JPS604929B2 - Colorimetric analysis method - Google Patents

Colorimetric analysis method

Info

Publication number
JPS604929B2
JPS604929B2 JP13460077A JP13460077A JPS604929B2 JP S604929 B2 JPS604929 B2 JP S604929B2 JP 13460077 A JP13460077 A JP 13460077A JP 13460077 A JP13460077 A JP 13460077A JP S604929 B2 JPS604929 B2 JP S604929B2
Authority
JP
Japan
Prior art keywords
analysis
wavelength
colorimetric
values
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13460077A
Other languages
Japanese (ja)
Other versions
JPS5468285A (en
Inventor
寿幸 佐草
靖 野村
良平 矢辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13460077A priority Critical patent/JPS604929B2/en
Priority to DE2847176A priority patent/DE2847176C2/en
Priority to US05/956,354 priority patent/US4263512A/en
Publication of JPS5468285A publication Critical patent/JPS5468285A/en
Publication of JPS604929B2 publication Critical patent/JPS604929B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Description

【発明の詳細な説明】 本発明は、妨害クロモゲンを含有する検体に対する吸光
度変化を利用した生化学における比色分析方法の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in colorimetric analysis methods in biochemistry that utilize changes in absorbance for specimens containing interfering chromogens.

生化学検査の分野における最近の自動化の傾向は極めて
著しいものがある。
The recent trend toward automation in the field of biochemical testing is extremely remarkable.

自動分析装置も又、初期のフロータイプから最近の種々
のディスクリートタィプ迄多種多様にわたる機種が開発
されている。これら各種の自動分析装置は、検査件数全
体の拡大と、測定結果の精密度の向上の両面におし、て
著しい効果を発揮している。即ち、現在使用されている
自動分析装置においては、検体処理の速度と、精密度の
2点に関する限りにおいては、殆どの自動分析装置が使
用者の要求をほぼ満足するような段階に到達しつつある
。しかし、測定結果の正確度の点を考慮すると、現在使
用されている各種の自動分析装置は未だ幾多の問題点を
有し、使用者の要求を満たすには程遠いものがある。就
中、溶血(ヘモグロビン)、黄垣(ビリルビン)、乳び
(濁り)を始めとする各種のクロモゲンが自動分析装置
の測定の正確度を失わしめている。このような妨害クロ
モゲンによる影響は、特にエンドポイント法利用の比色
分析及び比濁分析において著しく、レート法(反応速度
測定法)においては殆どない。しかしながら、生イb学
検査の全ての物質に対してレート法を用いることは原理
的には可能であっても、試薬の価格、操作の簡便さ、処
理速度等の点に問題がある。従って、現状では、検査件
数全体に対して比色分析法の占める割合は依然として極
めて高い。従って、比色分析法(比濁分析法も含む)に
おける、前述のようなクロモゲンによる正確度の劣化の
ない自動装置用比色分析法が開発されるならば、その果
たす役割は極めて大きい。
Automatic analyzers have also been developed in a wide variety of models, from the early flow type to the recent various discrete types. These various automatic analyzers have shown remarkable effects in both expanding the overall number of tests and improving the accuracy of measurement results. In other words, most of the automatic analyzers currently in use have reached a stage where they almost satisfy the needs of their users in terms of sample processing speed and precision. be. However, when considering the accuracy of measurement results, the various automatic analyzers currently in use still have many problems and are far from meeting the needs of users. In particular, various chromogens, including hemolysis (hemoglobin), bilirubin (bilirubin), and chyle (turbidity), impair the measurement accuracy of automatic analyzers. The influence of such interfering chromogens is particularly noticeable in colorimetric analysis and nephelometric analysis using the end point method, and is almost non-existent in the rate method (reaction rate measuring method). However, although it is possible in principle to use the rate method for all substances used in biochemical tests, there are problems with the cost of reagents, ease of operation, processing speed, etc. Therefore, at present, the ratio of colorimetric analysis to the total number of tests is still extremely high. Therefore, if a colorimetric analysis method (including nephelometric analysis method) for automatic equipment without deterioration of accuracy due to chromogen as described above could be developed, it would play an extremely important role.

従来から行なわれている、このようなクロモゲンの妨害
を防ぐ最も基本的な方法は、全ての検体、全ての検査項
目毎に検体ブランクを測定するものである。
The most basic method conventionally used to prevent such chromogen interference is to measure sample blanks for every sample and every test item.

勿論、検体ブランクを測定するための試薬の組成など、
検討すべき問題も多くあるが、基本的には測定反応に関
与する物質の中の適当なものを除いた試薬を用いて検体
ブランクを測定し、これとその検体の反応液との差より
目的物質を算出すれば、前述のような妨害物質の影響の
ない真値に近い正確な分析値が得られる。しかしながら
、このような検体ブランク補正法を自動分析装置に用い
ると、1試料に対して2回ずつ測定が必要となるため、
必然的に装置の検体処理速度が半分に低下し、しかも必
要な試薬の種類が増大する等の欠点もあり、1部の特殊
な検査項目の検査以外には適用されていないのが現状で
ある。又、比色分析法において分析値の正確度を失わし
めるもう1つの要因として気泡や固形物がある。これは
、フ。ーセルを用いた比色分析法においても、試験管を
用いた直接比色分析法においても生じる。生化学検査に
おいて比色分析によって測定される被目的物質の種類は
4の蓮類以上あるが、従来それらの比色分析方法として
は1波長法或るし、は2波長法が用いられている。
Of course, the composition of the reagent for measuring the sample blank, etc.
There are many issues to consider, but basically, a sample blank is measured using a reagent that removes appropriate substances involved in the measurement reaction, and the difference between this and the reaction solution of the sample is used to determine the purpose. By calculating the substances, accurate analysis values close to the true values can be obtained without the influence of interfering substances as mentioned above. However, when such a sample blank correction method is used in an automatic analyzer, each sample needs to be measured twice.
It inevitably reduces the sample processing speed of the device by half, and it also has disadvantages such as increasing the number of types of reagents required, so it is currently not being applied to anything other than testing a few special test items. . In addition, air bubbles and solid matter are another factor that reduces the accuracy of analytical values in colorimetric analysis. This is fu. This occurs both in colorimetric analysis using a cell and in direct colorimetry using a test tube. There are more than 4 types of target substances that are measured by colorimetric analysis in biochemical tests, and conventionally, the single wavelength method or the two wavelength method has been used as the colorimetric analysis method. .

即ち、前者は、目的物質に対応する反応物質或るし、は
反応生成物の吸光中心近傍の特定波長における吸光度を
測定するものであり、該中心近傍の波長と他の適当なも
う1つの波長における吸光度の差を測定するのが後者で
ある。しかし、いずれの方法も前記のような種々の妨害
物質の影響を受けるという問題がある。第1図に、各妨
害物質と吸収スペクトルの関係を模型的に示す。
That is, the former measures the absorbance at a specific wavelength near the absorption center of a reactant or reaction product corresponding to the target substance, and the wavelength near the center and another appropriate wavelength are measured. The latter measures the difference in absorbance at However, both methods have the problem of being affected by various interfering substances as mentioned above. FIG. 1 schematically shows the relationship between each interfering substance and the absorption spectrum.

図において、10‘ま前記のような妨害物質を全く含ま
ない理想的な血清の反応液の吸収スペクトル、12は、
乳び、黄垣、溶血等の妨害物質を含む血清の反応液の吸
収スペクトル、13は、スペクトル10で示される反応
液中に気泡或るし、は固形物が混入した場合の吸収スペ
クトルである。第1図において、波長入2における1波
長比色法を考慮すると、これらの3つの検体中の目的物
質の濃度は本来同程度であるにもかかわらず、スペクト
ル12はスペクトル10の約2倍、スペクトル13はス
ペクトル10の約4倍もの測定値を与える。2波長比色
法の場合、微小な気泡や固形物は一般にそのスペクトル
を縦鞠方向に平行移動させるのみで、1波長比色法の場
合程大きい誤差を与えない。
In the figure, 10' is the absorption spectrum of an ideal serum reaction solution that does not contain any interfering substances, and 12 is
Absorption spectrum of a serum reaction solution containing interfering substances such as chyle, yellowing, hemolysis, etc. 13 is the absorption spectrum when air bubbles or solid matter is mixed into the reaction solution shown by spectrum 10 . In FIG. 1, considering the one-wavelength colorimetric method at wavelength input 2, spectrum 12 is about twice that of spectrum 10, even though the concentrations of the target substances in these three samples are essentially the same. Spectrum 13 provides approximately four times as many measurements as spectrum 10. In the case of the two-wavelength colorimetric method, minute bubbles and solid objects generally only shift the spectrum in parallel in the vertical direction, and do not cause as large an error as in the one-wavelength colorimetric method.

実際には気泡や固形物の位置や大きさによって長波長側
と短波長側での影響が異なるため、気泡や固形物による
誤差は、スペクトル13から予想される程には少なくな
いが、1波長比色法の場合よりは著しく小さい。2波長
比色法の場合の前述のクロモゲンの妨害はスペクトル1
2に示されるように複雑であり、波長^2−^3の場合
は50%の正の誤差を、波長入2一入,の場合は30%
の負の誤差を与える。
In reality, the influence on the long and short wavelength sides differs depending on the position and size of bubbles and solids, so the error due to bubbles and solids is not as small as expected from spectrum 13, but it is It is significantly smaller than that of the colorimetric method. In the case of the two-wavelength colorimetric method, the above-mentioned chromogen interference is spectrum 1
As shown in Figure 2, it is complicated, with a positive error of 50% in the case of wavelength ^2-^3, and 30% in the case of wavelength input 21.
gives a negative error of

本発明の目的は、前記したような妨害物質による影響が
どの程度であるかを知るための方法を提供することにあ
る。本発明の特徴は、単一試料に対する比色分析を1波
長比色法及び2波長比色法の両者で行ない、これら両者
の分析値の比を求めるようにしたことにある。
An object of the present invention is to provide a method for determining the degree of influence caused by the above-mentioned interfering substances. A feature of the present invention is that colorimetric analysis of a single sample is performed using both a one-wavelength colorimetric method and a two-wavelength colorimetric method, and the ratio of the analytical values of these two methods is determined.

本発明の望ましい実施例によれば、三大妨害要因である
乳び、溶血、黄値による妨害と、気泡及び固形物による
妨害が補正でき、正確な測定値が得られる。
According to a preferred embodiment of the present invention, the three major interference factors, namely, chyle, hemolysis, and yellow value, and interference due to air bubbles and solid matter can be corrected, and accurate measurement values can be obtained.

本発明の望ましい実施例では、比色分析方法において、
単一試料に対する比色分析を1波長比色法及び2波長比
色法の両者で行ない、求められた両者の分析値の比が1
に近い所定範囲内にある時は、その分析値を分析結果と
して採用し、両者の分析値の比が前記所定範囲外である
時には、試料中の妨害物質量に応じて両者の分析値を補
正し、求められた両者の補正分析値の比が1に近い所定
範囲内にある時は、その補正分析値を分析結果として採
用し、両者の補正分析値の比が前記所定範囲外である時
は、2波長比色法の補正分析値を分析結果として採用し
、及び、或るし、は、再検査する。
In a preferred embodiment of the present invention, in the colorimetric method,
Perform colorimetric analysis on a single sample using both the one-wavelength colorimetric method and the two-wavelength colorimetric method, and the ratio of the two analytical values obtained is 1.
When the ratio is within a predetermined range close to the above, that analytical value is adopted as the analysis result, and when the ratio of both analytical values is outside the predetermined range, both analytical values are corrected according to the amount of interfering substances in the sample. However, when the ratio of the two corrected analysis values obtained is within a predetermined range close to 1, that corrected analysis value is adopted as the analysis result, and when the ratio of the two corrected analysis values is outside the predetermined range. adopts the corrected analysis value of the two-wavelength colorimetric method as the analysis result, and/or re-examines.

本発明は、第1図から明らかなごとく、妨害物質や気泡
、固形物を含まない理想的な検体に対してのみ、1波長
法と2波長法による測定値が真値を与え、両者の測定値
が一致し、逆に検体が前記のような妨害物質や気泡、固
形物を含む場合、両者の測定値が一致しないことを利用
したものである。
As is clear from FIG. 1, the present invention provides true values for measurements made by the one-wavelength method and the two-wavelength method only for ideal specimens that do not contain interfering substances, bubbles, or solid matter. This method takes advantage of the fact that when the values match, but conversely, the sample contains interfering substances, bubbles, or solids, the two measured values do not match.

以下本発明に基づく一実施例の方法を、A〜Fの6項目
を同時に測定する場合を例にして詳細に説明する。
Hereinafter, a method according to an embodiment of the present invention will be described in detail using an example in which six items A to F are measured simultaneously.

まず、通常の多項目自動分析計と同様の方法で反応させ
て比色分析を行なうが、1波長比色法と2波長比色法の
両者の測定を行ない、その比を計算する。今、A〜F項
目の1波長比色法により得られた分析値をそれぞれ2,
〜f,とし、2波長分析法により得られた分析値をa2
〜もとすると、両者の比K^〜KFは次式で表わされる
。K^=き‐‐・‐‐‐…肌..・.・KB=叢側岬肌
州 KC=号肌‐‐‐‐‐‐.・・.・・.・KD=毒……
……………(41 KB=さ・‐・‐‐‐・・‐‐‐‐‐‐.・‐・‐‐‘
KF:号…………………‘6’前記各式によって求めた
比K^〜KFが、1に近い所定範囲内、例えば0.95
〜1.09なにあるときは、その分析値の一方或るいは
両者の平均を分析結果として採用する。
First, a colorimetric analysis is performed by reacting in the same manner as a normal multi-item automatic analyzer, but measurements are performed using both the one-wavelength colorimetric method and the two-wavelength colorimetric method, and the ratio is calculated. Now, the analytical values obtained by the single wavelength colorimetric method for items A to F are 2,
~f, and the analytical value obtained by the two-wavelength analysis method is a2
Based on ~, the ratio K^~KF of both is expressed by the following formula. K^=Ki--・--...Skin. ..・..・KB = Misaki Hadashu KC = Gohada ---.・・・.・・・.・KD=Poison...
……………(41 KB=Sa・‐・‐‐‐・・‐‐‐‐‐‐.・‐・‐‐'
KF: Number.........'6' The ratio K^~KF obtained by each of the above formulas is within a predetermined range close to 1, for example 0.95.
~1.09, the average of one or both of the analysis values is adopted as the analysis result.

なお、前記分析時において、そのスペクトルの解析が最
も容易な分析項目のスペクトルから、例えば血清検体中
の妨害物質である、乳び度×、溶血度Y、黄頂度Zを求
めておく。第2図に、GOTの紫外都側定の吸収スペク
トルを示す。
In addition, at the time of the above-mentioned analysis, from the spectrum of the analysis item whose spectrum is easiest to analyze, for example, the chylity level x, hemolysis level Y, and yellow apex level Z, which are interfering substances in the serum sample, are determined. FIG. 2 shows the absorption spectrum of GOT under ultraviolet light.

図において、14は前述の妨害クロモゲンを全く含まな
い理想的な正常血清の反応液のスペクトルを水対象で示
したもの、16は、高乳び血清の反応液のスペクトルを
試薬ブランク対象で示したもの、18は、高黄癖血清の
反応液のスペクトルを同じく試薬ブランク対象で示した
ものである。又、図において、波長^,.は34仇肌、
入,2は37触れ、^,3は41則m、入,4は45血
の、^,5は48血の、入,6は505nの、^,7は
54節仇、^18は57仇肌、入,9は60触れ、入2
oは60仇机、^2・は70肌肌、入22は85血ので
ある。図から明らかなごとく、GOT測定の反応液の可
視波長城のスペクトルを解析すれば、前記妨害クロモゲ
ンの量を求めることができる。第3図に、多波長自動分
析装置を使用して分析した場合に得られる吸収スベクト
ラムを示す。
In the figure, 14 shows the spectrum of the ideal normal serum reaction solution containing no interfering chromogen mentioned above, using a water target, and 16 shows the spectrum of the high chyle serum reaction solution using a reagent blank target. Figure 18 shows the spectrum of the reaction solution of high yellowing serum, also using a reagent blank. Also, in the figure, the wavelength ^, . is 34 enemies,
Enter, 2 is 37 touches, ^, 3 is 41 rule m, entry, 4 is 45 blood, ^, 5 is 48 blood, entry, 6 is 505n, ^, 7 is 54 verses, ^18 is 57 Enemy skin, entering, 9 is 60 touches, entering 2
o is 60 enemies, ^2 is 70 skins, and entering 22 is 85 bloods. As is clear from the figure, the amount of the interfering chromogen can be determined by analyzing the visible wavelength spectrum of the reaction solution for GOT measurement. FIG. 3 shows an absorption spectrum obtained when analyzed using a multi-wavelength automatic analyzer.

図において、20は、GOT測定液で希釈した浮び基準
液のスペクトル、22は、同じくGOT測定液で希釈し
た溶血基準液のスペクトル、24は、同じくGOT測定
液で希釈した黄頂基準液のスペクトルである。浮び基準
液は、20クンケル単位相当の微細ポリスチレン粉末を
、GOT試薬で希釈乳濁させたもの、溶血基準液は、1
00の9/ののヘモグロビン基準液を、検体血清と同一
条件でGOT測定液で希釈溶解したもの、叢直基準液は
、10雌/ののピリルビンコントロール血清を検体血清
と同一条件でGOT測定液で希釈溶解したものである。
前記スペクトル20,22,24は、いずれも試薬ブラ
ンク対象のスペクトルである。又各波長は、第2図と同
一である。第3図から明らかなごとく、GOT試薬中で
可視波長城に表われる検体ブランク吸収のうち、^沙以
降の長波長城は乳びによるものであり、入,7〜,9の
中間波長城は乳びと溶血によるものであり、^,6以前
の短波長城は、乳ぴ、溶血、黄痕の3成分によるもので
あることが分かる。
In the figure, 20 is the spectrum of the floating standard solution diluted with the GOT measurement solution, 22 is the spectrum of the hemolytic standard solution also diluted with the GOT measurement solution, and 24 is the spectrum of the yellow top standard solution also diluted with the GOT measurement solution. It is. The floating standard solution is made by diluting and emulsifying fine polystyrene powder equivalent to 20 Kunkel units with GOT reagent, and the hemolytic standard solution is 1.
The hemoglobin standard solution of 9/00 was diluted and dissolved in GOT measurement solution under the same conditions as the sample serum. It was diluted and dissolved with
The spectra 20, 22, and 24 are all spectra for reagent blanks. Moreover, each wavelength is the same as in FIG. As is clear from Figure 3, among the specimen blank absorptions that appear in the visible wavelength range in the GOT reagent, the long wavelength range after ^sha is due to the chyle, and the intermediate wavelength range between 1, 7 and 9 is due to the chyle. This is due to hemolysis, and it can be seen that the short wavelengths before 6, 6 are due to three components: nipple, hemolysis, and yellow stain.

従って、以下に述べる方法によって、これら3成分を弁
別測定することが可能である。即ち、GOT測定の検体
反応液の吸収スペクトルを多波長光度計によって全波長
城にわたって測定し、その紫外部吸収により目的物質の
GOTを測定すると同時に、可視波長域のスペクトルよ
り次の方法によって、その検体血清中の乳び度、溶血度
、黄痘度を求める。
Therefore, it is possible to differentially measure these three components by the method described below. That is, the absorption spectrum of the sample reaction solution for GOT measurement is measured over all wavelengths using a multi-wavelength photometer, and the GOT of the target substance is measured based on the ultraviolet absorption. Determine the degree of chylosis, hemolysis, and yellow pox in the sample serum.

まず、^■以降の適当な2波長(例えば^2oと入2,
)の吸光度差より、次式を用いて乳び度×を求める。
First, select two appropriate wavelengths after ^■ (for example, ^2o and input 2,
), calculate the chyle x using the following formula.

X=者;鼻………………”【71 ここで、んo−aは、検体における波長^2oと入幻の
吸光度差、T2o‐幻は、スペクトル20より予め求め
た、単位濁度当たりの単位吸光度差を表わす定数である
X=person; nose………………” [71 Here, no−a is the difference in absorbance between wavelength ^2o and illusion in the specimen, and T2o− is the unit turbidity determined in advance from spectrum 20. It is a constant representing the unit absorbance difference per unit.

次に、中波長城の適当な2波長(例えば^,8と入,9
)における吸光度差A,8−,9より次式を用いて溶血
度Yを求める。
Next, select two appropriate wavelengths of the medium wavelength castle (for example, ^, 8 and enter, 9
), the degree of hemolysis Y is determined using the following formula from the absorbance differences A, 8-, and 9.

Y=A,8一,9−×.T,8−・9…”””……‘8
}日18‐19ここで、T,8−,9は、スペクトル2
0より予め求めた、単位濁度当たりの吸光度差を示す定
数、日,8−,9は、同じくスペクトル22より予め求
めた、単位溶血度当たりの吸光度差を示す定数である。
Y=A, 8-1, 9-x. T, 8-・9…”””…’8
}day 18-19 where T,8-,9 is spectrum 2
The constants, 8-, 9, which were previously determined from 0 and which indicate the absorbance difference per unit turbidity, are constants which were also previously determined from the spectrum 22 and which indicate the absorbance difference per unit hemolytic degree.

次に、更に短波長域の適当な2波長(例えば、入,5と
入,6)における吸光度差A,5−,6より、次式を用
いて、黄値度Zを求める。
Next, from the absorbance difference A, 5-, 6 at two appropriate wavelengths in the shorter wavelength range (for example, I, 5 and I, 6), the yellow value Z is determined using the following formula.

Z=A,5−,6−×.T,5−,6‐Y.日,5−,
6…【9}B,5‐16ここで、T,5−,6は、スペ
クトル20より予め求めた単位濁度当たりの吸光度差を
示す定数、日,5−,6は、同じくスペクトル22より
予め求めた単位溶血度当たりの吸光度差を示す定数、B
,5−,6は、同じくスペクトル24より予め求めた単
位黄痘度当たりの吸光度差を示す定数である。
Z=A, 5-, 6-x. T,5-,6-Y. day, 5-,
6...[9}B,5-16 Here, T,5-,6 is a constant indicating the absorbance difference per unit turbidity determined in advance from spectrum 20, and T,5-,6 is also calculated from spectrum 22. A constant indicating the difference in absorbance per unit degree of hemolysis determined in advance, B
, 5-, and 6 are constants indicating the absorbance difference per unit degree of yellow pox, which was similarly determined in advance from the spectrum 24.

‘7’式〜【9)式を利用して、第2図に示す高乳び血
清と高ビリルビン血清を測定した結果を第1表に示す。
Table 1 shows the results of measuring the high chyle serum and high bilirubin serum shown in FIG. 2 using formulas '7' to [9].

第1表次に、比KA〜KFの値が、前記範囲外にあるも
のについて、前記乳び度×、溶血度Y、黄痘度Zの値を
用いて補正する。
Table 1 Next, the values of the ratios KA to KF that are outside the above ranges are corrected using the values of the chylity degree x, hemolysis degree Y, and yellow pox degree Z.

例えば、比Kcが前記範囲外であったとすると、補正後
の分析値C,′、C2′はそれぞれ次のOQ、OU式に
よって求められる。C,′=C,一Q×−8Y−yZ…
……00C2′〒C2−Q′×−8′Y−y′Z………
OUここで、Q、Q′、8、8′、y、y′の6個の定
数は、使用される試薬と装置によって予め定められてい
る定数である。
For example, if the ratio Kc is outside the above range, the corrected analysis values C,', C2' are determined by the following OQ and OU equations, respectively. C,'=C,1Q×-8Y-yZ...
……00C2′〒C2-Q′×-8′Y-y′Z……
Here, the six constants Q, Q', 8, 8', y, and y' are constants determined in advance depending on the reagent and apparatus used.

次に、前記補正後の分析値C,′とC2′を用いて補正
分析値の比Kc′を求める。KC′=零・・‐・‐・‐
・‐‐‐.・・.・・このKc′が1に近い所定範囲内
、例えば、0.95〜1.05内になれば、この被検血
清の分析項目Cの測定値としてC,′、C2′或るし、
は両者の平均を採用する。
Next, the corrected analysis value ratio Kc' is determined using the corrected analysis values C,' and C2'. KC'=zero...--
・--.・・・. ...If this Kc' falls within a predetermined range close to 1, for example, within 0.95 to 1.05, the measured value of analysis item C of this test serum is C,', C2',
adopts the average of both.

前記側、0坊式による補正を行なっても、なお式,02
によって求めた補正分析値の比Kc′の値が前記所定範
囲内にない項目は、被検液中に前述の気泡やごみ等の固
形物が存在する可能性があるので、その測定分析値とし
て、一応信頼性の高いと考えられる2波長比色法の測定
値a2〜らを報告するが、同時に再検査を要求する。
Even if the above-mentioned side is corrected by the 0-bo formula, the formula, 02
Items where the value of the ratio Kc' of the corrected analysis value obtained by , report the measured values a2~ etc. of the two-wavelength colorimetric method, which are considered to be highly reliable, but at the same time request re-examination.

前記のようにして各検体毎に、その乳ぴ度、溶血度、黄
痕度を測定し、かつデータ処理を行なうことによって、
比色分析の正確度は著しく改善され、しかも、気泡やご
み等の固形物の判別もできるので、測定結果の信頼性が
著しく高くなる。
By measuring the milkiness, hemolysis degree, and yellowing degree of each specimen as described above, and performing data processing,
The accuracy of colorimetric analysis is significantly improved, and solid matter such as air bubbles and dust can also be distinguished, so the reliability of the measurement results is significantly increased.

なお、前記実施例においては、分析値の比が0.95〜
1.05の範囲内であれば可であるとしたが、この範囲
は前記範囲に限定されない。又、補正分析値を求める方
法も、前記実施例に限定されず、例えば、4波長におけ
る測定値から連立方程式を解くようにすることもできる
。なお、前記実施例は、本発明を、血清に対する比色分
析方法に適用したものであるが、本発明の適用範囲がこ
れに限定されず、一般の比色分析方法に適用できること
は明らかである。
In addition, in the above example, the ratio of analysis values is 0.95 to
Although it is possible as long as it is within the range of 1.05, this range is not limited to the above range. Further, the method for obtaining the corrected analysis values is not limited to the above embodiment, and, for example, simultaneous equations may be solved from the measured values at four wavelengths. In addition, although the present invention is applied to a colorimetric analysis method for serum in the above example, it is clear that the scope of application of the present invention is not limited to this and can be applied to general colorimetric analysis methods. .

上述の実施例では、比色分析方法において、単一試料に
対する比色分析を1波長比色法及び2波長比色法の両者
で行ない、求められた両者の分析値の比が1に近い所定
範囲内にある時は、その分析値を分析結果として採用し
、両者の分析値の比が前記所定範囲外である時には、試
料中の妨害物質量に応じて両者の分析値を補正し、求め
られた両者の補正分析値の比が1に近い所定範囲内にあ
る時は、その補正分析値を分析結果として採用し、両者
の補正分析値の比が前記所定範囲外である時は、2波長
比色法の補正分析値を分析結果として採用し、及び、或
るし、は、再検査するようにしたので、比色分析の正確
度が著しく改善され、測定結果の信頼性が高まるという
優れた効果を有する。
In the above-mentioned example, in the colorimetric analysis method, a single sample is subjected to colorimetric analysis using both the one-wavelength colorimetric method and the two-wavelength colorimetric method, and the ratio of the two calculated analytical values is close to 1 at a predetermined value. When it is within the range, that analysis value is adopted as the analysis result, and when the ratio of both analysis values is outside the predetermined range, both analysis values are corrected according to the amount of interfering substances in the sample and calculated. When the ratio of both corrected analysis values is within a predetermined range close to 1, that corrected analysis value is adopted as the analysis result, and when the ratio of both corrected analysis values is outside the predetermined range, 2. Since the corrected analysis value of the wavelength colorimetric method is adopted as the analysis result and/or re-examined, the accuracy of the colorimetric analysis is significantly improved and the reliability of the measurement results is increased. Has excellent effects.

本発明によれば、1波長法と2波長法との測定値の比の
値を求めることにより容易に妨害物質による影響を知る
ことができ、必要に応じてその影響を補正することがで
きる。
According to the present invention, the influence of interfering substances can be easily known by determining the ratio of the measured values of the one-wavelength method and the two-wavelength method, and the influence can be corrected as necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、比色分析法における誤差要因を模型的に示し
た線図、第2図は、GOT反応液中の代表的な検体血清
の吸収スペクトルの例を示す線図、第3図は、同GOT
反応液中における、浮び、溶血、黄痘の各基準スペクト
ルを示す線図である。 多ー図 髪2図 茅3図
Figure 1 is a diagram schematically showing the error factors in the colorimetric analysis method, Figure 2 is a diagram showing an example of the absorption spectrum of a typical sample serum in the GOT reaction solution, and Figure 3 is a diagram showing an example of the absorption spectrum of a typical sample serum in the GOT reaction solution. , same GOT
FIG. 2 is a diagram showing reference spectra of floating, hemolysis, and jaundice in a reaction solution. Multi figure Hair 2 figure Kaya 3 figure

Claims (1)

【特許請求の範囲】 1 単一試料に対する比色分析を1波長比色法及び2波
長比色法の両者で行ない、これら両者の分析値の比を求
めるようにしたことを特徴とする比色分析方法。 2 単一試料に対する比色分析を1波長比色法及び2波
長比色法の両者で行ない、求められた両者の分析値の比
が1に近い所定範囲内にある時は、その分析値を分析結
果として採用し、両者の分析値の比が前記所定範囲外で
ある時には、試料中の妨害物質量に応じて両者の分析値
を補正し、求められた両者の補正分析値の比が1に近い
所定範囲内にある時は、その補正分析値を分析結果とし
て採用し、両者の補正分析値の比が前記所定範囲外であ
る時は、2波長比色法の補正分析値を分析結果として採
用し、及び、或るいは、再検査するようにしたことを特
徴とする比色分析方法。
[Scope of Claims] 1. A colorimetric method characterized in that a colorimetric analysis of a single sample is performed using both a one-wavelength colorimetric method and a two-wavelength colorimetric method, and the ratio of the analytical values of these two methods is determined. Analysis method. 2 Perform colorimetric analysis on a single sample using both the one-wavelength colorimetric method and the two-wavelength colorimetric method, and if the ratio of the two analytical values obtained is within a predetermined range close to 1, the analytical value is When the ratio of the two analysis values is outside the predetermined range, the two analysis values are corrected according to the amount of interfering substances in the sample, and the ratio of the two corrected analysis values is 1. When it is within a predetermined range close to , the corrected analysis value is adopted as the analysis result, and when the ratio of both corrected analysis values is outside the predetermined range, the corrected analysis value of the two-wavelength colorimetry method is used as the analysis result. A colorimetric analysis method characterized in that the colorimetric analysis method is adopted and/or re-examined.
JP13460077A 1977-10-31 1977-11-11 Colorimetric analysis method Expired JPS604929B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13460077A JPS604929B2 (en) 1977-11-11 1977-11-11 Colorimetric analysis method
DE2847176A DE2847176C2 (en) 1977-10-31 1978-10-30 Method for the photometric determination of substances in blood serum
US05/956,354 US4263512A (en) 1977-10-31 1978-10-31 Colorimetric method for liquid sampler including disturbing chromogens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13460077A JPS604929B2 (en) 1977-11-11 1977-11-11 Colorimetric analysis method

Publications (2)

Publication Number Publication Date
JPS5468285A JPS5468285A (en) 1979-06-01
JPS604929B2 true JPS604929B2 (en) 1985-02-07

Family

ID=15132179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13460077A Expired JPS604929B2 (en) 1977-10-31 1977-11-11 Colorimetric analysis method

Country Status (1)

Country Link
JP (1) JPS604929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170046U (en) * 1985-04-11 1986-10-22
JP2000512007A (en) * 1996-05-31 2000-09-12 ロシュ ダイアグノスティックス ゲーエムベーハー Method for analyzing medical samples containing hemoglobin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170046U (en) * 1985-04-11 1986-10-22
JP2000512007A (en) * 1996-05-31 2000-09-12 ロシュ ダイアグノスティックス ゲーエムベーハー Method for analyzing medical samples containing hemoglobin

Also Published As

Publication number Publication date
JPS5468285A (en) 1979-06-01

Similar Documents

Publication Publication Date Title
Goa A micro biuret method for protein determination Determination of total protein in cerebrospinal fluid
US4263512A (en) Colorimetric method for liquid sampler including disturbing chromogens
JP5006441B2 (en) Whole blood analysis
Davies et al. A spectrophotometric study of the equilibrium Cr 2 O 2–7+ H 2 O⇌ 2HCrO–4
Billing et al. Bilirubin Standards and the Determination of Bilirubin by Manual and Technicon AutoAnalyzer Methods: Prepared for the Scientific and Technical Committee of the Association of Clinical Biochemists
US5183761A (en) Method of making calibration solution for verifying calibration and linearity of vertical photometers
US5258308A (en) Method, kit and apparatus for verifying calibration and linearity of vertical photometers
JP3203798B2 (en) How to measure chromogen
EP0097472B1 (en) Method of determining calcium in a fluid sample
NIshi et al. Three turbidimetric methods for determining total protein compared.
JPS5852550A (en) Dissolution method for ghost peak of flow injection analysis
JPS6118693B2 (en)
JPS6332132B2 (en)
JPS63111446A (en) Analyzing device
US4329149A (en) Method for spectrophotometric compensation for colorimetric reagent variation
Kalivas Determination of optimal parameters for multicomponent analysis using the calibration matrix condition number
JPS604929B2 (en) Colorimetric analysis method
JPS6118982B2 (en)
CN110449197A (en) A kind of calibration method of pipettor capacity
US20060063272A1 (en) Method for characterizing a highly parallelized liquid handling technique using microplates and test kit for carrying out the method
JPH0514855B2 (en)
Liedtke et al. Centrifugal analysis with automated sequential reagent addition: measurement of serum calcium.
JPS6252434A (en) Absorption photometric analytic method
US5146413A (en) Method for the determinate evaluation of a chemistry analyzer's combined diluting and analyzing systems
CN112129949A (en) Retinol binding protein detection kit, preparation method and use method thereof