JPS60161935A - Production of oxygen-containing hydrocarbon compound - Google Patents

Production of oxygen-containing hydrocarbon compound

Info

Publication number
JPS60161935A
JPS60161935A JP59014383A JP1438384A JPS60161935A JP S60161935 A JPS60161935 A JP S60161935A JP 59014383 A JP59014383 A JP 59014383A JP 1438384 A JP1438384 A JP 1438384A JP S60161935 A JPS60161935 A JP S60161935A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
lithium
chloride
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59014383A
Other languages
Japanese (ja)
Inventor
Kenichi Sano
健一 佐野
Shinya Matsuhira
松比良 伸也
Tetsuo Nakajo
哲夫 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59014383A priority Critical patent/JPS60161935A/en
Publication of JPS60161935A publication Critical patent/JPS60161935A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To improve the selectivity of acetic acid, acetaldehyde and/or ethanol in the reaction of carbon monoxide with hydrogen in the presence of a catalyst, by using a catalyst composed of ruthenium combined with lithium and a specific metal such as platinum. CONSTITUTION:Acetic acid, acetaldehyde and/or ethanol are produced in high selectivity, without using an expensive and scarce rhodium catalyst, by reacting carbon monoxide with hydrogen usually in vapor phase, in the presence of a catalyst comprising (a) ruthenium combined with (b) lithium and (c) one or more metals selected from platinum, palladium, iron, cobalt and nickel. The above catalyst components are supported usually on a carrier having a surface area of preferably 1-1,000m<2>/g, especially a silica-based carrier, and reduced before reaction preferably at 250-550 deg.C to activate ruthenium essentially to a metallic state.

Description

【発明の詳細な説明】 本発明は合成ガスからの酸素含有炭化水素化合物物の製
造方法に関し、特に触媒の存在下に一酸化炭素と水素を
反応させて酢酸、アセトアルデヒドおよび(または)エ
タノールを製造する際、触媒としてルテニウムとリチウ
ムおよび白金、パラジウム、鉄、コバルト、ニッケルの
中から選ばれる少くとも一種の金属を併用することを特
徴とする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing oxygen-containing hydrocarbon compounds from synthesis gas, and in particular to a method for producing acetic acid, acetaldehyde and/or ethanol by reacting carbon monoxide and hydrogen in the presence of a catalyst. The present invention relates to a method characterized in that ruthenium, lithium, and at least one metal selected from platinum, palladium, iron, cobalt, and nickel are used together as a catalyst.

合成ガス、実質的にはその中に含まれる一酸化炭素と水
素を反応させて、酢酸、アセトアルデヒド、エタノール
などの炭素数2の含酸素炭化水素化合物を製造する方法
は公知であシ、その際用いられる触媒としてはロジウム
(Rh )触媒が効果的であることが知られている。(
例えば、特開昭51−80806号、同51−8080
7号、同52−14706号、同54−138504号
、同54−141705号、同55−57527号、同
56−147730号、米国特許4101450号等参
照)即ち、合成ガス又は−酸化炭素と水素を含むガス−
混合物を接触的に反応させた場合、使用する触媒や反応
条件によって反応生成物は極めて多岐に亘シ、例えば、
メタンからパラフィンワックスに至る飽和およびα−オ
レフィンに富む不飽和の各種脂肪族炭化水素並びに炭素
数6乃至10数個の芳香族炭化水素や、メタノールから
炭素数20近くの高級アルコールに至る各種アルコール
類その他アルデヒド類や脂肪酸類など各種の含酸素炭化
水素化合物が生成する。換言・・jれば、これら膨大な
数の各種生成物の中から不必要な化合物の生成を抑制し
、所望とする特定の化合物のみを選択的に生成させるこ
とは非常に難しく、そのため好適な触媒の探索を主体に
種々の工夫がなされているが、上述の酢酸、アセトアル
デヒド、エタノールなどの2個の炭素原子を有する含酸
素炭化水素化合物を高い選択率をもって取得するにはロ
ジウム触媒が特異的に優れていると言われている。
There are known methods for producing oxygenated hydrocarbon compounds having two carbon atoms, such as acetic acid, acetaldehyde, and ethanol, by reacting synthesis gas, essentially carbon monoxide and hydrogen contained therein. Rhodium (Rh) catalyst is known to be effective as a catalyst. (
For example, JP-A-51-80806, JP-A No. 51-8080
7, No. 52-14706, No. 54-138504, No. 54-141705, No. 55-57527, No. 56-147730, U.S. Pat. No. 4,101,450, etc.) In other words, synthesis gas or carbon oxide and hydrogen gas containing
When a mixture is reacted catalytically, the reaction products vary widely depending on the catalyst used and the reaction conditions, for example,
Various saturated and α-olefin-rich unsaturated aliphatic hydrocarbons ranging from methane to paraffin wax, aromatic hydrocarbons with 6 to 10 carbon atoms, and various alcohols ranging from methanol to higher alcohols with nearly 20 carbon atoms. Other oxygenated hydrocarbon compounds such as aldehydes and fatty acids are produced. In other words, it is extremely difficult to suppress the production of unnecessary compounds from among these vast numbers of various products and selectively produce only the specific desired compound. Various efforts have been made mainly in the search for catalysts, but rhodium catalysts are specific for obtaining the aforementioned oxygenated hydrocarbon compounds with two carbon atoms, such as acetic acid, acetaldehyde, and ethanol, with high selectivity. It is said to be excellent in

しかし乍ら、これらの方法ではロジウムという高価でか
つ産出量の少ない貴金属を用いるという欠点があり、従
ってロジウムに代わる有用な酢酸、アセトアルデヒド、
エタノールなどの2個の炭素原子を有する含酸素炭化水
素化合物を合成する触媒の開発が広くめられている。
However, these methods have the disadvantage of using rhodium, a precious metal that is expensive and produced in low quantities.Therefore, useful alternatives to rhodium such as acetic acid, acetaldehyde,
There is widespread interest in developing catalysts for synthesizing oxygenated hydrocarbon compounds having two carbon atoms, such as ethanol.

一般に金属や金属酸化物或いは金属塩を活性成分とする
固体触媒などに於いてその活性や選択性を改善する方法
の一つとして活性の中心となる成分(主触媒)に他の活
性又は補助的な成分(助触媒)を組合わせることが種々
試みられているが、組合せる成分によっては活性向上に
何の関係もないものは論外として、狙いとは逆に活性や
選択性の低下を招くものも数多く、また活性(又は選択
性)が向上するものであっても目的化合物の選択性(又
は活性)に悪影響を及ぼすものも少なくなく、具体的に
好適な組合せを見出すことは容易ではない。
In general, one way to improve the activity and selectivity of solid catalysts containing metals, metal oxides, or metal salts as active components is to add other active or auxiliary components to the active component (main catalyst). Various attempts have been made to combine different components (cocatalysts), but it is out of the question to combine components that have nothing to do with improving activity, and those that lead to a decrease in activity and selectivity, contrary to the intended purpose. There are many such compounds, and even if the activity (or selectivity) is improved, there are many that have an adverse effect on the selectivity (or activity) of the target compound, and it is not easy to find a specifically suitable combination.

本発明者らは従来法に見られる前記のような問題点を解
決すべく一酸化炭素と水素を反応させて酢酸、アセトア
ルデヒドおよび(または)エタノールなどの2個の炭素
原子を有する含酸素炭化水素化合物を選択的に製造する
非ロジウム系触媒について鋭意研究した、即ち数多くの
触媒成分を組合せて試験を行い種々研究を重ねた結果、
ルテニウムにリチウムおよび白金、ノぐラジウム、鉄、
コバルト、ニッケルの中から選ばれる少くとも一種を組
合せた触媒が炭素数2の含酸素化合物に対して高い選択
率を示すことを見い出し本発明の方法を完成するに至っ
た。
In order to solve the above-mentioned problems found in conventional methods, the present inventors reacted carbon monoxide with hydrogen to produce oxygenated hydrocarbons having two carbon atoms such as acetic acid, acetaldehyde, and/or ethanol. As a result of extensive research into non-rhodium catalysts that selectively produce compounds, that is, tests using a large number of combinations of catalyst components, and repeated various studies,
Ruthenium, lithium and platinum, radium, iron,
The inventors have discovered that a catalyst containing at least one selected from cobalt and nickel exhibits high selectivity for oxygen-containing compounds having 2 carbon atoms, and have completed the method of the present invention.

以下、本発明の方法について更に詳細に説′明する。The method of the present invention will be explained in more detail below.

本発明の触媒は前述の如くルテニウムとリチウムおよび
白金、ノぐラジウム、鉄、コバルト、ニッケルの中から
選ばれる少くとも一種を組合せた触媒であるが、反応条
件下に於ける動的な状態での実の触媒活性種は必ずしも
詳らかではないものの、その活性の中心となるものは本
質的には互いに共存する金属種であり、従って、触媒自
体の形態や触媒中の各成分の形は原則的には何ら制限は
ない。
As mentioned above, the catalyst of the present invention is a combination of ruthenium, lithium, and at least one selected from platinum, radium, iron, cobalt, and nickel. Although the catalytically active species in the fruit are not necessarily clear, the core of its activity is essentially the metal species that coexist with each other, and therefore the shape of the catalyst itself and the shapes of each component in the catalyst are, in principle, There are no restrictions.

ただ、実体的にはルテニウム、白金、パラジウム、鉄、
コバルト、ニッケルは金属又は低原子価の塩であシ、ま
たリチウムは酸化物、無機酸塩、錯塩等としてルテニウ
ム等と物理的に混合され或いは化学的に結合される。ま
た、担体なしでもよいが、通常は上記触媒成分は担体に
担持される。触媒調製上使用されるルテニウム化合物と
しては、例えば、塩化ルテニウム、臭化ルテニウム、沃
化ルテニウム、塩化ルテニウム酸アンモニウム、ルテニ
ウム酸カリウム、硝酸ルテニウム、水酸化ルテニウム等
の無機酸塩、酸化物、酢酸ルテニウム、ギ酸ルテニウム
・蓚酸ルテニウム等の有機酸塩或いはアンミン錯塩、ク
ラスター等が用いられるが、特に制限はない。また、他
の触媒成分として使用される白金、パラジウム、鉄、コ
バルト、ニッケル化合物としては、例えば塩化物、硝酸
塩、炭酸塩等の無機酸塩、酸化物、酢酸塩、ギ酸塩、蓚
酸塩等の有機酸塩或いばアンミン錯塩、クラスター等が
用いられるが、特に制限はない。また、リチウム化合物
としては例えばハロゲン酸塩、硫酸塩、硝酸塩、炭酸塩
等の無機酸塩、水酸化物、酢酸塩、ギ酸塩、蓚酸塩等の
有機酸塩等が用いられるが特に制限はない。しかしこれ
らの触媒成分の担体上への担持を容易ならしめるため、
水又は他の適当な″・溶媒に可溶性の化合物が好ましく
用いられる。
However, in reality, ruthenium, platinum, palladium, iron,
Cobalt and nickel are metals or low-valent salts, and lithium is physically mixed or chemically combined with ruthenium and the like as oxides, inorganic acid salts, complex salts, etc. Further, the above-mentioned catalyst component is usually supported on a carrier, although it may be carried without a carrier. Ruthenium compounds used in catalyst preparation include, for example, inorganic acid salts and oxides such as ruthenium chloride, ruthenium bromide, ruthenium iodide, ammonium ruthenate chloride, potassium ruthenate, ruthenium nitrate, and ruthenium hydroxide, and ruthenium acetate. , organic acid salts such as ruthenium formate and ruthenium oxalate, ammine complex salts, clusters, etc. are used, but there are no particular limitations. In addition, platinum, palladium, iron, cobalt, and nickel compounds used as other catalyst components include, for example, inorganic acid salts such as chlorides, nitrates, and carbonates, oxides, acetates, formates, oxalates, etc. Organic acid salts, ammine complex salts, clusters, etc. are used, but there are no particular limitations. In addition, as the lithium compound, for example, inorganic acid salts such as halogenates, sulfates, nitrates, carbonates, organic acid salts such as hydroxides, acetates, formates, oxalates, etc. can be used, but there are no particular limitations. . However, in order to make it easier to support these catalyst components on the carrier,
Compounds soluble in water or other suitable solvents are preferably used.

本発明に於いて用いられるルテニウムにリチウムおよび
白金、/ヤラジウム、鉄、コバルト、ニッケルの中から
選ばれる少くとも一種を組合せた触媒の調製法としては
、上記ルテニウム、リチウム・白金、パラジウム、鉄、
コバルト、ニッケル化合物を水又はn−ヘキサン、アル
コール、アセトン等の有機溶媒に溶解し、この溶液にジ
孔質無機担体物質を加え、含浸法・イオン交換法その他
の常法により担持させた後、還元又は熱処理することに
より担持固定された目的物を得ることができる。
As a method for preparing a catalyst in which ruthenium is used in the present invention in combination with at least one selected from lithium and platinum, /yaradium, iron, cobalt, and nickel, the above-mentioned ruthenium, lithium/platinum, palladium, iron,
After dissolving cobalt and nickel compounds in water or an organic solvent such as n-hexane, alcohol, or acetone, adding a diporous inorganic carrier material to this solution and supporting it by impregnation method, ion exchange method, or other conventional method, A supported and fixed target object can be obtained by reduction or heat treatment.

担体上への触媒成分の担持はすべての触媒成分を同時に
行なってもよいし、又、各成分ごとに逐次的に担体に担
持する方法、あるいは各成分を必要に応じて還元、熱処
理等の処理を行いながら、逐次的、段階的に担持する方
法などの各手法を用いることができる。上述の手法によ
って調製された触媒は通常還元処理を行うことによシル
テニウムを実質的金属状態に活性化し、ついで反応に供
せられる。還元処理を行うには水素ガス下又は水素及び
一酸化炭素の混合ガス下、場合によっては窒素、ヘリウ
ム、アルゴン等の不活性ガスで一部希釈された水素ガス
または上記混合ガス下で行うことができる。
The catalyst components may be supported on the carrier at the same time, or each component may be supported on the carrier sequentially, or each component may be subjected to reduction, heat treatment, etc. as necessary. It is possible to use various techniques such as a method of sequentially or stepwise loading while carrying out. The catalyst prepared by the above-mentioned method is usually subjected to a reduction treatment to activate silthenium to a substantially metallic state, and then subjected to a reaction. The reduction treatment can be carried out under hydrogen gas or under a mixed gas of hydrogen and carbon monoxide, or in some cases under hydrogen gas partially diluted with an inert gas such as nitrogen, helium, argon, etc., or under the above mixed gas. can.

還元処理温度としては100〜600℃、好ましくは2
50〜550℃の温度において行う。この際、触媒の各
成分の活性状態を最適な状態に保つ目的で、低温より徐
々に、あるいは段階的に昇温しながら還元処理を行って
もよい。
The reduction treatment temperature is 100 to 600°C, preferably 2
It is carried out at a temperature of 50-550°C. At this time, in order to maintain the activation state of each component of the catalyst in an optimal state, the reduction treatment may be performed while raising the temperature gradually or stepwise from a low temperature.

又、ルテニウム化合物の還元はメタノール、ヒドラジン
、ホルマリン等の還元剤で処理することによって行なっ
てもよい。
Further, the reduction of the ruthenium compound may be carried out by treatment with a reducing agent such as methanol, hydrazine or formalin.

各触媒成分の使用量については必ずしも厳密な制限はな
いが、担体の表面積(約1 rnlP〜1,000シケ
)を考慮して通常の条件下に於いては、担持触媒中のル
テニウムの含有量としては、0.01〜15重量%、好
ましくは、0.1〜10重量%、リチウム、白金、パラ
ジウム、鉄、コバルト、ニッケルとルテニウムの比率(
LiAu + PtAu +Pd/Ru r Fe71
u r Co/’Ru r Ni/Ru )はそれぞれ
原子比で、0.001〜2、好ましくは0.01〜1の
範囲が用いられる。
Although there is no strict limit on the amount of each catalyst component used, under normal conditions, taking into consideration the surface area of the support (approximately 1 rnlP to 1,000 rnlP), the content of ruthenium in the supported catalyst is The ratio of lithium, platinum, palladium, iron, cobalt, nickel and ruthenium is 0.01-15% by weight, preferably 0.1-10% by weight.
LiAu + PtAu + Pd/Ru r Fe71
ur Co/'Ru r Ni/Ru ) each has an atomic ratio of 0.001 to 2, preferably 0.01 to 1.

本触媒に用いる担体としては、1〜1,000m2/g
の比表面積をもつものが好ましく、シリカ、活性アルミ
ナ、酸化チタン、酸化トリウム、活性炭、、ゼiオライ
ド等が用い得るが特にシリカ系担体が好、ま、;シい。
The carrier used for this catalyst is 1 to 1,000 m2/g.
A carrier having a specific surface area of 2 is preferred, and silica, activated alumina, titanium oxide, thorium oxide, activated carbon, zeolide, etc. can be used, but silica-based carriers are particularly preferred.

これらの担体は粉末状、ベレット状等あ゛(・) −ラゆる形状のものについて適用可能である・反応は通
常気相で行われ、例えば、触媒を充填した固定床式反応
器に一酸化炭素と水素を含む原料ガスを導通させる。こ
の場合、原料ガスには一酸化炭素と水素以外に、例えば
、二酸化炭素、窒素、アルゴン、ヘリウム、水蒸気、メ
タン等の他の成分を含んでいても良い。また、触媒反応
器は固定床式に限らず移動床式や流動床弐等他の形式で
あっても良い。また、場合によっては触媒を適当な溶媒
中に懸濁して原料ガスを導通して反応させる液相反応で
も実施することができる。
These carriers can be used in any shape, such as powder or pellet form. - The reaction is usually carried out in the gas phase, for example, monoxide is added to a fixed bed reactor packed with a catalyst. Conducts raw material gas containing carbon and hydrogen. In this case, the source gas may contain other components other than carbon monoxide and hydrogen, such as carbon dioxide, nitrogen, argon, helium, water vapor, and methane. Further, the catalytic reactor is not limited to a fixed bed type, but may be of other types such as a moving bed type or a fluidized bed type. In some cases, a liquid phase reaction may also be carried out in which the catalyst is suspended in a suitable solvent and the raw material gas is passed through the reactor.

反応条件は広い範囲で変えることができるが、固定床流
通式反応装置に適用される反応条件を代表的な範囲とし
て以下に示す。
Although the reaction conditions can vary within a wide range, the reaction conditions applicable to a fixed bed flow reactor are shown below as a typical range.

一酸化炭素と水素のモル比:20:1〜1:5、好まし
くは10:1〜1:3、反応温度150〜450℃、好
ましくは200〜350℃、圧力1800atm、好ま
しくは20〜200atm,sy:100〜106H−
1、好ましくは1,000〜105H−1程度が適当で
ある。
Molar ratio of carbon monoxide and hydrogen: 20:1 to 1:5, preferably 10:1 to 1:3, reaction temperature 150 to 450°C, preferably 200 to 350°C, pressure 1800 atm, preferably 20 to 200 atm, sy:100-106H-
1, preferably about 1,000 to 105H-1.

−以下、本発明について、実施例をもって更に詳細に説
明するが、これらの例は本発明についての理解を容易に
するため、あえて条件を統一して示すもので本発明はこ
れらの例によって何ら制限されないことは勿論である。
- Hereinafter, the present invention will be explained in more detail with reference to Examples. However, in order to make it easier to understand the present invention, these examples intentionally show the conditions in a unified manner, and the present invention is not limited in any way by these examples. Of course not.

触媒調製 実施例1 塩化ルテニウム(Ruct3−3H2o ) 1. !
530 y 、塩化リチウム(LiCt) 0.746
?、塩化白金酸(H2PtCA6−6H20) 0.5
19/−を純水25mAに溶解した水溶液中にシリカゲ
ル(富士デグイソン化学■≠57)20.Pを加え、均
一に含浸させた。時々、攪拌しながら、室温下で1時間
、80℃で20時間乾燥した。この触媒を石英ガラス製
還元反応管に入れ、水素/窒素の容量比1/4の混合ガ
ス75Nt/’Hr流通下、300℃2時間水素還元し
た。得られた触媒は第1表実施例1の組成をもつ。
Catalyst Preparation Example 1 Ruthenium chloride (Ruct3-3H2o) 1. !
530 y, lithium chloride (LiCt) 0.746
? , chloroplatinic acid (H2PtCA6-6H20) 0.5
Silica gel (Fuji Deguison Chemical ■≠57) 20. P was added and uniformly impregnated. The mixture was dried at room temperature for 1 hour and at 80° C. for 20 hours with occasional stirring. This catalyst was placed in a reduction reaction tube made of quartz glass, and hydrogen reduction was carried out at 300°C for 2 hours while flowing a mixed gas of 75 Nt/'Hr at a hydrogen/nitrogen volume ratio of 1/4. The resulting catalyst had the composition shown in Table 1, Example 1.

−因J1例」− 塩化ルテニウム(Ru(t3・3H2Q ) 1.53
01−1塩化例1と同様に処理して、第1表実施例2の
触媒を得た。
-Example J1 - Ruthenium chloride (Ru(t3・3H2Q) 1.53
01-1 Chlorination The catalyst of Example 2 in Table 1 was obtained by the same treatment as in Example 1.

実施例3 塩化ルテニウム(RuC43’3H20) 1.530
iP、硝酸リチウム(LiNO2) 0.135 j’
、塩化白金酸()(2Pt、C76・6H20) 0.
519ノを純水25Mに溶解する外は実施例1と同様に
処理して、第1表実施例3の触媒を得た。
Example 3 Ruthenium chloride (RuC43'3H20) 1.530
iP, lithium nitrate (LiNO2) 0.135 j'
, chloroplatinic acid () (2Pt, C76・6H20) 0.
The catalyst of Example 3 in Table 1 was obtained by treating in the same manner as in Example 1 except that 519 was dissolved in 25M pure water.

実施例4 塩化ルテニウム(Ruct5−3H2o ) 1.53
 oy、塩化リチウム(LiCt) 0.250JP、
塩化パラジウム(PdC12) 0.354 ii−を
純水24m1と塩酸1 mAの混合液に完全に溶解させ
てから、実施例1と同様に乾燥及び還元処理を行ない、
第1表実施例4の触媒を得た。
Example 4 Ruthenium chloride (Ruct5-3H2o) 1.53
oy, lithium chloride (LiCt) 0.250JP,
Palladium chloride (PdC12) 0.354 ii- was completely dissolved in a mixture of 24 ml of pure water and 1 mA of hydrochloric acid, and then dried and reduced in the same manner as in Example 1.
The catalyst of Example 4 in Table 1 was obtained.

実施例5 塩化ルテニウム(RuC43’3H20) 15301
P1塩化リチウム(LiCA ) 0.250?、塩化
鉄(FeC63・6H20)0.540.Pを純水25
m/に完全に、溶解させてから、実施例1と同様に乾燥
及び還元処理を行ない、第1表実施例5の触媒を得た。
Example 5 Ruthenium chloride (RuC43'3H20) 15301
P1 Lithium chloride (LiCA) 0.250? , iron chloride (FeC63.6H20) 0.540. P to pure water 25
After completely dissolving in m/, the catalyst was dried and reduced in the same manner as in Example 1 to obtain the catalyst of Example 5 in Table 1.

実施例6 塩化ルテニウム(RuCl3・3H2O)1.530g
、塩化リチウム(LiCl)0.250g、塩化コバル
ト(CoCl2・6H2O)0.465gを純水25m
lに完全に溶解させてから実施例1と同様に乾燥及び還
元処理2行ない第1表実施例6の触媒を得た。
Example 6 Ruthenium chloride (RuCl3.3H2O) 1.530g
, 0.250 g of lithium chloride (LiCl), 0.465 g of cobalt chloride (CoCl2.6H2O) in 25 m of pure water.
The catalyst of Example 6 in Table 1 was obtained by performing two drying and reduction treatments in the same manner as in Example 1.

実施例7 塩化ルテニウム(RuC75・3H20) 1.530
f、塩化リチウム(LjCA ) 0.250ノ、塩化
ニッケル(Ns C70・6H20) o、 465 
fを純水”15m1に完全に溶解させてから実施例1と
同様に乾燥及び還元処理を行ない第1表実施例7の触媒
を得た。
Example 7 Ruthenium chloride (RuC75・3H20) 1.530
f, Lithium chloride (LjCA) 0.250, Nickel chloride (Ns C70・6H20) o, 465
f was completely dissolved in 15 ml of pure water, and then dried and reduced in the same manner as in Example 1 to obtain the catalyst of Example 7 in Table 1.

参考例1 塩化ルテニウム(RuCz、’3I(20) 1.53
0y−1塩化リチウム(LiCA ) 0.250y−
を純水25rnAに溶解する外は実施例1と同様に処理
して、第1表参考例1の触媒を得た。
Reference example 1 Ruthenium chloride (RuCz, '3I(20) 1.53
0y-1 Lithium chloride (LiCA) 0.250y-
The catalyst of Reference Example 1 in Table 1 was obtained in the same manner as in Example 1 except that the catalyst was dissolved in 25 rnA of pure water.

参考例2 塩化ルテニウム(RuCt、 ・3H20) 1.53
0?、塩化白金酸(H2Pt、C20・6I(20) 
1.040y−を純水25m1に溶解する外は実施例1
と同様に処理して第1表参考例2の触媒を得た。
Reference example 2 Ruthenium chloride (RuCt, 3H20) 1.53
0? , chloroplatinic acid (H2Pt, C20.6I (20)
Example 1 except that 1.040y- was dissolved in 25ml of pure water.
The catalyst of Reference Example 2 in Table 1 was obtained in the same manner as above.

参考例3 塩化ルテニウム(RuC1,・3H20) 1.020
y−1塩化ノτノジウム(PdC12) 0.236?
を純水24献と塩酸2mlの混合液に溶解する外は実施
例1と同様の処理して第1表参考例3の触媒を得た。
Reference example 3 Ruthenium chloride (RuC1, 3H20) 1.020
y-1 Nodium chloride (PdC12) 0.236?
The catalyst of Reference Example 3 in Table 1 was obtained in the same manner as in Example 1, except that the catalyst was dissolved in a mixed solution of 24 ml of pure water and 2 ml of hydrochloric acid.

参考例4 塩化ルテニウム(RuCt3−3H20) 1,020
.P、塩化鉄(FeCt3’6H20) 0.36 (
lを純水25m/に溶解する外は実施例1と同様に処理
して、第1表参考例4の触媒を得た。
Reference example 4 Ruthenium chloride (RuCt3-3H20) 1,020
.. P, iron chloride (FeCt3'6H20) 0.36 (
The catalyst of Reference Example 4 in Table 1 was obtained in the same manner as in Example 1 except that 1 was dissolved in 25 m/25 m of pure water.

参考例5 塩化ルテニウム(Ru C1s ・3H20) 1.0
2 ’ Of、塩化コバルト(COCl2−6H20)
 0.310 ?を純水25mAに溶解する外は実施例
1と同様に処理して、第1表参考例5の触媒を得た。
Reference example 5 Ruthenium chloride (Ru C1s 3H20) 1.0
2'Of, cobalt chloride (COCl2-6H20)
0.310? The catalyst of Reference Example 5 in Table 1 was obtained in the same manner as in Example 1 except that the catalyst was dissolved in 25 mA of pure water.

参考例6 塩化ルテニウム(RuCl3−3H20) 1゜020
 P、塩化二、 )r ル(NiCA2・6H20) 
0.310y−を純水25m/に溶解する外は実施例1
と同様に処理して、第1表参考例6の触媒を得た。
Reference example 6 Ruthenium chloride (RuCl3-3H20) 1°020
P, dichloride, )r (NiCA2・6H20)
Example 1 except that 0.310y- was dissolved in 25m/25m of pure water.
The catalyst of Reference Example 6 in Table 1 was obtained in the same manner as above.

活性評価及び結果 上記触媒Ion/をそれぞれステンレススチール製反応
管に充填し、原料ガス(coAI2= 2/1 )を7
5 Nl/Hrの速度で送入し、反応圧力フ5kg/d
G。
Activity Evaluation and Results Each of the above catalysts Ion/ was filled into a stainless steel reaction tube, and the raw material gas (coAI2=2/1) was
Feed at a rate of 5 Nl/Hr, and the reaction pressure was 5 kg/d.
G.

において反応を行なった。反応ガスをそのままがスクロ
マトグラフ法によシ分析した結果を第1表02−〇欄に
示したものは酢酸、アセトアルデヒド、及びエタノール
への選択率の合計値である。C2以上HC欄に示したも
のはC2H4,C2H6,C3H6゜C3H8,C4H
8,C4H1o、C5H4゜、C5H12,C6H42
゜C6H14への選択率の合計値である。
The reaction was carried out in The reaction gas was analyzed by chromatography as it was, and the result shown in column 02-0 of Table 1 is the total value of selectivity to acetic acid, acetaldehyde, and ethanol. Those shown in the HC column above C2 are C2H4, C2H6, C3H6゜C3H8, C4H
8, C4H1o, C5H4゜, C5H12, C6H42
゜It is the total value of selectivity to C6H14.

Claims (1)

【特許請求の範囲】[Claims] 触媒の存在下に一酸化炭素と水素を反応させて、酢酸ア
セトアルデヒドおよび(または)エタノールを製造する
方法に於いて、触媒として、ルテニウムとリチウムおよ
び白金、パラジウム、鉄、コバルト、ニッケルの中から
選ばれる少なくとも一種の金属を併用することを特徴と
する方法。
In a method for producing acetic acid acetaldehyde and/or ethanol by reacting carbon monoxide and hydrogen in the presence of a catalyst, the catalyst is selected from ruthenium and lithium and platinum, palladium, iron, cobalt, and nickel. A method characterized in that at least one metal is used in combination.
JP59014383A 1984-01-31 1984-01-31 Production of oxygen-containing hydrocarbon compound Pending JPS60161935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59014383A JPS60161935A (en) 1984-01-31 1984-01-31 Production of oxygen-containing hydrocarbon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014383A JPS60161935A (en) 1984-01-31 1984-01-31 Production of oxygen-containing hydrocarbon compound

Publications (1)

Publication Number Publication Date
JPS60161935A true JPS60161935A (en) 1985-08-23

Family

ID=11859522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014383A Pending JPS60161935A (en) 1984-01-31 1984-01-31 Production of oxygen-containing hydrocarbon compound

Country Status (1)

Country Link
JP (1) JPS60161935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244034A (en) * 1990-09-10 1992-09-01 Agency Of Ind Science & Technol Production of 2c oxygen-containing compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123925A (en) * 1980-01-31 1981-09-29 Ici Ltd Manufacture of ethylene glycol
JPS5782328A (en) * 1980-09-26 1982-05-22 Union Carbide Corp Ethylene glycol continuous manufacture
JPS57130937A (en) * 1981-02-04 1982-08-13 Mitsui Petrochem Ind Ltd Synthetic method of alkane polyol
JPS58180436A (en) * 1982-04-16 1983-10-21 Agency Of Ind Science & Technol Preparation of compound containing oxygen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123925A (en) * 1980-01-31 1981-09-29 Ici Ltd Manufacture of ethylene glycol
JPS5782328A (en) * 1980-09-26 1982-05-22 Union Carbide Corp Ethylene glycol continuous manufacture
JPS57130937A (en) * 1981-02-04 1982-08-13 Mitsui Petrochem Ind Ltd Synthetic method of alkane polyol
JPS58180436A (en) * 1982-04-16 1983-10-21 Agency Of Ind Science & Technol Preparation of compound containing oxygen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244034A (en) * 1990-09-10 1992-09-01 Agency Of Ind Science & Technol Production of 2c oxygen-containing compound
JP2704165B2 (en) * 1990-09-10 1998-01-26 工業技術院長 Method for preparing catalyst for producing organic oxygenated compound

Similar Documents

Publication Publication Date Title
JP2001031602A (en) Method and catalyst for producing c2-oxygenate from synthetic gas
JPS60161935A (en) Production of oxygen-containing hydrocarbon compound
JPS59190934A (en) Production of oxygen-containing hydrocarbon compound
JPS6233215B2 (en)
JPS60161934A (en) Production of oxygen-containing hydrocarbon compound
JPS5978130A (en) Preparation of hydrocarbon compound containing oxygen
JPS6341893B2 (en)
JPS6049612B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6183134A (en) Production of unsaturated hydrocarbon
JPS60199841A (en) Production of oxygen-containing c2 compound
JPS6064938A (en) Production of oxygen-containing hydrocarbon compound
JPS6064937A (en) Production of oxygen-containing hydrocarbon compound
JPS6039654B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPH0597731A (en) Production of oxygen-containing compound and catalyst therefor
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6049618B2 (en) Method for producing oxygen-containing compounds containing ethyl alcohol as the main component
JPS61178935A (en) Production of ethanol
JPS6032729A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS5925340A (en) Preparation of oxygen-containing compound
JPS63162638A (en) Production of ethanol
JPH085819B2 (en) Method for producing oxygen-containing compound mainly containing acetaldehyde
JPS6218530B2 (en)
JPS60114343A (en) Rhodium-containing catalyst
JPS6049614B2 (en) Method for producing alcohol having 1 to 4 carbon atoms
JPS60114342A (en) Sulfur-containing rhodium catalyst