JPS604886B2 - Manufacturing method of heat-treated 60Kg/mm↑2 grade high tensile strength steel with excellent COD value - Google Patents

Manufacturing method of heat-treated 60Kg/mm↑2 grade high tensile strength steel with excellent COD value

Info

Publication number
JPS604886B2
JPS604886B2 JP53154763A JP15476378A JPS604886B2 JP S604886 B2 JPS604886 B2 JP S604886B2 JP 53154763 A JP53154763 A JP 53154763A JP 15476378 A JP15476378 A JP 15476378A JP S604886 B2 JPS604886 B2 JP S604886B2
Authority
JP
Japan
Prior art keywords
steel
cod value
tensile strength
strength steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53154763A
Other languages
Japanese (ja)
Other versions
JPS5579828A (en
Inventor
祐司 楠原
典明 腰塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP53154763A priority Critical patent/JPS604886B2/en
Publication of JPS5579828A publication Critical patent/JPS5579828A/en
Publication of JPS604886B2 publication Critical patent/JPS604886B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はCOD値のすぐれた鋼質60k9/側2 扱高
張力鋼の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high tensile strength steel having a steel quality of 60k9/side 2 and having an excellent COD value.

従来の調質60k9/肌2級高張力鋼の品質特性は、溶
接性のほかに主として引張試験およびシャルピ−衝撃試
験によって評価かれ、これらの値によって使用条件等が
決定されることが多かった。
In addition to weldability, the quality characteristics of conventional heat-treated 60k9/skin grade 2 high-strength steel were mainly evaluated by tensile tests and Charpy impact tests, and the conditions of use were often determined based on these values.

しかし、近年、胞性破壊発生特性を切欠3点曲げ試験の
COD値で評価する方法が考案され、試験法の簡便さに
もよって広く普及しつつある。このCODの試験方法に
関してはBritishStandard5762に詳
細に規格化されており、一般にこの規格に基づいてCO
D値を測定している。一方、最近原子炉発電所の原子炉
格納容器用として調費60kg/柳2級高張力鋼が使用
されるようになった。
However, in recent years, a method has been devised for evaluating the characteristics of cell fracture occurrence using the COD value of a three-point notch bending test, and it is becoming widely popular due to the simplicity of the test method. This COD test method is standardized in detail in British Standard 5762, and generally COD is based on this standard.
The D value is being measured. On the other hand, recently, 60 kg/yanagi grade 2 high tensile strength steel has been used for reactor containment vessels in nuclear power plants.

JISG3115SPV5のに属するこの鋼種の原子炉
用への使用条件としては、従来のシャルピ−衝撃試験や
滋重試験のほかに切欠3点曲げ試験によるすぐれたCO
D値が要求され、その限界COD値が使用最低温度にお
いて0.2側以上であることが通産省の特認条件として
義務づけられている。調質60k9/肌2級高張力鋼の
COD値を高めるには、一般的には材料の鞠性を高める
ことであるが、必ずしもシャルピ−衝撃値や蕗重試験の
良好なものがCOD値が良好であるとは限らず、特に板
厚50側以上の厚板においてすぐれたCOD値を得るこ
とが極めて困難であった。
The usage conditions for this steel type, which belongs to JIS G 3115 SPV 5, for nuclear reactors include the conventional Charpy impact test and gravity test, as well as the excellent CO
A D value is required, and the Ministry of International Trade and Industry requires that the limit COD value be on the 0.2 side or higher at the lowest operating temperature as a special condition. In order to increase the COD value of heat-treated 60k9/skin grade 2 high-strength steel, it is generally necessary to increase the ballability of the material, but it is not always the case that the COD value of a material with good Charpy impact value or Fushimi weight test is high. It was not always good, and it was extremely difficult to obtain an excellent COD value, especially in thick plates with a thickness of 50 or more.

本発明の目的は、50〜10仇舷の厚板においてもすぐ
れたCOD値を示す60【9/肋2級の引張強かを有す
る高張力鋼の製造方法を提供しようとするものである。
An object of the present invention is to provide a method for producing high-strength steel having a tensile strength of 60 [9/2nd class] and exhibiting an excellent COD value even in thick plates of 50 to 10 m.

本発明のこの目的は下記要旨の発明によって達成される
。すなわち、重量比にてC:0.15%以下、Si:0
.10〜0.40%、Mh:1.0〜1.5%、P:0
.025%以下、S:0.015%以下、Cu:0.2
0%以下、Ni:0.15〜1.0%、Cr:0.30
%以下、Mo:0.05〜0.25%、V:0.02〜
0.05%、T.A〆:0.010〜0.030%、N
:0.0060〜0.0120%を含有し、残部が実質
的にFeよりる組成の鋼を1200午0〜1250qo
に加熱して熱間圧延する工程と、前記熱間圧延終了後5
℃/min以上の平均冷却速度にて冷却する工程と、前
記冷却工程終了後880〜93030の温度範囲に加熱
して焼入する工程と、前記嘘入工程後580〜700o
oの温度範囲にて焼房する工程と、を有して成ることを
特徴とするCOD値のすぐれた調質60kg/側2級高
張力鋼の製造方法である。
This object of the present invention is achieved by the invention as summarized below. That is, in terms of weight ratio, C: 0.15% or less, Si: 0
.. 10-0.40%, Mh: 1.0-1.5%, P: 0
.. 025% or less, S: 0.015% or less, Cu: 0.2
0% or less, Ni: 0.15-1.0%, Cr: 0.30
% or less, Mo: 0.05 to 0.25%, V: 0.02 to
0.05%, T. A〆: 0.010-0.030%, N
: 0.0060 to 0.0120%, and the balance is substantially Fe.
a step of heating and hot rolling, and a step of 5 after the hot rolling
A step of cooling at an average cooling rate of ℃/min or more, a step of heating and quenching to a temperature range of 880 to 93,030 degrees Celsius after the cooling step, and a step of quenching to a temperature of 580 to 700 degrees Celsius after the filling step.
This is a method for manufacturing grade 2 high tensile strength steel with an excellent COD value of 60 kg/side, which comprises the steps of firing at a temperature range of 0.05 m.

すなわち、本発明者らは、調質60k9/側2級高張力
鋼のCOD値は結晶粒度と高い相関性のあることを見出
し、焼入、焼戻処理によって製造するに拘らず、鋼板の
組識を微細なポリゴナルフェラィトにすることによって
良好なCOD値を有する60k9/肋2級高張力鋼を得
たものであって、そのために鋼の化学成分範囲と製造条
件を下記の如く限定したものである。先づ、本発明鋼の
化学成分の限定理由は次の如くである。
In other words, the present inventors found that the COD value of heat-treated 60k9/side grade 2 high-strength steel has a high correlation with the grain size, and regardless of whether the steel plate is manufactured by quenching or tempering, A 60k9/grade 2 high tensile strength steel with a good COD value was obtained by making the material into fine polygonal ferrite, and for this purpose, the chemical composition range and manufacturing conditions of the steel were limited as follows. It is something. First, the reason for limiting the chemical composition of the steel of the present invention is as follows.

C: C量は低い方が本発明の目的に好ましが、板厚に応じて
最低限の強度を確保するC量が必要である。
C: A lower C content is preferable for the purpose of the present invention, but the C content is required to ensure minimum strength depending on the plate thickness.

しかし0.15%を越すと焼入後の組識が表層部がベイ
ナイト組識となり、微細なポリゴナルフェラィトが得に
くいほか、溶接性を害するので0.15%以下に限定し
た。Si : Siは脱酸上少なくとも0.10%を必要とするが、0
.40%を越えると級性に悪影響を及ぼすので0.40
%の範囲とした。
However, if it exceeds 0.15%, the structure after quenching becomes a bainite structure in the surface layer, making it difficult to obtain fine polygonal ferrite and impairing weldability, so it was limited to 0.15% or less. Si: Si requires at least 0.10% for deoxidation, but 0.
.. If it exceeds 40%, it will have a negative effect on the quality, so 0.40
% range.

Mn : Mnは轍性を損わず強度を向上させるに有用な元素であ
り、そのため少くとも1.0%を必要とするが、1.5
%を越すと溶接性を悪化させるので1.0〜1.5%の
範囲とした。
Mn: Mn is a useful element for improving strength without impairing rutting properties, and therefore requires at least 1.0%, but 1.5%
If it exceeds 1.0%, weldability deteriorates, so it is set in the range of 1.0 to 1.5%.

P、S: P、Sは有害な元素であり、特に鰯一性および熔接性に
有害であるのでそれぞれ0.025%以下、0.015
%以下に限定した。
P, S: P and S are harmful elements, especially harmful to the uniformity and weldability of sardines, so 0.025% or less and 0.015%, respectively.
% or less.

CuCr: 板厚50〜10仇舵の厚板の強度増加にいずれも効果が
あるが、Cuが0.20%、Crが0.30%を越すと
溶接性加工性に却って悪影響を及ぼすので、それぞれ0
.20%および0.30%をもって上限とした。
CuCr: Both are effective in increasing the strength of plates with a thickness of 50 to 10 mm, but if Cu exceeds 0.20% and Cr exceeds 0.30%, it will have a negative effect on weldability. 0 each
.. The upper limits were set at 20% and 0.30%.

Ni :Niは、この種の鋼材にマトリックスの靭性を
高め強度を確保するために少くとも0.15%を不可欠
とするが、高価な元素であるので十分なCOD値を確保
し得る最少限として1,0%をもって上限とし、0.1
5〜1.0%の範囲に限定した。
Ni: At least 0.15% of Ni is essential in order to increase the toughness of the matrix and ensure strength in this type of steel, but since it is an expensive element, it should be kept as the minimum amount to ensure a sufficient COD value. The upper limit is 1.0%, and 0.1
It was limited to a range of 5 to 1.0%.

板厚に応じて最適量の添加が必要である。Mo、V: 焼房抵抗性を高めるために少なくともMoが0.05%
、Vが0.02%を必要とじ、特にこの種の鋼材は鯖入
のままでポリゴナルフェラィト組議となっており、従来
の謙質60【9/側2級鋼に比して低い強度が特徴であ
って、暁戻あるいは応力除去焼純後も降伏強さ50k9
/柵2以上、引張強さ62k9/肋2以上を確保するた
めに十分な暁戻抵抗性を賦与する元素として必要である
が、高価な元素であり、また、それぞれ0.25%、0
.05%を越えての添加は効果が少し、のでMoが0.
05〜0.25%、Vが0.02〜o.05%の範囲と
した。
It is necessary to add the optimum amount depending on the plate thickness. Mo, V: At least 0.05% Mo to increase burning resistance
, V is required to be 0.02%, and in particular, this type of steel has a polygonal ferrite structure in Sabairi, which is lower than the conventional 60 [9/side grade 2 steel]. It is characterized by its strength, with a yield strength of 50k9 even after resetting or stress-relieving annealing.
/ fence 2 or more, tensile strength 62k9 / rib 2 or more, it is necessary as an element to provide sufficient reversal resistance, but it is an expensive element, and 0.25% and 0, respectively.
.. Addition of more than 0.05% has little effect, so if Mo is added more than 0.05%, the effect will be small.
05 to 0.25%, V is 0.02 to o. The range was 0.05%.

Aそ、N: T.Aそを0.010〜0.030%、Nを0.006
0〜0.0120%としたのが本発明鋼の特徴である。
A: N: T. A content: 0.010-0.030%, N: 0.006%
The steel of the present invention is characterized by having a content of 0 to 0.0120%.

A夕とNとはAとNを形成してオーステナィト結晶粒を
微細化し、競入後のフェライト組識を微細化する効果が
ある。すなわち、暁入時にベイナイトの生成を抑制し、
本発明の目的とするポリゴナルフェラィトを生成させる
のに適量の添加が是非必要である。通常この種の調質6
0k9/柳2級高張力鋼は転炉で溶製されるが、生成さ
れるAそNの絶対量はほぼN量で決定され、AそNによ
るオーステナイトの紬粒を得るためには少なくともNO
.0060%を必要とするが、0.0120%を越える
と溶接性を害するのでN量を0.0060〜0.012
0%の範囲とした。また、AそNの細粒化効果を最大限
に発揮させるためには、スラブ加熱でAそNを固溶させ
、蟻入加熱時に微細なAそNとして析出させるようにす
るのが最適である。全Aク量が0.010%未満の場合
にはこの細粒化効果がなくなり、0.030%を越すと
AそNの固熔温度が上昇し、スラブ加熱時にA〆Nを完
全に固落させることが困難となり、更にNで固定されて
いない過剰Aそのためにオーステナィト粒の粗大化を起
し易く、またベイナイト生成温度を高めるため劫って靭
性に悪影響を及ぼすので0.030%を上限とし、0.
010〜0.030%の範囲とした。次に本発明鋼の製
造工程における限定理由について述べる。
A and N have the effect of forming A and N, refining austenite crystal grains, and refining the ferrite structure after competition. In other words, the generation of bainite is suppressed at dawn,
Addition of an appropriate amount is absolutely necessary to produce polygonal ferrite, which is the object of the present invention. Usually this kind of tempering6
0k9/Yanagi grade 2 high-strength steel is melted in a converter, but the absolute amount of AsoN produced is determined by the amount of N, and in order to obtain austenite pongee grains from AsoN, at least NO is required.
.. 0.0060% is required, but if it exceeds 0.0120%, weldability will be impaired, so the amount of N should be 0.0060 to 0.012%.
The range was 0%. In addition, in order to maximize the grain refining effect of AsoN, it is best to dissolve AsoN into solid solution by heating the slab and precipitate it as fine AsoN during heating with ants. be. When the total A content is less than 0.010%, this grain refining effect disappears, and when it exceeds 0.030%, the solidification temperature of AsoN rises, and A〆N is completely solidified during slab heating. The upper limit is 0.030% because it becomes difficult to remove the excess A that is not fixed by N, which tends to cause coarsening of austenite grains, and increases the bainite formation temperature, which causes damage to toughness. and 0.
The range was 0.010% to 0.030%. Next, the reasons for limitations in the manufacturing process of the steel of the present invention will be described.

先づ、スラブを1200℃〜1250qoに加熱した後
、熱間圧延し、5℃/min以上の平均冷却速度で冷却
するのは、low岬以上の厚板の場合は冷却速度が5℃
/min未満となり、暁入加熱時における微細なAクN
の析出が困難となるので冷却速度を平均5℃/min以
上とした。
First, the slab is heated to 1200°C to 1250qo, then hot rolled and cooled at an average cooling rate of 5°C/min or more.For thick plates of low cape or higher, the cooling rate is 5°C.
/min, resulting in fine A/N during heating.
The cooling rate was set to an average of 5° C./min or more because precipitation of

しかし、100肋厚以下であれば空冷でもこの冷却速度
で確保できる。次に熱処理は通常ハースローラータィプ
の無酸化式連続熱処理炉で鋼板を加熱し、ローラークェ
ンチ式競入装置で焼入し、その後最適温度で暁房をする
方法をとっているが、熱処理条件で重要なのは暁入温度
と、屍入冷却速度であり、フェライト粒の微細化のため
には冷却速度は早ければ早い程好ましく、そのためには
上記装置以外では目的とする性能が得にくい。スラブ加
熱温度を1200qo〜1250ooと限定したのは、
本発明で規定するAそおよびNの含有量範囲でAそNを
確実に固溶させるためにはスラブを1200qC以上に
加熱する必要があり、また、AZNを確実に固熔させ、
COD値を向上させるという観点からはスラブの加熱温
度の上限を特に規制する必要はないが、1250ooを
越えて加熱するとスケール庇による表面性状に悪影響が
出るので、通常スラブ加熱温度を1250午0を越える
温度にすることはない。
However, if the thickness is 100 mm or less, this cooling rate can be achieved even with air cooling. Next, the heat treatment is usually done by heating the steel plate in a hearth roller type non-oxidizing continuous heat treatment furnace, quenching it in a roller quench type competitive heating device, and then subjecting it to a heat treatment at the optimum temperature. What is important here is the temperature at dawn and the cooling rate at which the ferrite grains are injected.The faster the cooling rate is, the better, in order to make the ferrite grains finer.For this reason, it is difficult to obtain the desired performance with devices other than those described above. The slab heating temperature was limited to 1200qo to 1250oo because
In order to ensure solid solution of AsoN within the content range of AsoN and N specified in the present invention, it is necessary to heat the slab to 1200qC or more, and also to ensure that AZN is solidified.
From the perspective of improving the COD value, there is no particular need to regulate the upper limit of the heating temperature of the slab, but heating above 1250° will have an adverse effect on the surface quality due to scale eaves, so the slab heating temperature is usually set at 1250°. Never exceed the temperature.

競入温度を880〜930午Cに限定したのは、880
00未満の加熱では孫入効果が現れず、また930oo
を越す高温加熱ではオーステナィト粒の粗大化が起り、
微細なフェライト組識が得にくいので880〜930q
oの温度範囲に限定した。
The competition temperature was limited to 880 to 930 pm.
When heated at less than 0.00000, the Soniri effect does not appear, and at 930oo
When heated at high temperatures exceeding
880-930q as it is difficult to obtain a fine ferrite structure.
It was limited to a temperature range of o.

また、競戻温度を580〜700qoに限定したのは5
80qo禾流では暁房効果が現れず、700qoを越す
暁房温度では微細化されたフェライト粒の粗大化を来た
すおそれがあるからである。実施例第1表、第2表に本
発明鋼および比較のために従来の鯛質60k9/柳2級
高張力鋼の化学成分と製造条件を示した。
In addition, the competitive return temperature was limited to 580 to 700 qo.
This is because the 80 qo heat flow does not produce the dawn effect, and the ferrite temperature exceeding 700 qo may cause the fine ferrite grains to become coarse. Examples Tables 1 and 2 show the chemical composition and manufacturing conditions of the steel of the present invention and the conventional Taishi 60k9/Yanagi grade 2 high tensile strength steel for comparison.

これらの機械的性質は第3表のとおりである。Their mechanical properties are shown in Table 3.

なお、第3表の機械的性質測定用試験片採取位第 1
表第 2 表 第 3 表 層は板厚の1/4部にて圧延方向と直角に探ったもので
ある。
In addition, the sample collection position for measuring mechanical properties in Table 3 is No. 1.
Table 2 Table 3 The surface layer was measured perpendicular to the rolling direction at 1/4 part of the plate thickness.

第3表より明らかな如く、本発明鋼のシャルピー衝撃試
験および滋重試験結果は極めてすぐれた値を示しており
、特に蕗重試験結果は比較鋼に比して著しく低いNDT
温度を示している。COD試験はASTME399の方
法による切欠3点曲げ試験片を用いて実施した。
As is clear from Table 3, the results of the Charpy impact test and the gravity test of the steel of the present invention show extremely excellent values, and in particular, the results of the Fuki gravity test show that the NDT is significantly lower than that of the comparative steel.
Shows temperature. The COD test was conducted using a notched three-point bending test piece according to the method of ASTM E399.

その結果からBS規格(英国規格)のDDI9により限
界CODを求め限界CODの温度依存性を添附図面に示
した。この図より明らかな如く、限界COD値は本発明
鋼と比較鋼とでは明確な差異が認められ、本発明鋼は極
めてすぐれた耐脆性破壊特性を有していることがわかる
。調質60k9/物2級高張力鋼を原子炉格納容器とし
て使用する際には、すぐれた勤性が要求され、具体的に
は−8℃の時vE−25q○≧2.8k9、mTNoT
:−25℃以下限界COD値6c−8℃≧0.2肋 を満足する必要があるが、このうちシャルピー衝撃試験
値と蕗重試験値は比較的容易に満足できるが、50肌以
上の板厚を有する厚板の場合、限界COD値を満足する
ことは従釆の比較鋼では困難であるが、添附図の結果よ
り明らかなとおり、本発明鋼においては容易に満足する
ことが可能である。
From the results, the limit COD was determined using DDI9 of the BS standard (British standard), and the temperature dependence of the limit COD is shown in the attached drawing. As is clear from this figure, there is a clear difference in the limit COD value between the steel of the present invention and the comparative steel, and it can be seen that the steel of the present invention has extremely excellent brittle fracture resistance. When using tempered 60k9/class 2 high tensile strength steel as a reactor containment vessel, excellent durability is required, specifically vE-25q○≧2.8k9 at -8℃, mTNoT
: It is necessary to satisfy the limit COD value 6c -8℃ ≧ 0.2 degrees below -25℃, but among these, the Charpy impact test value and the Fushimi weight test value can be satisfied relatively easily, but the board of 50 skin or more In the case of thick plates, it is difficult to satisfy the limit COD value with conventional comparison steels, but as is clear from the results shown in the attached diagram, it is possible to easily satisfy the limit COD value with the steel of the present invention. .

本発明鋼は上記実施例にても明らかなとおり化学成分を
限定し、特にT.Aそを0.010〜0.030%、N
を0.0060〜0.0120%としてA〆Nにてオー
ステナィト粒を微細化し、鱗入時にベイナイトの生成を
抑制してポリゴナルフェラィトを生成させることによっ
て、他のNi、Mo、V等の効果および適正な熱処理条
件と相僕つてすぐれたCOD値を有する調質60k9/
柳2級高張力鋼を得ることができたが、ここに本発明鋼
の効果を要約すると次の如くである。
As is clear from the above examples, the steel of the present invention has a limited chemical composition, especially T. A 0.010-0.030%, N
By setting the austenite grains to 0.0060 to 0.0120% in A〆N and suppressing the formation of bainite during scale incorporation to form polygonal ferrite, other Ni, Mo, V, etc. Thermal treatment 60k9/ has an excellent COD value in combination with effectiveness and appropriate heat treatment conditions.
Although Yanagi grade 2 high tensile strength steel could be obtained, the effects of the steel of the present invention can be summarized as follows.

【ィ’本発明鋼はすぐれた限界COO値を有し、原子炉
格納容器用は勿論、更に低温での使用や低温用圧力容器
への使用を可能とした。
[A] The steel of the present invention has an excellent limit COO value, and can be used not only for reactor containment vessels, but also for use at lower temperatures and for low-temperature pressure vessels.

‘ロー 本発明鋼は微細なポリゴナルフェラィト組織に
よって高い轍性を有しているのでNi、Mo、Vの如き
高価な合金元素の使用量が少く経済性に富んでいるのみ
ならず溶接性の点でも有利である。
'Row The steel of the present invention has high rutting properties due to its fine polygonal ferrite structure, so the amount of expensive alloying elements such as Ni, Mo, and V used is small, making it not only economically efficient but also easy to weld. It is also advantageous in terms of

【図面の簡単な説明】[Brief explanation of the drawing]

添附図面は本発明鋼の限界COD値の温度依存性を従釆
の比較鋼と対比する相関図である。
The attached drawing is a correlation diagram comparing the temperature dependence of the critical COD value of the steel of the present invention with that of a conventional comparative steel.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比にてC:0.15%以下、Si:0.10〜
0.40%、Mn:1.0〜1.5%、P:0.025
%以下、S:0.015%以下、Cu:0.20%以下
、Ni:0.15〜1.0%、Cr:0.30%以下、
Mo:0.05〜0.25%、V:0.02〜0.05
%、T.Al:0.010〜0.030%、N:0.0
060〜0.0120%を含有し、残部が実質的にFe
より成る組成の鋼をを1200℃〜1250℃に加熱し
て熱間圧延する工程と、前記熱間圧延終了後5℃/mi
n以上の平均冷却速度にて冷却する工程と、前記冷却工
程終了後880〜930℃の温度範囲に加熱して焼入す
る工程と、前記焼入工程後580〜700℃の温度範囲
にて焼戻する工程と、を有して成ることを特徴とするC
OD値のすぐれた調質60kg/mm^2級高張力鋼の
製造方法。
1 C: 0.15% or less, Si: 0.10~ by weight ratio
0.40%, Mn: 1.0-1.5%, P: 0.025
% or less, S: 0.015% or less, Cu: 0.20% or less, Ni: 0.15 to 1.0%, Cr: 0.30% or less,
Mo: 0.05-0.25%, V: 0.02-0.05
%, T. Al: 0.010-0.030%, N: 0.0
060 to 0.0120%, with the remainder being substantially Fe.
A step of heating and hot rolling steel having a composition of 1200°C to 1250°C;
a step of cooling at an average cooling rate of n or more; a step of heating and quenching to a temperature range of 880 to 930°C after the end of the cooling step; and a step of quenching in a temperature range of 580 to 700°C after the quenching step. C, characterized by comprising the step of returning
A method for producing heat-treated 60kg/mm^2 class high tensile strength steel with an excellent OD value.
JP53154763A 1978-12-11 1978-12-11 Manufacturing method of heat-treated 60Kg/mm↑2 grade high tensile strength steel with excellent COD value Expired JPS604886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53154763A JPS604886B2 (en) 1978-12-11 1978-12-11 Manufacturing method of heat-treated 60Kg/mm↑2 grade high tensile strength steel with excellent COD value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53154763A JPS604886B2 (en) 1978-12-11 1978-12-11 Manufacturing method of heat-treated 60Kg/mm↑2 grade high tensile strength steel with excellent COD value

Publications (2)

Publication Number Publication Date
JPS5579828A JPS5579828A (en) 1980-06-16
JPS604886B2 true JPS604886B2 (en) 1985-02-07

Family

ID=15591354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53154763A Expired JPS604886B2 (en) 1978-12-11 1978-12-11 Manufacturing method of heat-treated 60Kg/mm↑2 grade high tensile strength steel with excellent COD value

Country Status (1)

Country Link
JP (1) JPS604886B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5425702B2 (en) 2010-02-05 2014-02-26 株式会社神戸製鋼所 High-strength thick steel plate with excellent drop weight characteristics

Also Published As

Publication number Publication date
JPS5579828A (en) 1980-06-16

Similar Documents

Publication Publication Date Title
CN106086661B (en) High-strength high-toughness cast steel material and its manufacturing method
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
CN101660104A (en) High-temperature resistant tempered heavy plate with low susceptibility to welding crack and production method thereof
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
CN100497706C (en) Steel for welded structures excellent in low temperature toughness of weld heat affected zone and method of production of same
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS6267113A (en) Production of heat resisting steel having excellent creep rupture resistance characteristic
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JPS604886B2 (en) Manufacturing method of heat-treated 60Kg/mm↑2 grade high tensile strength steel with excellent COD value
CN104099515A (en) Steel, formed heat treatment steel and production method thereof
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP2688392B2 (en) Method for producing martensitic stainless steel with low cracking susceptibility
JPH0143008B2 (en)
KR100358939B1 (en) Method for manufacturing steel for construction with tensile strength of 58 kgf/mm¬2 class
JP4061213B2 (en) Steel sheet for hot forming
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
KR100328037B1 (en) A Method for Manufacturing High Strength Hot Rolled steel Sheet Having Low Yield Ration
JP4975448B2 (en) 655 MPa grade martensitic stainless steel excellent in toughness and method for producing the same
JP2905306B2 (en) Method of manufacturing thick steel plate with small difference in mechanical properties in the thickness direction
JP3620098B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JPS6213523A (en) Production of steel bar for low temperature use
JP3606135B2 (en) Ferritic stainless steel sheet for spring and manufacturing method thereof
JP2526719B2 (en) Manufacturing method of high strength stainless steel
JPH0121847B2 (en)