JPS6050042B2 - Method for improving properties of magnetic alloy powder for magnetic recording - Google Patents

Method for improving properties of magnetic alloy powder for magnetic recording

Info

Publication number
JPS6050042B2
JPS6050042B2 JP53008750A JP875078A JPS6050042B2 JP S6050042 B2 JPS6050042 B2 JP S6050042B2 JP 53008750 A JP53008750 A JP 53008750A JP 875078 A JP875078 A JP 875078A JP S6050042 B2 JPS6050042 B2 JP S6050042B2
Authority
JP
Japan
Prior art keywords
alloy powder
magnetic
heat treatment
magnetic recording
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53008750A
Other languages
Japanese (ja)
Other versions
JPS54102599A (en
Inventor
健 広田
栄一 広田
惇 阿部
良一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53008750A priority Critical patent/JPS6050042B2/en
Publication of JPS54102599A publication Critical patent/JPS54102599A/en
Publication of JPS6050042B2 publication Critical patent/JPS6050042B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は磁気記録用磁性合金粉末の特性改善方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving the characteristics of magnetic alloy powder for magnetic recording.

現在、一般に用いられている磁気記録用粉末には、γ−
Fe。
Currently, magnetic recording powders commonly used include γ-
Fe.

O。、Co添加型酸化鉄、CrO。等がある。これらは
いずれも、保持力Hcが300〜700エルステッドで
、残留磁束密度Brが3500〜5000ガウス位であ
る。高密度磁気記録用粉末としては、さらにHcの大き
な磁気粉末として、Hcが1000エルステッド以上で
、かつ高Br材たとえば7500ガウス以上のものが求
められている。現在用いらているγ−Fe。O。、Co
添加型酸化鉄、CrO。等の酸化物粉末では、たとえば
Hcを高めることができたとしても、本質的に飽和磁気
が小さいために、上述の条件を満足させることがむずカ
ルい。このような目的には、従来、飽和磁気が高いFe
−Co系などの合金粉末を用い、その粒径や形状をコン
トロールし、形状異方性、結晶異方性等を利用して、よ
り高いHcを得るための方法が種々検討され、開発され
ている。本発明は、現在開発されているFe−Co系、
Fe−Ni系Co−Ni系合金粉末の特性改善に関する
ものであり、これらの合金粉末を、200〜500℃の
範囲内の温度で熱処理することを特徴とし、Hcを高く
すると同時にBrも高めることにより、より高性能の磁
気記録用合金粉末を製造することのてきる方法である。
O. , Co-added iron oxide, CrO. etc. All of these have a coercive force Hc of 300 to 700 Oe and a residual magnetic flux density Br of about 3500 to 5000 Gauss. As a powder for high-density magnetic recording, there is a demand for a magnetic powder with a high Hc of 1000 Oe or more and a high Br material, for example, 7500 Gauss or more. γ-Fe currently used. O. ,Co
Additive iron oxide, CrO. For example, even if Hc can be increased with oxide powders such as oxide powders, it is difficult to satisfy the above conditions because the saturation magnetism is essentially small. Conventionally, Fe, which has high saturation magnetism, has been used for such purposes.
- Various methods have been studied and developed to obtain higher Hc by controlling the particle size and shape of alloy powders such as Co-based alloys, and by utilizing shape anisotropy, crystal anisotropy, etc. There is. The present invention is based on the currently developed Fe-Co system,
It relates to improving the properties of Fe-Ni-based Co-Ni-based alloy powders, and is characterized by heat-treating these alloy powders at a temperature within the range of 200 to 500°C to increase Hc and Br at the same time. This method makes it possible to produce a higher performance alloy powder for magnetic recording.

この熱処理を酸素圧(2〜100)×10−0気圧の酸
化性雰囲気中において100〜300エルステッドの外
部磁場中で熱処理をすると効果があり、またこれら熱処
理をFe−Ni系合金粉末、Co−Ni系合金粉末、2
0〜60原子のCoを含むFe−Co系合金粉末に対し
て施して効果がある。これらの熱処理における保持温度
としては、ノ200〜5000Cが適当であり、保温時
間も3紛以内で充分であることが実験により認められた
It is effective to perform this heat treatment in an oxidizing atmosphere of oxygen pressure (2 to 100) x 10-0 atm in an external magnetic field of 100 to 300 oersteds. Ni-based alloy powder, 2
It is effective when applied to Fe-Co alloy powder containing 0 to 60 atoms of Co. It has been found through experiments that a holding temperature of 200 to 5,000 C is appropriate for these heat treatments, and a temperature keeping time of 3 powders or less is sufficient.

あまり長時間熱処理すると、合金粉末の焼結が進みすぎ
る。処理温度が500’Cより高くなると合金粉末の酸
化と焼結が激しくなる。いずれの場合もBrが低下し、
極端な場合には、Hcの値が大巾に小さくなる。処理温
度が200℃より、低くなると、本発明の熱処理による
効果が乏しくなる。熱処理温度が200〜500゜Cで
あるときには、熱処理による効果のいちぢるしいことが
認められた。熱処理雰囲気を構成する酸素の圧力が2×
10−6気圧程度では、昇温速度を約100℃/時とす
ることもできる。ところが、酸素圧をあまり高くすると
、昇温速度によつては、試料の合金粉末が燃えてしまう
おそれもあり、昇温にあたり十分注意しなければならな
い。酸素圧が100X10−6気圧までの酸化雰囲気で
は安定的に、本発明の効果が認められた。また、酸素圧
が2刈0−6気圧よりも低くなると、熱処理による効果
が乏しくなる。このようなことから、雰囲気は(2×1
00)×10−6気圧の酸素で構成されていることが望
ましい。磁場中熱処理による効果は、外部磁場が100
エルステッド以上あれば効果があり、外部磁場が高い程
、処理後のHcは高くなる。
If the heat treatment is performed for too long, the sintering of the alloy powder will proceed too much. When the treatment temperature is higher than 500'C, the oxidation and sintering of the alloy powder becomes intense. In both cases, Br decreases,
In extreme cases, the value of Hc becomes significantly small. When the treatment temperature is lower than 200° C., the effect of the heat treatment of the present invention becomes poor. When the heat treatment temperature was 200 to 500°C, it was observed that the effect of the heat treatment was significant. The pressure of oxygen constituting the heat treatment atmosphere is 2×
At about 10 −6 atmospheres, the temperature increase rate can be about 100° C./hour. However, if the oxygen pressure is made too high, depending on the rate of temperature rise, there is a risk that the alloy powder in the sample will burn, so sufficient care must be taken when raising the temperature. The effects of the present invention were stably observed in an oxidizing atmosphere with an oxygen pressure of up to 100×10 −6 atmospheres. Further, when the oxygen pressure is lower than 0-6 atm, the effect of heat treatment becomes poor. For this reason, the atmosphere is (2×1
00) x 10-6 atmospheres of oxygen. The effect of heat treatment in a magnetic field is that the external magnetic field is 100%
It is effective if it is Oersted or higher, and the higher the external magnetic field, the higher the Hc after treatment.

3000エルステッドより高くなると、Hcの高められ
る割合が小さくなつてくるので、実際には上限が500
0エルステッド以下であることが望ましいと考えられる
If it goes higher than 3000 oersteds, the rate at which Hc is increased becomes smaller, so the upper limit is actually 500 oersteds.
It is considered desirable that it be 0 oersted or less.

本発明の熱処理は、一度に多量の試料を、簡単に処理す
ることができ、それによつて高いHcとBrの合金粉末
が得られるという特長を持つてい,る。そして、この熱
処理の結果として、表面に形成された薄い酸化皮膜によ
り内部が保護されるため、その後の特性の経時変化が少
ない。特に磁場中熱処理することにより、さらに、He
とBrを向上させることができ、一層有効であjる。
The heat treatment of the present invention has the advantage that a large amount of samples can be easily treated at one time, and thereby an alloy powder with high Hc and Br can be obtained. As a result of this heat treatment, the inside is protected by a thin oxide film formed on the surface, so that subsequent changes in characteristics over time are small. In particular, by heat treatment in a magnetic field, He
and Br, which is even more effective.

本発明の熱処理中磁場処理の効果は、Fe−CO合金で
はCOの20〜60原子%の領域で有効で、最適の合金
は、Fe5O%−CO5O%である。
The effect of the magnetic field treatment during heat treatment of the present invention is effective in the range of 20 to 60 atomic % of CO in the Fe--CO alloy, and the optimum alloy is Fe5O%-CO5O%.

一方熱処理の際に磁場を印加しない方法では、熱処理に
よるHcの向上は、COが20〜80原子%で有効であ
る。本発明の方法による磁気特性の向上は、COで20
〜60原子%のFe−CO系合金粉末で有効である。
On the other hand, in a method in which no magnetic field is applied during heat treatment, improvement in Hc by heat treatment is effective when CO is 20 to 80 atomic %. The improvement of magnetic properties by the method of the present invention can be achieved by CO20
It is effective with Fe-CO alloy powder containing up to 60 atomic %.

同様に、Fe−Ni系、CO−Ni系合金粉末について
もやははり同じ効果が得られる。以下、本発明の方法に
ついて実施例をあげて説明する。
Similarly, the same effect can be obtained with Fe--Ni alloy powder and CO--Ni alloy powder. Hereinafter, the method of the present invention will be explained by giving examples.

l実施例1アルゴンガス中で蒸発させて製造したFe5
O%−CO5O%の合金粉末を2×10−6気圧の酸素
中に保持されるよう封入したものを、電気炉に入れ、ほ
ぼ100℃/時のゆつくりとした速度で昇温し、350
℃で3吟保持した、それから試料を徐冷し、室温まで低
下してから、封入した試料を封入したままで、電気炉か
ら取り出し、封入した状態で振動式磁力計を用いて、B
−Hループを測定した。
l Example 1 Fe5 produced by evaporation in argon gas
O%-CO5O% alloy powder sealed in oxygen at 2 x 10-6 atmospheres was placed in an electric furnace, heated at a slow rate of approximately 100°C/hour, and heated to 350°C.
The sample was kept at ℃ for 3 minutes, and then the sample was slowly cooled down to room temperature, and then the sealed sample was taken out of the electric furnace, and the sealed sample was measured using a vibrating magnetometer.
-H loop was measured.

その結を第1表に示す。実施例2 実施例1と同様にして、試料を封入し、電気炉にて、3
50℃まで昇温してから、350℃の温度て外部磁場1
00エルステッドをかけて、30分保持した。
The results are shown in Table 1. Example 2 In the same manner as in Example 1, a sample was sealed and heated in an electric furnace for 3
After increasing the temperature to 50℃, apply an external magnetic field 1 at a temperature of 350℃.
00 oersted and held for 30 minutes.

それから室温にまで徐冷し、その後試料を電気炉から取
り出し、磁気測定をした。結果を第2表に示す。実施例
3 蒸発法でFe−CO系、Fe−Ni系およびCO−Ni
系の合金粉末を製造したものを、実施例1と同様に熱処
理し、熱処理前後の磁気特性を測定した。
The sample was then slowly cooled to room temperature, and then taken out of the electric furnace and subjected to magnetic measurements. The results are shown in Table 2. Example 3 Fe-CO system, Fe-Ni system and CO-Ni system by evaporation method
The produced alloy powder of the system was heat treated in the same manner as in Example 1, and the magnetic properties before and after the heat treatment were measured.

熱処理の温度、保持時間、磁場の強さとHcの熱処理前
後での改良の割合は、第3表のとおりである。上表の結
果から明らかなようにいずれの試料も熱処理によるHc
の改善がいちぢるしく、またBrも熱処理によつて改善
されていることがわかる。
The heat treatment temperature, holding time, magnetic field strength, and improvement ratio of Hc before and after the heat treatment are shown in Table 3. As is clear from the results in the table above, all samples have reduced Hc due to heat treatment.
It can be seen that the improvement in Br is significant and that Br is also improved by the heat treatment.

Claims (1)

【特許請求の範囲】 1 不活性ガス中で蒸発させて作成したFe−Ni系ま
たはCo−Ni系の磁性合金粉末を(2〜100)×1
0^−^6気圧の酸素中において200〜500℃の範
囲内の温度で熱処理することを特徴とする磁気記録用磁
性合金粉末の特性改善法。 2 100〜3000エルステッドの磁場中において熱
処理することを特徴とする特許請求の範囲第1項記載の
磁気記録用磁性合金粉末の特性改善法。
[Claims] 1 Fe-Ni-based or Co-Ni-based magnetic alloy powder prepared by evaporation in an inert gas (2 to 100) x 1
A method for improving the characteristics of a magnetic alloy powder for magnetic recording, characterized by heat treatment at a temperature within the range of 200 to 500° C. in oxygen at 0^-^6 atmospheres. 2. A method for improving the characteristics of a magnetic alloy powder for magnetic recording according to claim 1, characterized in that it is heat-treated in a magnetic field of 100 to 3,000 oersteds.
JP53008750A 1978-01-27 1978-01-27 Method for improving properties of magnetic alloy powder for magnetic recording Expired JPS6050042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53008750A JPS6050042B2 (en) 1978-01-27 1978-01-27 Method for improving properties of magnetic alloy powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53008750A JPS6050042B2 (en) 1978-01-27 1978-01-27 Method for improving properties of magnetic alloy powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS54102599A JPS54102599A (en) 1979-08-13
JPS6050042B2 true JPS6050042B2 (en) 1985-11-06

Family

ID=11701597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53008750A Expired JPS6050042B2 (en) 1978-01-27 1978-01-27 Method for improving properties of magnetic alloy powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS6050042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090702U (en) * 1983-11-28 1985-06-21 富士重工業株式会社 Lamp mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090702U (en) * 1983-11-28 1985-06-21 富士重工業株式会社 Lamp mounting structure

Also Published As

Publication number Publication date
JPS54102599A (en) 1979-08-13

Similar Documents

Publication Publication Date Title
JPS5934781B2 (en) Method for reducing magnetic hysteresis loss of soft magnetic amorphous alloy ribbon material
US4475962A (en) Annealing method for amorphous magnetic alloy
US4232071A (en) Method of producing magnetic thin film
Endoh et al. Magnetic properties and thermal stabilities of Ga substituted Nd-Fe-Co-B magnets
Carey et al. The magnetic and magneto‐optical properties of Co, Cr, Mn, and Ni substituted barium ferrite films
JP2001176715A (en) HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL
JP2641125B2 (en) A method for achieving a flat magnetization curve in a magnetic core of amorphous material.
De Vos et al. Permanent magnetic properties of iron-cobalt-phosphides
Kishimoto et al. Preparation and magnetic properties of Fe-Co fine particles
Watanabe et al. Fine metal particles having super high coercivity
Nesbitt et al. Further Magnetic and Thermal Studies of Cast Rare‐Earth Permanent Magnets
US3138494A (en) Method of annealing magnetic materials
JPS6050042B2 (en) Method for improving properties of magnetic alloy powder for magnetic recording
Hsu et al. Preparation and magnetic studies of acicular Fe‐Co alloy particles
Luborsky et al. Effect of surface features of amorphous alloys on magnetic behavior
Yiping et al. Structural and magnetic properties of ultrafine Fe‐Pd particles
US3859129A (en) Method of improving the magnetic properties of cobalt substituted magnetite
Goldman The influence of atomic order on magnetic properties
Bottoni et al. Evolution from soft to hard magnetic behavior in Co‐based devitrified glassy alloy
Talijan Magnetic properties of sintered high energy Sm-Co and Nd-Fe-B magnets
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
JPH055162A (en) Soft magnetic alloy high in magnetic permeability
JP3439519B2 (en) Soft magnetic alloy and magnetic head using the same
JP3242102B2 (en) Magnetic powder and method for producing the same
Jin et al. High-remanence square-loop Fe-Ni and Fe-Mn magnetic alloys