JPS6049614B2 - Method for producing alcohol having 1 to 4 carbon atoms - Google Patents

Method for producing alcohol having 1 to 4 carbon atoms

Info

Publication number
JPS6049614B2
JPS6049614B2 JP58141092A JP14109283A JPS6049614B2 JP S6049614 B2 JPS6049614 B2 JP S6049614B2 JP 58141092 A JP58141092 A JP 58141092A JP 14109283 A JP14109283 A JP 14109283A JP S6049614 B2 JPS6049614 B2 JP S6049614B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrogen
carried out
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58141092A
Other languages
Japanese (ja)
Other versions
JPS6032728A (en
Inventor
裕司 恩田
由光 石井
貴和 福島
勝 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58141092A priority Critical patent/JPS6049614B2/en
Publication of JPS6032728A publication Critical patent/JPS6032728A/en
Publication of JPS6049614B2 publication Critical patent/JPS6049614B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は一酸化炭素及び水素を、イリジウム及び鉄か
らなる触媒の存在下接触的に反応させ、炭素数1〜4の
アルコールを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an alcohol having 1 to 4 carbon atoms by catalytically reacting carbon monoxide and hydrogen in the presence of a catalyst consisting of iridium and iron.

一酸化炭素及び水素からアルコール類を製造する方法
として、イリジウムをシリカに担持した触媒がジャーナ
ル・オブ・キヤタリシス、52、157〜168、(1
978)に、又イリジウムのクラスターを酸化亜鉛に担
持した触媒が特開昭54−41291に開示されている
As a method for producing alcohols from carbon monoxide and hydrogen, a catalyst in which iridium is supported on silica is reported in Journal of Catalysis, 52, 157-168, (1
978) and JP-A-54-41291 discloses a catalyst in which iridium clusters are supported on zinc oxide.

しかし前者の触媒は活性が低く、過酷な反応条件にも拘
らずアルコールの収率は極めて低い。後者は原料となる
金属カルボニルクラスターの合成が困難であること、空
気中ではクラスターの分解が起る為触媒調整やその取扱
いに際し不活性ガス雰囲気を必要とする等の欠点を有し
いずれも実用的ではない。本発明者は以上の欠点を解消
し、すぐれた活性及ひ選択率を有するイリジウム系触媒
について検討した結果、助触媒として鉄を加えることに
より活性が飛躍的に向上することを見い出し本発明に到
達した。即ち本発明は一酸化炭素及び水素を、イリジウ
ム及び鉄からな る触媒の存在下接触反応させて炭素数
1〜4のアルコールを製造する方法である。 本発明触
媒を調製するのに用いられる原料化合物としては上記各
元素の酸化物、塩化物、臭化物、硝酸塩、炭酸塩等の無
機化合物、酢酸塩、シユウ酸塩、アセチルアセトナート
塩、ジメチルグリオキシム塩、エチレンジアミン4酢酸
塩等の有機塩、その他キレート化合物、カルボニル化物
、シクロペンタジエン化物、アンミン錯体、金属アルコ
キシド、アル・ヤル金属化合物等、通常貴金属触媒を調
整する際に用いられる化合物を広く利用することが出来
る。
However, the former catalyst has low activity and the yield of alcohol is extremely low despite harsh reaction conditions. The latter has drawbacks such as difficulty in synthesizing metal carbonyl clusters as a raw material, and the need for an inert gas atmosphere during catalyst preparation and handling since the clusters decompose in air, so neither is practical. isn't it. The present inventor solved the above drawbacks and investigated iridium-based catalysts that have excellent activity and selectivity. As a result, the inventor discovered that the activity can be dramatically improved by adding iron as a co-catalyst, resulting in the present invention. did. That is, the present invention is a method for producing an alcohol having 1 to 4 carbon atoms by catalytically reacting carbon monoxide and hydrogen in the presence of a catalyst consisting of iridium and iron. The raw material compounds used to prepare the catalyst of the present invention include inorganic compounds such as oxides, chlorides, bromides, nitrates, and carbonates of each of the above elements, acetates, oxalates, acetylacetonate salts, and dimethylglyoxime. Compounds commonly used in preparing noble metal catalysts are widely used, such as salts, organic salts such as ethylenediaminetetraacetate, other chelate compounds, carbonyl compounds, cyclopentadiene compounds, ammine complexes, metal alkoxides, and al-Yal metal compounds. I can do it.

これらの触媒成分は含浸法、浸漬法、イオン交換法、共
沈法、混練法等により担体上に分散させて使用する。
担体としては通常の担体として知られているものが広く
利用出来るが、特に比表面積10〜1000イlダ、細
孔径10八以上を有するものか好ましい。
These catalyst components are used after being dispersed on a carrier by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, or the like.
As the carrier, a wide variety of carriers known as ordinary carriers can be used, but those having a specific surface area of 10 to 1,000 dia and a pore diameter of 108 or more are particularly preferred.

これらを具体的に例示するとシリカ、チタンやジルコニ
ウム等各種金属の珪酸塩、モレキユラ’−シーブ、ケイ
ソウ±、シリカゲル、アルミナ、活性炭、周期律表第■
〜■族金属の酸化物等てあり、特にシリカが好ましい。
触媒中各成分の濃度と組成比は広い範囲にわたつて変
えることが出来るが、イリジウムとして担体に対し、0
.001〜0.5(重量比)、好ましくは0.01〜0
.3の範囲で担持する。
Specific examples of these include silica, silicates of various metals such as titanium and zirconium, molecular sieves, diatoms, silica gel, alumina, activated carbon, and periodic table
There are oxides of group metals, and silica is particularly preferred.
Although the concentration and composition ratio of each component in the catalyst can be varied over a wide range,
.. 001 to 0.5 (weight ratio), preferably 0.01 to 0
.. Support within the range of 3.

鉄のイリジウムに対する添加比率は0.01〜10(原
子比)、好ましくは0.05〜5の範囲である。この比
はアルコール中のメタノールの割合を高めたい場合には
小さく、アルコール中のメタノールの割合を低めたい場
合には高くすることが望ましい。触媒成分を担体に担持
させるには上記の金属化合物を水、メタノール、エタノ
ール、テトラヒドロフラン、ジオキサン、ノルマルヘキ
サン、ベンゼン等の溶媒に溶解し、これに担体を加え触
媒成分を含浸させたのち溶液を留去、乾燥する含浸法等
により担持させることが出来る。
The addition ratio of iron to iridium is in the range of 0.01 to 10 (atomic ratio), preferably 0.05 to 5. It is desirable that this ratio be small when it is desired to increase the proportion of methanol in the alcohol, and high when it is desired to reduce the proportion of methanol in the alcohol. To support the catalyst component on a carrier, dissolve the above metal compound in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, n-hexane, benzene, etc., add the carrier to the solution, impregnate the catalyst component, and distill the solution. The support can be carried out by an impregnation method, etc. in which the resin is removed and dried.

又担持に際してはそれぞれの原料化合物を異なる溶媒に
溶解し各成分を逐次的に担体に担持しても良く、又複数
の原料化合物を同一の溶媒に溶解し同時に担持しても良
い。更には各成分を必要に応じ還元、熱処理等の処理を
行ないながら逐次的、段階的に担持する方法によつても
良い。このような手段により調整された触媒は通常還元
処理を行ない活性化したのち反応に供せられる。
Further, upon loading, each raw material compound may be dissolved in a different solvent and each component may be sequentially supported on the carrier, or a plurality of raw material compounds may be dissolved in the same solvent and supported simultaneously. Furthermore, a method may be used in which each component is supported sequentially or stepwise while carrying out treatments such as reduction and heat treatment as necessary. The catalyst prepared by such means is usually subjected to a reduction treatment to be activated and then subjected to a reaction.

還元は水素、一酸化炭素等を含有する気体の存在下、1
00℃以上、好ましくは200〜600′C程度の温度
で処理するのが一般的で、触媒の各成分の分散を十分に
行なわせる目的て低温より徐々に、あるいは段階的に昇
温しながら還元することが望ましい。この他ヒドラジン
、水素化ホウ素化合物、水素化アルミニウム化合物など
の還元剤を使用して還元を行なう事も出来る。本発明反
応を実施するに際しての反応条件として反応温度は15
0〜450℃、好ましくは200〜3500Cである。
Reduction is carried out in the presence of a gas containing hydrogen, carbon monoxide, etc.
Generally, the treatment is carried out at a temperature of 00°C or higher, preferably about 200 to 600°C, and the reduction is carried out while gradually or stepwise raising the temperature from a low temperature to ensure sufficient dispersion of each component of the catalyst. It is desirable to do so. In addition, reduction can also be carried out using a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound. As a reaction condition when carrying out the reaction of the present invention, the reaction temperature is 15
The temperature is 0 to 450C, preferably 200 to 3500C.

温度が450℃より高いと炭化水素の副生量が増加する
。反応圧力は常圧でも良いが、空時収率を上げる為には
加圧下で行なう事が好ましく、従つてO〜350kgI
cイG1好ましくは10〜250k91cT1Gである
。空間速度は1σ〜1σHr−1の範囲から、反応温度
、原料ガス組成との関係で適宜選択される。原料ガスは
一酸化炭素と水素をCO/H2比で0.1〜101好ま
しくは0.25〜5(容積比)で含むガスが使用出来、
その他窒素、アルゴン、炭化水素、炭酸ガス、水等の反
応に不活性なガスを含有して−いても良い。
When the temperature is higher than 450°C, the amount of hydrocarbon by-products increases. The reaction pressure may be normal pressure, but in order to increase the space-time yield, it is preferable to carry out the reaction under pressure.
cIG1 is preferably 10 to 250k91cT1G. The space velocity is appropriately selected from the range of 1σ to 1σHr−1 depending on the reaction temperature and raw material gas composition. As the raw material gas, a gas containing carbon monoxide and hydrogen in a CO/H2 ratio of 0.1 to 101, preferably 0.25 to 5 (volume ratio) can be used,
It may also contain other gases that are inert to the reaction, such as nitrogen, argon, hydrocarbons, carbon dioxide, and water.

又アルコール中のメタノールの割合を上げたい場合には
反応圧力、空間速度を上げ、CO/11,比を下げる方
が好ましく、メタノールの割合を下げたい場合には反応
圧力、空間速度を下げ、CO/H2比を上げる方が好ま
しい。反応方法は固定床の流通式反応、流動床式反応あ
るいは溶媒中に触媒を分散させた液相均一反応により行
なうことが出来る。
Also, if you want to increase the proportion of methanol in alcohol, it is preferable to increase the reaction pressure and space velocity and lower the CO/11 ratio. It is preferable to increase the /H2 ratio. The reaction method can be carried out by a fixed bed flow reaction, a fluidized bed reaction, or a liquid phase homogeneous reaction in which a catalyst is dispersed in a solvent.

本発明によれば一酸化炭素と水素より炭素数1〜4のア
ルコールを好収率で製造する事が出来る。
According to the present invention, an alcohol having 1 to 4 carbon atoms can be produced in good yield from carbon monoxide and hydrogen.

実施例1 塩化イリジウム2.28rrLm01及び塩化第2鉄0
.2281rrLm01を99.5%のエチルアルコー
ルに溶解し、これに2800Cで真空加熱脱気した10
−24メッシュのシリカゲル25m1(10y)を加え
る。
Example 1 Iridium chloride 2.28rrLm01 and ferric chloride 0
.. 2281rrLm01 was dissolved in 99.5% ethyl alcohol, and 10
Add 25 ml (10 y) of -24 mesh silica gel.

ついでロータリーエバポレーターを用いエチルアルコー
ルを留去、乾固し、十分な真空下で乾燥後、水素とヘリ
.ウムの混合ガス(H2/He=3/1)を流しながら
段階的に昇温し、最終的には400℃で6時間、計1C
i11間水素還元を行ない触媒を調整した。このように
して得られた触媒5T111を反応器(14φ×460
Tm)に充填し、1時間水素で再還元した・後水素と一
酸化炭素の混合ガス(CO/H2=1/2)を供給し、
圧力20k91CT1G1温度205℃、空間速度60
00hr−1の条件で反応を行なつた。結果を第1表に
示す。実施例2〜5 塩化イリジウム及び塩化第2鉄の量を第1表に示したよ
うに適宜変化させ、実施例1と同様な条件反応させた結
果を第1表に示す。
Next, the ethyl alcohol was distilled off using a rotary evaporator, dried to dryness, and after drying under sufficient vacuum, hydrogen and helium. The temperature was raised stepwise while flowing a mixed gas of H2/He (H2/He=3/1), and finally the temperature was raised to 400°C for 6 hours, totaling 1C.
The catalyst was prepared by hydrogen reduction during i11. The catalyst 5T111 thus obtained was placed in a reactor (14φ×460
Tm), re-reduced with hydrogen for 1 hour, and then supplying a mixed gas of hydrogen and carbon monoxide (CO/H2=1/2),
Pressure 20k91CT1G1 Temperature 205℃, space velocity 60
The reaction was carried out under conditions of 00 hr-1. The results are shown in Table 1. Examples 2 to 5 Table 1 shows the results of reaction under the same conditions as in Example 1 while changing the amounts of iridium chloride and ferric chloride as shown in Table 1.

実施例6〜7 塩化イリジウム2.287T1.m01及び塩化第2鉄
1。
Examples 6-7 Iridium chloride 2.287T1. m01 and ferric chloride 1.

37nLm01を用い、水素還元処理を水素と窒素の混
合ガス(H2/N2=2/1)で段階的に昇温し、最終
的には4002Cで5時間、計托時間行なつた他は実施
例1と同様の方法て触媒を調整した。
37nLm01 was used, and the hydrogen reduction treatment was carried out stepwise with a mixed gas of hydrogen and nitrogen (H2/N2=2/1), and finally at 4002C for 5 hours, except for the same example. A catalyst was prepared in the same manner as in Example 1.

この触媒10m1を10〜24メッシュのシリカゲル3
0mtで希釈し、18φ×1100mmの反応管に充填
し、温度3000Cで2時間水素と窒素の混合ガス(H
2/N2=2/1)で再還元後、水素と一酸化炭素の混
合ガス(CO/H2=1/2)を供給し、圧力50k9
1C!1G1温度275℃で反応を行つた(実施例6)
。又同様の条件下、CO/H2比を1/1に変え反応を
行なつた(実施例7)。結果を第1表に示す。実施例8
〜9 塩化イリジウムおよび、塩化第2鉄の量を第1表の如く
変化させた以外は実施例6と同様にして触媒を調整し、
その10m1を用い実施例6と同様に反応を行なつた。
10ml of this catalyst is mixed with 10~24 mesh silica gel 3
It was diluted with 0mt, filled into a reaction tube of 18φ x 1100mm, and heated at a temperature of 3000C for 2 hours with a mixed gas of hydrogen and nitrogen (H
After re-reduction with 2/N2=2/1), a mixed gas of hydrogen and carbon monoxide (CO/H2=1/2) was supplied, and the pressure was 50k9.
1C! The reaction was carried out at 1G1 temperature of 275°C (Example 6)
. The reaction was also carried out under the same conditions with the CO/H2 ratio changed to 1/1 (Example 7). The results are shown in Table 1. Example 8
~9 A catalyst was prepared in the same manner as in Example 6 except that the amounts of iridium chloride and ferric chloride were changed as shown in Table 1,
A reaction was carried out in the same manner as in Example 6 using 10 ml of the solution.

結果を第1表に示す。実施例10 第1表に示した量の塩化イリジウム及び塩化第2鉄を1
0〜24メッシュのアルミナに担持させた以外は実施例
6と同様の方法で触媒を調整し、その10m1を実施例
6と同様に反応させた結果を第1表に示す。
The results are shown in Table 1. Example 10 Iridium chloride and ferric chloride in the amounts shown in Table 1 were added to 1
A catalyst was prepared in the same manner as in Example 6 except that it was supported on 0 to 24 mesh alumina, and 10 ml of the catalyst was reacted in the same manner as in Example 6. Table 1 shows the results.

尚これ以外にジメチルエーテルが選択率16.6%(S
TY8.9qlk9−Catlhr)で得られた。比較
例1塩化イリジウム2.287TLm01だけを用いた
触媒10m1を用い、空間速度180011r1で実施
例1と同様に反応を行なつた。
In addition to this, dimethyl ether has a selectivity of 16.6% (S
TY8.9qlk9-Catlhr). Comparative Example 1 A reaction was carried out in the same manner as in Example 1 using 10 ml of a catalyst containing only 2.287 TLm01 of iridium chloride at a space velocity of 180011 r1.

結果を第1表に示す。比較例2 触媒として塩化第2鉄2.28rrL,m01だけを用
い、水素還元処理温度を最終的には500℃で6時間、
計2C@間行つた他は実施例6と同様に反応を行つた。
The results are shown in Table 1. Comparative Example 2 Using only 2.28rrL, m01 of ferric chloride as a catalyst, the hydrogen reduction treatment temperature was finally 500°C for 6 hours.
The reaction was carried out in the same manner as in Example 6, except that a total of 2C was used.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化炭素及び水素を、イリジウム及び鉄からなる
触媒の存在下接触反応させる事を特徴とする炭素数1〜
4のアルコールの製造法。
1 Carbon monoxide and hydrogen are subjected to a catalytic reaction in the presence of a catalyst consisting of iridium and iron.
4. Method for producing alcohol.
JP58141092A 1983-08-03 1983-08-03 Method for producing alcohol having 1 to 4 carbon atoms Expired JPS6049614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141092A JPS6049614B2 (en) 1983-08-03 1983-08-03 Method for producing alcohol having 1 to 4 carbon atoms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141092A JPS6049614B2 (en) 1983-08-03 1983-08-03 Method for producing alcohol having 1 to 4 carbon atoms

Publications (2)

Publication Number Publication Date
JPS6032728A JPS6032728A (en) 1985-02-19
JPS6049614B2 true JPS6049614B2 (en) 1985-11-02

Family

ID=15284006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141092A Expired JPS6049614B2 (en) 1983-08-03 1983-08-03 Method for producing alcohol having 1 to 4 carbon atoms

Country Status (1)

Country Link
JP (1) JPS6049614B2 (en)

Also Published As

Publication number Publication date
JPS6032728A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6049614B2 (en) Method for producing alcohol having 1 to 4 carbon atoms
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6233215B2 (en)
JPS6210970B2 (en)
JPS6238336B2 (en)
JPS6119609B2 (en)
JPS6183134A (en) Production of unsaturated hydrocarbon
JPS6049618B2 (en) Method for producing oxygen-containing compounds containing ethyl alcohol as the main component
JPS63414B2 (en)
JPS6218530B2 (en)
JPS6032730A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS643857B2 (en)
JPS63162638A (en) Production of ethanol
JPH0597731A (en) Production of oxygen-containing compound and catalyst therefor
JPS63416B2 (en)
JPS6119611B2 (en)
JPS60161934A (en) Production of oxygen-containing hydrocarbon compound
JPS6125691B2 (en)
JPS6238340B2 (en)
JPS60161935A (en) Production of oxygen-containing hydrocarbon compound
JPS6024084B2 (en) Method for producing oxygenated compounds
JPS6218531B2 (en)
JPS6259231A (en) Production of ethanol
JPS6039655B2 (en) Method for producing oxygen-containing compound consisting of 2 carbon atoms