JPS604896B2 - electric motor rotor - Google Patents

electric motor rotor

Info

Publication number
JPS604896B2
JPS604896B2 JP14503377A JP14503377A JPS604896B2 JP S604896 B2 JPS604896 B2 JP S604896B2 JP 14503377 A JP14503377 A JP 14503377A JP 14503377 A JP14503377 A JP 14503377A JP S604896 B2 JPS604896 B2 JP S604896B2
Authority
JP
Japan
Prior art keywords
resistance
temperature
temperature coefficient
electric motor
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14503377A
Other languages
Japanese (ja)
Other versions
JPS5478403A (en
Inventor
博道 今橋
重春 小沼
貞美 冨田
俊男 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14503377A priority Critical patent/JPS604896B2/en
Publication of JPS5478403A publication Critical patent/JPS5478403A/en
Publication of JPS604896B2 publication Critical patent/JPS604896B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Description

【発明の詳細な説明】 本発明は低電気比抵抗を有し、さらに低い電気抵抗温度
係数をそなえダィキャストに適した新規なアルミニウム
基合金によってかご形巻線を構成した電動機のかご形回
転子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a squirrel-cage rotor for an electric motor whose squirrel-cage winding is made of a novel aluminum-based alloy that has a low electrical resistivity, an even lower temperature coefficient of electrical resistance, and is suitable for die casting. .

従来、誘導電動機の回転子導体はアルミニウムが使用さ
れている。
Conventionally, aluminum has been used for the rotor conductor of induction motors.

しかし、純アルミニウムは200ooにおける電気抵抗
温度が4.9×10‐3〃○抑/℃であり、また温度上
昇に伴う電気抵抗の増加が大きい。このため電動機は運
転中に回転子導体のジュール発熱によって温度上昇が起
る。一般に、電動機は温度上昇を見込んで設計されてい
るが、この温度上昇は運転中のジュール発熱と周囲から
の放熱とがバランスしてある温度に達する。また、この
温度上昇があまり高くなると絶縁等の問題が生じるので
、放熱を大きくしてできるだけ温度上昇を低くするため
に電動機本体そのものを大きく設計することが行なわれ
ている。そして電動機の温度上昇は約20000以下に
なるように設計されているが、電動機を単に大型にする
ことは得策でないことは当然である。以上のことから、
従来の回転子導体部材として純Aれこ何んらかの処理を
してその抵抗の温度係数を少しでも小さくすることは重
要な意味がある。
However, pure aluminum has an electrical resistance temperature of 4.9 x 10-3 °C/°C at 200 oo, and the electrical resistance increases greatly as the temperature rises. For this reason, the temperature of the electric motor increases during operation due to Joule heat generation in the rotor conductor. Generally, electric motors are designed with a temperature increase in mind, and this temperature increase reaches a certain temperature when Joule heat generation during operation and heat radiation from the surroundings are balanced. Furthermore, if this temperature rise becomes too high, problems such as insulation will occur, so the motor body itself is designed to be large in order to increase heat radiation and keep the temperature rise as low as possible. Although the temperature rise of the electric motor is designed to be about 20,000 ℃ or less, it is obvious that simply increasing the size of the electric motor is not a good idea. From the above,
As a conventional rotor conductor member, it is important to treat pure A resin in some way to reduce its temperature coefficient of resistance as much as possible.

しかし、上記のような抵抗温度係数が改善された導体部
材は、電気比抵抗(以下、比抵抗と略記)が純アルミニ
ウムより著しく高く、したがって流す電流は一定なので
ジュール発熱量が大きくなり、電動機の上昇温度が20
000を越え、用いている絶縁物を劣化させる結果とな
った。したがって、たとえ抵抗温度係数が小さくても比
抵抗が大きいものは温度上昇のレベルが高くなり、好ま
しくなかった。すなわち、改良された従来のA〆合金と
しては、抵抗温度係数が比較的小さいもので、A夕−0
.8%Mg合金、A〆−1.25%Mn合金などがある
However, the electrical resistivity (hereinafter abbreviated as resistivity) of a conductor member with an improved temperature coefficient of resistance as described above is significantly higher than that of pure aluminum, and therefore, since the current flowing is constant, the Joule heat value increases, and the electric motor The rising temperature is 20
000, resulting in deterioration of the insulator used. Therefore, even if the temperature coefficient of resistance is small, a material with a large specific resistance results in a high level of temperature rise, which is not desirable. In other words, the improved conventional A〆 alloy has a relatively small resistance temperature coefficient, and has a relatively low temperature coefficient of resistance.
.. Examples include 8% Mg alloy and A-1.25% Mn alloy.

しかし、これらの比抵抗は、純Aその30%増ないし5
0%増であり、温度上昇が大きかった。本発明の目的は
低い比抵抗を有し、さらに低い抵抗温度係数をそなえダ
ィキャストに適したアルミニウム基合金によってかご形
巻線を構成し、温度上昇の低い電動機のかご形回転子を
提供するにある。本発明はアルミニウムに希±類元素を
0.05〜2.5重量%添加することによって比抵抗を
高めることなく、抵抗温度係数を小さくできることが判
明し、この合金によってかご形巻線をダィカスト成形す
ることにより温度上昇の小さい電動機のかご形回転子を
得ることができた。
However, these resistivities are 30% higher than that of pure A or 5% higher than that of pure A.
The increase was 0%, and the temperature rise was large. An object of the present invention is to provide a squirrel-cage rotor for an electric motor with a low temperature rise, the squirrel-cage winding being made of an aluminum-based alloy that has a low resistivity, a low temperature coefficient of resistance, and is suitable for die casting. . In the present invention, it has been found that by adding 0.05 to 2.5% by weight of rare elements to aluminum, the temperature coefficient of resistance can be reduced without increasing the specific resistance, and this alloy can be used to die-cast squirrel cage windings. By doing this, we were able to obtain a squirrel cage rotor for an electric motor with a small temperature rise.

すなわち、電動機の温度上昇は回転子導体の比抵抗に大
きく関係していることが明らかであるが、特にその温度
は比抵抗の温度係数によって決まることが判明した。従
って、高温で同じ比抵抗を有する合金を比較すると抵抗
温度係数が小さい方が温度上昇が小さく、上昇温度が低
いということである。本発明者らは希±類元素が、金属
元素の中で抵抗温度係数が最も小さいことに着目した。
That is, it is clear that the temperature rise of the electric motor is largely related to the specific resistance of the rotor conductor, but it has been found that the temperature in particular is determined by the temperature coefficient of the specific resistance. Therefore, when comparing alloys having the same specific resistance at high temperatures, the smaller the temperature coefficient of resistance, the smaller the temperature rise, and the lower the temperature rise. The present inventors have focused on the fact that rare elements have the smallest temperature coefficient of resistance among metal elements.

その結果、希土類元素をAそ中に固溶させることにより
、抵抗温度を小さくすることが出来た。しかし、希±頚
元素はAそに対して固溶量が小さく、例えばCeは最大
で0.05重量パーセントと小さい。そこで、種々検討
を加えた結果、ダィカストのように溶湯を急冷凝固され
る場合は、希士類元素が過飽和に固溶できることが判っ
た。希±類元素には広,Ce,Pr,Nd,Pm,Sm
,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,
Luがあり、これらはいずれも抵抗温温度係数に有効で
あった。また、種々の含有量について実験した結果、A
〆にCe,La,pr,Zd等の少なくとも1種以上を
0.3〜1.5重量%含有する範囲であれば、抵抗温度
係数は純A夕より4・さくなることが判った。0.3%
未満では希士類元素の顕著な固溶効果がみられず、抵抗
温度係数の変化は小さかった。
As a result, the resistance temperature could be lowered by solidly dissolving the rare earth element in A. However, the amount of rare elements in solid solution is small compared to that of Al. For example, Ce is as small as 0.05% by weight at most. As a result of various studies, it was found that rare elements can be dissolved in supersaturated solid solution when molten metal is rapidly solidified as in die casting. Rare elements include: Ce, Pr, Nd, Pm, Sm
, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
Both of these were effective for the temperature coefficient of resistance. In addition, as a result of experiments with various contents, A
It has been found that when the finish contains 0.3 to 1.5% by weight of at least one of Ce, La, pr, Zd, etc., the temperature coefficient of resistance becomes 4.0 lower than that of pure A. 0.3%
At less than 100%, no significant solid solution effect of the rare elements was observed, and the change in the temperature coefficient of resistance was small.

また、1.5%を越えると、組織中にA夕と希士類元素
との金属間化合物の共晶が多量に晶出し、初晶(Aそ固
溶体)の領域が少なくなるので抵抗温度係数は小さくな
らない。特に0.3〜1.5重量%の範囲が抵抗温度係
数が最も低めることから、きわめて有効である。なお、
複合添加の場合希士類元素としてミツシュメタル(い,
Ce,Nd,P貴等の混合物)の形でAそ中に添加して
も同様の効果が得られる。
Moreover, if it exceeds 1.5%, a large amount of eutectic intermetallic compounds of A and rare elements will crystallize in the structure, and the area of primary crystals (A solid solution) will decrease, resulting in a temperature coefficient of resistance. does not become smaller. In particular, a range of 0.3 to 1.5% by weight is extremely effective because the temperature coefficient of resistance is lowest. In addition,
In the case of compound addition, Mitsushmetal (I,
A similar effect can be obtained even if it is added to A in the form of a mixture of Ce, Nd, P, etc.

その結果、ミッシュメタル(La32.9%,Ce47
.1%,Nd15%,Pr5%)の場合、添加量は0.
5〜1.5%が適正であることが明らかとなった。本発
明の合金は、ダィカストされた状態で前記の特性を有す
るものである。
As a result, misch metal (La32.9%, Ce47
.. 1%, Nd 15%, Pr 5%), the amount added is 0.
It has become clear that 5 to 1.5% is appropriate. The alloy of the present invention has the above characteristics in a die-cast state.

そして上記組成範囲での流動性は純A夕とほぼ同等であ
り、ダィカスト性も良好であった。
The fluidity within the above composition range was almost the same as that of pure A powder, and the die-castability was also good.

実施例 1溶解は電気炉で黒鉛るつぼを約500qoに
加熱し、Aそ地金特1種(99.90%)を装入し、地
金を溶解させてから800qoに昇温し、そこで希±額
元素としてセリウムをアルミニウム箔に包んで添加して
10分間保持した後、700午0に降溢しダイカストし
た。
Example 1 For melting, heat a graphite crucible to about 500 qo in an electric furnace, charge A-grade metal special 1 (99.90%), melt the ingot, raise the temperature to 800 qo, and then Cerium was added as an element by wrapping it in aluminum foil and held for 10 minutes, and then it was poured at 700:00 and die-casting was performed.

同様に従来の純Aそ,Aそ−Mg−A夕−Mn合金を溶
解し、ダィカストした。第1表に各合金の化学組成(重
量%)を示す。これらの合金のダィカスト性は純Aそと
同程度にすぐれていた。第1表 第1図はNo.1〜6の比抵抗(20℃)を示す。
Similarly, conventional pure A-Mg-A-Mn alloys were melted and die cast. Table 1 shows the chemical composition (% by weight) of each alloy. The die casting properties of these alloys were as good as that of pure A alloys. Table 1, Figure 1 shows No. It shows a specific resistance (20°C) of 1 to 6.

比抵抗はCe含有量に伴なつて徐々に増加し、Cel.
85%で約3〃○・伽である。なお、従来合金7,9の
比抵抗は、前述したようにいずれも31〃Q・肌以上で
ある。第2図は、第1表で示した各合金について20℃
から220℃までの比抵抗の温度変化を測定した結果で
ある。
The specific resistance gradually increases with Ce content;
85% is about 3〃○・佽. In addition, as mentioned above, the specific resistance of conventional alloys 7 and 9 is 31 Q·skin or more. Figure 2 shows the temperature at 20°C for each alloy shown in Table 1.
These are the results of measuring the temperature change in specific resistance from 220°C to 220°C.

No.1は純A夕、NO.2,3,4,5,6はAと−
Ce合金である。また、No.7はA夕一0.8%Mg
、8はAZ−1.25**%Mn、9はA〆−3.5%
Mg合金である。
No. 1 is Jun A Yu, No. 2, 3, 4, 5, 6 are A and -
It is a Ce alloy. Also, No. 7 is A Yuichi 0.8% Mg
, 8 is AZ-1.25**%Mn, 9 is A〆-3.5%
It is an Mg alloy.

この結果、No.2,6,7,8,9は、NO.1の純
A夕とほぼ平行である。これらの従来合金に比べて本発
明の合金No.も 5は従来のものよりも明らかに煩斜
がゆるやかであることがわかる。第2表は純A〆及び本
発明合金の比抵抗(20℃)と抵抗温度係数(20〜2
00oo)を比較したものである。
As a result, No. 2, 6, 7, 8, 9 are NO. It is almost parallel to 1 pure A Yu. Compared to these conventional alloys, the alloy No. of the present invention. It can be seen that 5 has a clearly less complicated slope than the conventional one. Table 2 shows the specific resistance (20℃) and temperature coefficient of resistance (20~2
00oo).

この結果、特に本発明合金の4,5は、抵抗温度係数が
純Aその80%前後と小さいことが明らかである。第2
表 第3図は、第2図よりも各合金について求めた抵抗温度
係数と200℃における比抵抗との関係を示したもので
ある。
As a result, it is clear that the temperature coefficient of resistance of alloys 4 and 5 of the present invention is as small as approximately 80% of that of pure A. Second
Table 3 shows the relationship between the temperature coefficient of resistance and specific resistance at 200° C. determined for each alloy from FIG. 2.

本発明合金No.4,5はいずれも従来合金のNo.7
,8,9および純Aそより同じ比抵抗で比較した場合抵
抗温度係数が小さいことが明らかである。このことは明
らかにかご形電動機の温度上昇を低めることができる。
実施例 2 実施例1と同様の溶解方法により希±額元素としてLa
,Pr,Nd,Sm,Ybについて検討を行った。
Invention alloy No. 4 and 5 are both conventional alloy No. 7
, 8, 9, and pure A when compared at the same specific resistance, it is clear that the temperature coefficient of resistance is smaller. This can clearly reduce the temperature rise of the squirrel cage motor.
Example 2 La was added as a rare element by the same melting method as in Example 1.
, Pr, Nd, Sm, and Yb.

第3表はこれらの合金の化学組成(重量%を示す。これ
らの合金のダィカスト性は純A〆と同程度にすぐれてい
た。第3表これらの合金について実施例1と同様に抵抗
温度係数を測定した結果、20℃での比抵抗は2.96
〜2.95仏○肌、および抵抗温度係数は3.82〜3
.91ム○肌/00×10‐3であった。
Table 3 shows the chemical composition (wt%) of these alloys.The die-casting properties of these alloys were as good as that of pure A.Table 3 shows the temperature coefficient of resistance of these alloys as in Example 1. As a result of measuring, the specific resistance at 20℃ is 2.96
~2.95 French ○ skin, and resistance temperature coefficient is 3.82~3
.. It was 91 mm○ skin/00×10-3.

実施例 3 実施例1と同様の溶解方法およびダィカストにより希土
類元素の複合添加について検討した。
Example 3 Composite addition of rare earth elements was investigated using the same melting method and die casting as in Example 1.

複合添加はミッシュメタル(La32.9%,Ce47
.1%,Nd15%,Pr5%)によって行った。第4
表はこれらの合金の化学組成(重量%)を示す。これら
の合金のダィカスト性は純Aそと同程度にすぐれていた
。第4表 実施例1と同様に比抵抗および抵抗温度係数を測定し、
結果を第5表に示す。
The composite addition is misch metal (La32.9%, Ce47
.. 1%, Nd 15%, Pr 5%). Fourth
The table shows the chemical composition (% by weight) of these alloys. The die casting properties of these alloys were as good as that of pure A alloys. Table 4 Measure the specific resistance and temperature coefficient of resistance in the same manner as in Example 1,
The results are shown in Table 5.

表に示す如く、本第5表発明合金のNo.15〜17は
いずれも比抵抗を高めることなく、抵抗温度係数が4.
14仏○伽×10‐3以下と低いので、電動機の温度上
昇を著しく低めることができる。
As shown in the table, No. 1 of the invention alloys in Table 5. Nos. 15 to 17 all have a resistance temperature coefficient of 4.0 without increasing the specific resistance.
Since the temperature is as low as 14 x 10-3 or less, the temperature rise of the electric motor can be significantly reduced.

実施例 4 第6表は本発明合金No.5を使用した電動機の温度特
性を示し、純Aその200午Cに〈らべ本発明のものの
温度上昇は150ooであり、従来のものより50℃低
くできることが明らかである。
Example 4 Table 6 shows the invention alloy No. 5 shows the temperature characteristics of an electric motor using pure A at 200°C.The temperature rise of the motor of the present invention is 150°C, which is clearly 50°C lower than that of the conventional motor.

温度上昇を200q○から150qoに低くできること
は小型化及び出力アップができることが明らかである。
なお、本発明はA〆にMg,Mn,Ti、などの金属を
含む場合にも同様の効果が発揮しうろことは明らかであ
る。
It is clear that reducing the temperature rise from 200 qo to 150 qo allows for miniaturization and increased output.
Note that it is clear that the present invention will exhibit similar effects even when A contains metals such as Mg, Mn, and Ti.

第6表 以上、本発明は希±類元素の適切な配合により、電動機
の温度上昇を低め、かつダィカスト性にも富む上記合金
によってかご形巻線を鋳造成形するので生産性が高く、
また長寿命にもつながるすぐれた効果がある。
As shown in Table 6 and above, the present invention reduces the temperature rise of the electric motor by appropriately blending rare elements, and casts the squirrel cage winding using the above-mentioned alloy, which has excellent die-casting properties, resulting in high productivity.
It also has an excellent effect leading to a long lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はセリウム量と比抵抗の関係を示す線図、第2図
は各種合金の比抵抗と温度との関係を示す線図、第3図
は各種合金の比抵抗と抵抗温度係数との関係を示す線図
および第4図はセリウム量と抵抗温度係数との関係を示
す線図である。 希′図紫ム図 猪乙図 菟3図
Figure 1 is a diagram showing the relationship between the amount of cerium and resistivity, Figure 2 is a diagram showing the relationship between resistivity and temperature for various alloys, and Figure 3 is a diagram showing the relationship between resistivity and temperature coefficient of resistance for various alloys. A diagram showing the relationship and FIG. 4 is a diagram showing the relationship between the amount of cerium and the temperature coefficient of resistance. Nozomizu Shimuzu Bootsuzu 3rd illustration

Claims (1)

【特許請求の範囲】[Claims] 1 希土類元素の1種又は2種以上の合計量が0.3〜
1.5重量%及び残部が実質的にアルミニウムからなる
合金により回転子導体が鋳造成形されていることを特徴
とする電動機の回転子。
1 The total amount of one or more rare earth elements is from 0.3 to
A rotor for an electric motor, characterized in that a rotor conductor is cast from an alloy consisting essentially of 1.5% by weight and the remainder aluminum.
JP14503377A 1977-12-05 1977-12-05 electric motor rotor Expired JPS604896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14503377A JPS604896B2 (en) 1977-12-05 1977-12-05 electric motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14503377A JPS604896B2 (en) 1977-12-05 1977-12-05 electric motor rotor

Publications (2)

Publication Number Publication Date
JPS5478403A JPS5478403A (en) 1979-06-22
JPS604896B2 true JPS604896B2 (en) 1985-02-07

Family

ID=15375846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14503377A Expired JPS604896B2 (en) 1977-12-05 1977-12-05 electric motor rotor

Country Status (1)

Country Link
JP (1) JPS604896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039514A1 (en) 2017-08-23 2019-02-28 三菱電機株式会社 Control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039514A1 (en) 2017-08-23 2019-02-28 三菱電機株式会社 Control device

Also Published As

Publication number Publication date
JPS5478403A (en) 1979-06-22

Similar Documents

Publication Publication Date Title
WO2020119501A1 (en) High-conductivity aluminum alloy and preparation method therefor
CN101748301A (en) Method for manufacturing cast aluminum alloy
JPH10286689A (en) Solder
CN104928549A (en) High-strength and high-elasticity-modulus casting Mg-RE alloy and preparation method thereof
CN108486446A (en) A kind of low bulk magnesium alloy and preparation method thereof
JPS604896B2 (en) electric motor rotor
CN110527870B (en) High-thermal-conductivity cast aluminum alloy containing Mn-Fe-Cu and preparation method thereof
US3241953A (en) Aluminum conductor and process for obtaining same
JP4911836B2 (en) Soluble alloy for thermal fuse and wire for thermal fuse and thermal fuse
CN108396205B (en) Aluminum alloy material and preparation method thereof
US4121926A (en) Squirrel-cage rotor
JPS61250144A (en) Magnesium alloy for casting
JPS6024169B2 (en) magnesium alloy
KR20190031099A (en) High thermal conductivity magnesium alloy and heat sink using the same
CN103774018B (en) A kind of gas battery anode material and preparation method
JP3911118B2 (en) Aluminum alloy for casting, aluminum alloy casting and cage rotor
JP2003082430A (en) Fusible metal for thermal fuse, wire for thermal fuse, and thermal fuse
JP2022539416A (en) ALUMINUM ALLOY, METHOD FOR MANUFACTURING THE SAME, AND STRUCTURAL MEMBER OF ALUMINUM ALLOY
JPS63270442A (en) Magnesium alloy die cast product and its production
JPS6239214B2 (en)
JP4244035B2 (en) Tin alloy for fuse and electric wire fuse using the same
CN107574339A (en) Aluminum alloy materials and aluminium alloy cable
WO2024099373A1 (en) Aluminum alloy material, and preparation method therefor and use thereof
JP3901259B2 (en) SmFe-based magnetostrictive material
JPS5830379B2 (en) Highly conductive heat-resistant copper alloy