分布?や\高くしたの
であり、又、パターンmではほとんど幅方向水量分布を
同一にしたものである。
That is, pattern (2) is similar to the conventional example shown in FIG. 4, but unlike pattern I, pattern H Is the water volume distribution of the edge like this? In addition, in pattern m, the water amount distribution in the width direction is almost the same.

本発明の冷却方法の概要は前述の通りであり、その制御
方式は後述するが、本発明に使用する装置に関して枢7
図から労10図を参照して説明する。
The outline of the cooling method of the present invention is as described above, and the control method will be described later.
This will be explained with reference to Figure 10.

第7図において、(1)は被冷却鋼板であり、矢示方向
に通板されろ過程において、−斉注水により冷却される
In FIG. 7, (1) is a steel plate to be cooled, which is cooled by simultaneous water injection during the process of being threaded in the direction of the arrow.

(2)はテーブルローラであり、通板方向所定間隔ごと
に列設されており、該ローラ(2)同VCrfi下部ス
プレーノズル(7)?有する下部冷却用ヘッダ(4)が
設けられている。
(2) is a table roller, which is arranged in rows at predetermined intervals in the sheet passing direction, and the roller (2) and the VCrfi lower spray nozzle (7)? A lower cooling header (4) is provided.

(3)は上部冷却用ヘッダであり、上部ヘアピンノズル
(6)?有し、被冷却鋼板(1)の上面に冷却水?注入
するものであり、鋼板(1)の幅方向に並設されている
。(5)は上部冷却用補助ヘッダであり、ヘアピンノズ
ル(8)を有する。
(3) is the upper cooling header, and the upper hairpin nozzle (6)? Is there cooling water on the top surface of the steel plate to be cooled (1)? These are injected and are arranged in parallel in the width direction of the steel plate (1). (5) is an auxiliary header for upper cooling, and has a hairpin nozzle (8).

即ち、本発明にあっては、鋼板上面から注水する場合が
影響力が大きく重要であることから、下部冷却装置は従
来例と同じ構成であるも、上部冷却装置は第8図の如く
構成されている。
That is, in the present invention, since the case where water is injected from the upper surface of the steel plate has a large influence and is important, the lower cooling device has the same configuration as the conventional example, but the upper cooling device is configured as shown in Fig. 8. ing.

即ち、芳8図において、通板方向に沿って設けられた左
右一対の上部ヘッダ固定台(9)に通板方向に直交して
上部冷却用ヘッダ(311kUボルト等の締結具+10
+により固定架設するとともに、上部冷却用ヘッダ(3
)間に上部補助へ゛ンダ固定Q (11)にUホルト等
の締結具a匈によf)M助ヘッダ(5)全固定架設して
いる。
That is, in Figure 8, the upper cooling header (fasteners such as 311 kU bolts + 10
In addition to fixing the installation with +, the upper cooling header (3
) Between the upper auxiliary header (11) and the upper auxiliary header (11), the M auxiliary header (5) is fully fixedly installed using fasteners such as U-holts.

即ち、フンキシプル配管03)?介して@10図で示す
上部供給水配管(I41に連通され念上部冷却用ヘッダ
(3)と上部冷却用補助ヘッダ(5)?通板方向交互?
なして架設しているのであり、第10図示す給水系統図
で明らかな如く、三方切換弁σ5] C61(lηによ
って、特に、三方切換弁σ5)IJEIによって、第9
′図で示ス如く注水パターン?本例ではパターン■、パ
ターンHに変更可能としているのである。
That is, Funkisiple piping 03)? It is connected to the upper supply water pipe (I41) shown in Figure @10 through the upper cooling header (3) and the upper cooling auxiliary header (5)? Alternate plate passing direction?
As is clear from the water supply system diagram shown in Figure 10, the three-way switching valve σ5]
'Water injection pattern as shown in the figure? In this example, it is possible to change to pattern (2) or pattern (H).

なお、第9図において、(a)は上部へラダセン久tb
l ld上上部補助ヘッダセンタ来示、○印は上部ヘア
ピンノズル位置、Δ印は上部補助ヘアピンノズル位置、
黒塗vO印は上部ヘアピンノズル不使用を示している。
In addition, in Fig. 9, (a) shows the upper part of the
l ld Upper upper auxiliary header center comes, ○ mark is upper hairpin nozzle position, Δ mark is upper auxiliary hairpin nozzle position,
The black vO mark indicates that the upper hairpin nozzle is not used.

即ち、第11図で示す如く、被冷却鋼板11)?その上
下面から一斉に注水する冷却装置Oηに通板させて冷却
するに、冷却開始温度と冷却停止輝度との範囲を複数の
温度域に区分し、各区分の温度域に対応して鋼板幅方向
の冷却水注入パターン?変更しつつ冷却するに、第11
図で示す機能概要図と第12図のフローチャートを基に
説明する。
That is, as shown in FIG. 11, the steel plate to be cooled 11)? In order to cool the steel plate by passing it through a cooling device Oη that injects water all at once from the upper and lower surfaces, the range of cooling start temperature and cooling stop brightness is divided into multiple temperature ranges, and the steel plate width is adjusted according to the temperature range of each division. Directional cooling water injection pattern? To cool while changing, the 11th
The explanation will be based on the functional outline diagram shown in the figure and the flowchart in FIG. 12.

冷却装置(1ηの入側と出側にはそれぞれ温度計(18
)(I9)が設けられ、入側には鋼板トラッキングセン
ナ(20)が設けられ、鋼板トラッキング機能21J1
注水水量計算、冷却時間計算機能いにより、注水指令、
注水ストップ指令1231に冷却装置(lηに与えるよ
うにされており、更に、注水水量分布変更機能(241
、温度実績値の見込みC5I等が可能とされている。
There are thermometers (18
) (I9), a steel plate tracking sensor (20) is provided on the entry side, and a steel plate tracking function 21J1 is provided.
Water injection amount calculation and cooling time calculation function allow water injection command,
The water injection stop command 1231 is given to the cooling device (lη), and the water injection amount distribution change function (241
, expected temperature actual value C5I, etc. are possible.

而して、第12図全参照して冷却開始と冷却終了までの
70−チヤートヲ説明する。
The 70-chart from the start of cooling to the end of cooling will be explained with reference to FIG. 12.

箒12図においてAブロックは実績の冷却開始温度Ts
cT、目標冷却停止温度TFcTo、板厚t、板幅、板
長さ等のデータの見込みのグロックである。
In the broom 12 diagram, block A is the actual cooling start temperature Ts.
It is a Glock with expected data such as cT, target cooling stop temperature TFcTo, plate thickness t, plate width, plate length, etc.

[F])は目標冷却速度cR’r22定するブロックで
あり、これは実験、経験的に鋼種、板厚等に応じて設定
される。
[F]) is a block that determines the target cooling rate cR'r22, which is set experimentally and empirically according to the steel type, plate thickness, etc.

fc]は冷却時同丁tの計算ブロックであり、これは、
次の計算でめられる。
fc] is the calculation block for the same time when cooling, which is
It can be found in the following calculation.

fDlは必要水量密度Wの計算ブロックであり、該Wは
次式で計算される。
fDl is a calculation block for the required water density W, and this W is calculated by the following formula.

ここで、CRTC℃/s)、w Ci/miH、i )
 であり、A、nはそれぞれ係数である。
Here, CRTC℃/s), w Ci/miH, i)
, and A and n are coefficients, respectively.

(Elは必要総水量wT の計算、通板速度Vの計算ブ
ロックであ、!l)、WTは次式で計算される。
(El is a block for calculating the required total water amount wT and calculating the threading speed V, !l), and WT is calculated by the following formula.

WT = WX Aw)17!Xり iw: 冷却ソー ン、It−e; 冷却ソーン長す、
l;上部等の注水分布を考慮した補正値。
WT = WX Aw) 17! Xriiw: Cooling sawn, It-e; Cooling sawn length,
l; Correction value taking into account water injection distribution in the upper part, etc.

又、■は次式で計算される。Also, ■ is calculated using the following formula.

7ICT−鋼板ドッグ(先端)はみ出し量、jICB 
i鋼板ボトム(後端)はみ出し量A XH板長さ 以上により符号fF]の注水タイミングブロックに指令
を出し、注水タイミングがYEsのときは、第10図に
示した上部、下部のメインヘッダの三方切換弁’J5)
IJηに発の指令?グロック[G) r出し%NOのと
きはDeiay(遅らす)のである。
7ICT-Steel plate dog (tip) protrusion amount, jICB
i Steel plate bottom (rear end) protrusion amount A Switching valve 'J5)
An order issued to IJη? Glock [G] When the r output is %NO, it is Deiay (delay).

そして、以上により注水パターン■がなされるのである
が、符号C刊の如く注水パターン変更指令有のときは、
fIlの注水パターン変更までの時間11?計算するブ
ロック、fJ)の注水時間の積算のブロック、(K)の
注水パターンの変更時間の有無判断ブロック、(Llの
上部補助ヘッダ三方弁開指令のブロック、(Mの冷却終
了有無の判断、(Nlの上下部メインヘッダおよび上部
補助ヘッダ三方弁の閉指令ブロック、(0)の鋼板を冷
却装置外への搬送指令ブロック、鱈の冷却後の鋼板温度
実績値見込みブロック?経て、終了になるのである。
Then, the water injection pattern ■ is performed as described above, but when there is a water injection pattern change command as in issue C,
Time 11 until fl water injection pattern change? Calculation block, fJ) water injection time integration block, (K) water injection pattern change time judgment block, (Ll upper auxiliary header three-way valve opening command block, (M judgment whether cooling has ended, (The command block to close the three-way valves of the upper and lower main headers and upper auxiliary header of Nl, the command block to transfer the steel plate (0) to the outside of the cooling system, the block to estimate the actual temperature of the steel plate after cooling the cod, and then the end. It is.

而して、τ、の計算は次式でなされる。Therefore, τ is calculated using the following formula.

なお、注水パーターン変更時の鋼板温度をTch iと
し、これまでの平均冷却速度k CRT Ch iとす
ればCRTchi = CRTo:f (Tchi)と
なる。
Note that if the steel plate temperature at the time of changing the water injection pattern is Tchi, and the average cooling rate kCRTChi thus far is taken, then CRTchi = CRTo:f (Tchi).

但し、前記mはfE)の後で実施してもよい。However, m may be performed after fE).

また、fL+において、本例では三方弁を使用している
が、補助ヘッダからの注水は僅かであることから0N−
OFF形のバタ弁等であってもよい。
In addition, at fL+, a three-way valve is used in this example, but since the amount of water injected from the auxiliary header is small, 0N-
It may also be an OFF type butterfly valve or the like.

@7図から第11図は上部冷却装置として補助ヘッダケ
付帯させたものを例示したが、第13図で示す如く上部
冷却装置が上下2段措造のヘアピン形ノズル?有し、か
つ、上段と下段とで幅方向の注水パターフッ2種類有し
、前述したTchiにより冷却温度範囲を区分し、上段
と下段のヘッダ全便い分けるようにしてもよい。
@ Figures 7 to 11 show an example of an upper cooling device with an auxiliary header attached, but as shown in Figure 13, the upper cooling device may be a hairpin-shaped nozzle with a two-stage structure, upper and lower? In addition, the upper and lower sections may have two types of water injection putter feet in the width direction, the cooling temperature range may be divided by the above-mentioned Tchi, and the entire header of the upper section and the lower section may be separated.

この場合の制御70−チャートは箔12図における[G
lが上下部パターン■の三方弁開指令となり、同り、 
< (L)がパターン■ヘッダ三方弁開指令ドパター7
IIヘッダ三方弁の開指令となり、[Nlが上下使用三
方弁閉指令となるのであり、その他は!12図の図示例
と同じである。
Control 70-chart in this case is [G
l becomes the three-way valve opening command of the upper and lower pattern ■, and
< (L) is the pattern ■ Header three-way valve open command do pattern 7
II is the header three-way valve open command, [Nl is the upper and lower use three-way valve close command, and the rest! This is the same as the illustrated example in FIG.

また、箔15図、第16図は組板冷却水の注水パターン
の変更例であり、いずれも冷却開始温度800℃から冷
却停止温度600℃を2つの範囲に区分した例であって
、第15図は板幅中心部の水量密度を一定とし、板幅両
端の水量密度をパターンI、パターン■において変化さ
せた場合の6例を示しており、又、@16図は板幅中心
部の水量密度を変更した場合のパターン■とパターン■
の6例r示している。なお、図中のパターン■では水量
密度を大さくするような例?示しているが、パターン■
で小さくしてもよい。
In addition, Fig. 15 and Fig. 16 are examples of changes in the injection pattern of cooling water for the assembly board, and both are examples in which the cooling start temperature of 800°C and the cooling stop temperature of 600°C are divided into two ranges. The figure shows six examples where the water density at the center of the board width is constant and the water density at both ends of the board width is changed in pattern I and pattern ■. Figure @16 shows the water volume at the center of the board width. Pattern■ and pattern■ when density is changed
Six examples are shown. In addition, is pattern ■ in the figure an example of increasing the water volume density? As shown, the pattern ■
You can make it smaller.

そして、箒17図で示す如く冷却開始温度800℃で冷
却停止温度600℃にひとつのパターンで冷却した従来
例にあっては、前述したように、冷却停止温度が500
°〜550℃付近において、鋼板平均変形量が顕著に大
きくなるのに対し、第15図におけるA−1の場合の本
発明実施例にあっては冷却停止温度が200℃以下とい
う低い場合であつても、冷却歪発生は著しく少なくなる
のであり、このことは、Ceq f低下させ機械的性質
全満足したにも拘らず、冷却歪を防止した高温鋼板の冷
却方法といえるのである。
As shown in Figure 17, in the conventional example of cooling in one pattern from a cooling start temperature of 800°C to a cooling stop temperature of 600°C, as mentioned above, the cooling stop temperature was 500°C.
In contrast, in the case of A-1 in Fig. 15, the average deformation of the steel plate becomes significantly large in the vicinity of 550°C, whereas in the case of A-1 in Fig. 15, the cooling stop temperature is as low as 200°C or less. However, the occurrence of cooling strain is significantly reduced, and this can be said to be a method for cooling high-temperature steel sheets that prevents cooling strain even though Ceq f is lowered and mechanical properties are fully satisfied.

なお、上述した例の場合は、冷却開始温度が、800℃
附近で、冷却停止温度300℃附近まで2つの区分にわ
けた場合として例示したが、冷却開始温度が800℃附
近で冷却停止温度100℃附近までを例えば3つの区分
にわけて、各区分の温度域に対応して銅板幅方向の冷却
水注水パターン?変更させてもよい。また、冷却開始温
度は800℃附近とは限らす、一般的にはArs変急点
近傍以上であればよく、また、冷却停止温度も約550
℃以下であればよい。
In addition, in the case of the above example, the cooling start temperature is 800°C.
In the above example, the cooling stop temperature is divided into two categories up to around 300°C, but if the cooling start temperature is around 800°C and the cooling stop temperature is around 100°C, it is divided into three categories, and the temperature of each division is Cooling water injection pattern in the width direction of the copper plate corresponding to the area? You may change it. In addition, the cooling start temperature is not limited to around 800°C, but generally it is sufficient to be around the Ars tipping point or higher, and the cooling stop temperature is also around 550°C.
It is sufficient if the temperature is below ℃.

即ち、前述例にあっては、パターンIは従来例と同じよ
うにしているが、冷却開始温度800℃近傍から冷却停
止温度500℃〜550℃の範囲においても、複数の温
度域に区分し、各区分に対応して鋼板幅方向の冷却水注
水パターンを変更してもよく、この場合は特に、50正
以上の厚鋼板のときに有効である。
That is, in the above example, Pattern I is the same as the conventional example, but it is divided into a plurality of temperature ranges from a cooling start temperature of around 800°C to a cooling stop temperature of 500°C to 550°C. The cooling water injection pattern in the width direction of the steel plate may be changed depending on each classification, and this is particularly effective for steel plates with a thickness of 50 mm or more.

次に、本発明の実施例を従来例との対比の上で説明する
Next, an embodiment of the present invention will be described in comparison with a conventional example.

〈従来例〉 鋼板サイズ(繭)・・・11.8X”+190x14.
800冷却開始温度(d・・・ 750 冷却停止温度rcl・・・ 650 冷却水水Itt (rrVmin、i) −0,26〈
本発明の実施例〉 鋼板サイズ(闘)・・・10.3X3210X14.8
00冷却開始温度rcl・・・ 770 パタ一ン変更温度(c]・・・ 520冷却停止温度(
℃)・・・ 330 冷却水水! ・= 0.26 姶′min 、 rd前
述の従来例と本発明実施例との冷却停止温度分布は@1
8図(aHblで示す通りであり、従来例では第18図
fa)で示す分布で板幅方向に温度分布が不均等である
のに対し、本発明の実施例にあっては、第18図fbl
で示す如く板幅方向の温度分布は均等になるのである。
<Conventional example> Steel plate size (cocoon)...11.8X"+190x14.
800 Cooling start temperature (d... 750 Cooling stop temperature rcl... 650 Cooling water Itt (rrVmin, i) -0,26〈
Examples of the present invention> Steel plate size (strength)...10.3X3210X14.8
00 Cooling start temperature rcl... 770 Pattern change temperature (c)... 520 Cooling stop temperature (
℃)... 330 Cooling water water!・= 0.26 姶′min, rd The cooling stop temperature distribution of the above-mentioned conventional example and the embodiment of the present invention is @1
The temperature distribution is uneven in the board width direction with the distribution shown in Fig. 8 (aHbl, and in the conventional example Fig. 18 fa), whereas in the embodiment of the present invention, the temperature distribution is as shown in Fig. 18 fa. fbl
As shown in , the temperature distribution in the width direction of the plate becomes uniform.

従って、参考写真1で示す如く従来例にあっては実操業
において、鋼板は耳部が波板形状に変形しているのに対
し、本発明の実施例にあっては実操業において鋼板は良
好な平坦度全示す冷却が施されていることが理解できる
Therefore, as shown in Reference Photo 1, in the conventional example, the edges of the steel plate are deformed into a corrugated plate shape during actual operation, whereas in the embodiment of the present invention, the steel plate is in good condition during actual operation. It can be seen that cooling has been applied to show the flatness of the entire surface.

以上、要するに本発明にあっては、高温銅板の冷却にあ
たって、高温鋼板r水冷却する過程で、冷却開始温度と
冷却停止温度との範囲を複数の温度域に区分し、各区分
の温度域に対応して鋼板幅方向の冷却水注水パターン?
変更しつつ冷却するものであるから、冷却停止温度を低
くしたとしても、冷却歪の発生は少なくできるのであり
、冷却停止温度?低くできることけCeqの低下を添加
成分の減少による溶接性の改善という利点を発揮すると
ともに、降伏応力、引張応力等の機械的性質を顕著に向
上することができる。
In summary, in the present invention, when cooling a high-temperature copper plate, in the process of water-cooling a high-temperature steel plate, the range of the cooling start temperature and the cooling stop temperature is divided into a plurality of temperature ranges, and the range of the cooling start temperature and the cooling stop temperature is divided into multiple temperature ranges. Corresponding cooling water injection pattern in the width direction of the steel plate?
Since cooling is performed while changing the temperature, even if the cooling stop temperature is lowered, the occurrence of cooling distortion can be reduced. It is possible to exhibit the advantage of improving weldability by reducing the amount of additive components by reducing Ceq, which can be lowered, and also to significantly improve mechanical properties such as yield stress and tensile stress.

【図面の簡単な説明】[Brief explanation of drawings]

@1図(a)(blは従来技術の現状を説明する図、第
2図は冷却停止温度と鋼板の冷却歪の関係?示す図、第
6図は冷却停止温度が材質におよぼす影響全説明するた
めの図、箒4図は従来例の模式図、第5図は鋼板温度と
二次冷却/直接冷却を示す従来例の説明図、箔6図は本
発明の実施例?示す模式図、第7図は本発明に使用する
冷却装置−例の側面図、搭8図は第7図における上部冷
却装置の平面図、第9図は本発明における上部ヘアピン
ノズル使用例とパターン変更のための補助ノズル使用例
の説明図、第10図は本発明に使用する冷却装置への給
水系統図、!11図は本発明冷却方法の機能概要図、箔
12図は木発F!A実施例の70−チャート−例の説明
図、第13図は本発明の第2実施例における上部冷却装
置の断面図、@14図は鋼板幅方向の温度分布許容値の
例を示す説明図、@15図は板幅中心部の水凧密度?一
定とした場合の本発明鋼板冷却水の注水パターン3例を
示す説明図、箒16図は板幅中心部の水量密度?変更し
た場合の木発F!A鋼板冷却水の注水パターン6例ケ示
す説明図、男17図は第15図における八−1パターン
の結果を示すグラフ図、第18図[a)(b)は従来例
と本発明実施例の冷却停止温度分布r示し、fa)は従
来例、[blは木発F!fJ実施例である。 fi+・・・被冷却鋼板、(3)・・・上部冷却用ヘッ
ダ、(4)・・・下部冷却用ヘッダ、(5)・・・上部
冷却用補助ヘッダ、(6)・・・上部ヘアピンノズル、
(7j・・・下部スグレノズル、(8)・・・上部補助
用ヘアピンノズル。 第4り 第6 図 手 続 補 正 書輸発) 特許庁長官殿 1、 731件の表示 昭和 句゛ 特許願第 159891号8 2 発明の名称 高温鋼板の冷却方法 3、補正をする者 事件との関係 特許出願人 (119) 株式会社神戸製鋼所 4代理人 住 所 大阪府東大阪市御厨1013番地 観大阪+0
6171121 (381KM昭和 年 月 日 (自
 発) 字抹消6、補正の対象 ・斬−一一書 ・丹細脅全文 7、補正の内容 (1)明細書@2頁第6行目から第7行目の「サイズ・
・・・・・形状、」は、「サイズ、形状(プレートクラ
ウン等)、」と補正する。 (2) 同第2頁第17行目の「冷却水分中を、」は、
「冷却水分布を、」と補正する。 (3) 同第3頁第11行目の「また、」とrc&lJ
との間に「従来と同一強度レベルの鋼板に対しては」の
文を挿入する。 (4)同第3頁m12行目の「の低下は添加成分」ハ、
「の低下が可能であり、添加成分」と補正する。 (創 同第6頁第9行目の「鋼板tfJ員中心」は、「
鋼板中中心」と補正する。 (6)同第10頁第19行目の「設定」は、「計算」と
補正する。 (7) 同第11頁第13行目の「冷却ゾーン、」は。 「冷却ゾーン幅、」と補正する。 1g+ 同第12頁第17行目の「見込み」は、「取込
み」と補正する。 (9)添付図面中、第3図、第5図、第6図、第12図
は別紙の通り補正する。
@Figure 1 (a) (BL is a diagram explaining the current state of the conventional technology, Figure 2 is a diagram showing the relationship between the cooling stop temperature and cooling strain of a steel plate, and Figure 6 is a complete explanation of the effect of the cooling stop temperature on the material quality. Fig. 4 is a schematic diagram of the conventional example, Fig. 5 is an explanatory diagram of the conventional example showing the steel plate temperature and secondary cooling/direct cooling, and Fig. 6 of the foil is a schematic diagram showing the embodiment of the present invention. Fig. 7 is a side view of an example of the cooling device used in the present invention, Fig. 8 is a plan view of the upper cooling device in Fig. 7, and Fig. 9 is an example of the use of the upper hairpin nozzle in the present invention and a pattern change. An explanatory diagram of an example of the use of the auxiliary nozzle, Figure 10 is a water supply system diagram to the cooling device used in the present invention, Figure 11 is a functional overview diagram of the cooling method of the present invention, and Figure 12 is an example of the Kihatsu F!A embodiment. 70-Chart-An explanatory diagram of an example, Fig. 13 is a sectional view of the upper cooling device in the second embodiment of the present invention, @14 diagram is an explanatory diagram showing an example of temperature distribution tolerance in the width direction of the steel plate, @15 diagram Is the water density at the center of the board width? An explanatory diagram showing three examples of water injection patterns of the steel sheet cooling water of the present invention when it is constant, and Figure 16 is the water density at the center of the board width? Wooden F when changed? An explanatory diagram showing 6 examples of injection patterns of A steel plate cooling water, Figure 17 is a graph diagram showing the results of pattern 8-1 in Figure 15, and Figures 18 [a] and (b) are conventional examples and examples of the present invention. The cooling stop temperature distribution r is shown, fa) is the conventional example, and [bl is the wood F! This is an example of fJ. fi+...Steel plate to be cooled, (3)...Upper cooling header, (4)...Lower cooling header, (5)...Upper cooling auxiliary header, (6)...Upper hairpin nozzle,
(7j...lower sagure nozzle, (8)...upper auxiliary hairpin nozzle. Export of the 4th and 6th figure procedures amendments) Dear Commissioner of the Japan Patent Office 1, Display of 731 Showa phrases Patent application no. No. 159891 8 2 Name of the invention Method for cooling high-temperature steel plates 3, relationship to the amended case Patent applicant (119) Kobe Steel, Ltd. 4 Agent address 1013 Mikuriya, Higashiosaka-shi, Osaka Kan-Osaka +0
6171121 (381KM Showa year, month, day (self-motivated) Character erasure 6, subject of amendment, Zan-Eiichisho, full text of Dansei Threat 7, contents of amendment (1) Specification @ page 2, lines 6 to 7 The size of the eyes
... shape," is corrected to "size, shape (plate crown, etc.)." (2) “In cooling water” on page 2, line 17,
Correct the cooling water distribution. (3) "Also" and rc&lJ on page 3, line 11
Insert the sentence "For steel plates with the same strength level as conventional" between. (4) On page 3 of the same page, line m12, “the decrease in the amount is due to the added component” c.
It is corrected as "additional components that can reduce the amount of." (“Steel plate tfJ member center” on page 6, line 9 of the same statement is “
Corrected to "center of steel plate." (6) "Settings" on page 10, line 19 will be corrected to "calculation." (7) "Cooling zone" on page 11, line 13. Correct as "cooling zone width." 1g+ "Expected" in line 17 of page 12 will be corrected to "intake." (9) In the attached drawings, Figures 3, 5, 6, and 12 have been corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 L 熱間圧延された高温鋼板をその上下面から水冷却す
る方法において、 高温鋼板を水冷却する過程で、冷却)15始温度と冷却
停止温度との範囲と複数の温度域に区分し、各区分の温
度域に対応して鋼板幅方向の冷却水注水バグーンを変更
しつつ冷却することを特徴とする高温鋼板の冷却方法。
[Scope of Claims] L In a method of cooling a hot rolled high temperature steel plate with water from its upper and lower surfaces, in the process of water cooling the high temperature steel plate, cooling) 15 Range of starting temperature and cooling stop temperature and a plurality of temperatures. A method for cooling a high-temperature steel sheet, characterized in that the cooling water is divided into zones, and the cooling water is cooled while changing the cooling water injection bagoon in the width direction of the steel sheet corresponding to the temperature range of each zone.
JP15989183A 1983-08-30 1983-08-30 Cooling method of high temperature steel sheet Granted JPS6050122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15989183A JPS6050122A (en) 1983-08-30 1983-08-30 Cooling method of high temperature steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15989183A JPS6050122A (en) 1983-08-30 1983-08-30 Cooling method of high temperature steel sheet

Publications (2)

Publication Number Publication Date
JPS6050122A true JPS6050122A (en) 1985-03-19
JPH0448851B2 JPH0448851B2 (en) 1992-08-07

Family

ID=15703431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15989183A Granted JPS6050122A (en) 1983-08-30 1983-08-30 Cooling method of high temperature steel sheet

Country Status (1)

Country Link
JP (1) JPS6050122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114107U (en) * 1988-01-25 1989-08-01
JPH09100601A (en) * 1996-04-19 1997-04-15 Akio Fujiwara Building hollow member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114107U (en) * 1988-01-25 1989-08-01
JPH09100601A (en) * 1996-04-19 1997-04-15 Akio Fujiwara Building hollow member

Also Published As

Publication number Publication date
JPH0448851B2 (en) 1992-08-07

Similar Documents

Publication Publication Date Title
US8282747B2 (en) Cooling method of steel plate
TWI286089B (en) Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
JPS62158825A (en) Method for cooling hot rolled steel plate
JPS6272429A (en) Hot straightening method for thick steel plate
JP2006255727A (en) Method for rolling hot-rolled steel sheet
JPS6050122A (en) Cooling method of high temperature steel sheet
KR900002504B1 (en) Method of correcting warping of two-layer clad metal plate
JP2007069250A (en) Method for cooling hot-rolled steel sheet
JPH0450368B2 (en)
JP2005103589A (en) Roller levelling method for steel plate
KR100941848B1 (en) Method of roughing mill for slab&#39; gap
JP4682669B2 (en) H-shaped steel cooling equipment and cooling method
JPS61135423A (en) Hot straightening device of two layered clad metal plate
JPS61219412A (en) Uniform cooling method of hot steel plate and its apparatus
JPH0573809B2 (en)
KR101372634B1 (en) Method for manufacturing of hot-rolled steel plate with excellent in flatness
JP2001300604A (en) Method of manufacturing sheet by pack rolling
KR19980050011A (en) How to prevent bending deformation in thick steel plate
JP6617592B2 (en) Steel plate manufacturing method
JPH07241613A (en) Method for controlling camber shape in width direction of steel plate
KR20100076341A (en) Method for cooling of hot steel strip in run out table and method for controlling cooling the same
CN115446122A (en) Control method for wide-width thin-specification high-strength steel plate shape for ship
JPH04200904A (en) Cold rolling method of strip metal
JPS6317892B2 (en)
KR19980054608A (en) Accelerated cooling method for minimizing temperature deviation of tip of thick steel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees