JPS6048865B2 - Manufacturing method for electrode plates for alkaline storage batteries - Google Patents

Manufacturing method for electrode plates for alkaline storage batteries

Info

Publication number
JPS6048865B2
JPS6048865B2 JP54165032A JP16503279A JPS6048865B2 JP S6048865 B2 JPS6048865 B2 JP S6048865B2 JP 54165032 A JP54165032 A JP 54165032A JP 16503279 A JP16503279 A JP 16503279A JP S6048865 B2 JPS6048865 B2 JP S6048865B2
Authority
JP
Japan
Prior art keywords
active material
paste
core material
cutting
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54165032A
Other languages
Japanese (ja)
Other versions
JPS5686460A (en
Inventor
哲史郎 鳥越
英男 太田
広士 杉本
典夫 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54165032A priority Critical patent/JPS6048865B2/en
Publication of JPS5686460A publication Critical patent/JPS5686460A/en
Publication of JPS6048865B2 publication Critical patent/JPS6048865B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、アルカリ蓄電池用極板、とくにニッケル−カ
ドミウム蓄電池におけるカドミウム陰極板の製造法に関
するものであり、高率放電特性に優れた極板を作業性よ
く得る方法を提供することを目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing electrode plates for alkaline storage batteries, particularly cadmium cathode plates for nickel-cadmium storage batteries, and provides a method for obtaining electrode plates with excellent high rate discharge characteristics with good workability. It is intended to provide.

密閉型ニッケル−カドミウム蓄電池のカドミウム陰極板
には、ニッケル焼結体にカドミウムウム塩の水溶液を含
浸して製造する焼結式極板と、カドミウム酸化物粉末に
カーボニルニツケルの如き導電材粉末、粘着材とその溶
媒及ひ補強用単繊維を適量混合し、ペースト状として支
持体である多孔性芯材の両面に塗着、乾燥して製造する
ペースト式極板とが一般的に用いられている。
The cadmium cathode plate of a sealed nickel-cadmium storage battery is manufactured using a sintered electrode plate manufactured by impregnating a sintered nickel body with an aqueous solution of cadmium salt, and a sintered plate manufactured by impregnating a sintered nickel body with an aqueous solution of cadmium salt, and a cadmium oxide powder, conductive material powder such as carbonyl nickel, and adhesive. A paste-type electrode plate is generally used, which is manufactured by mixing appropriate amounts of the material, its solvent, and reinforcing single fibers, applying the mixture as a paste to both sides of a porous core material that is a support, and drying it. .

本発明は、作業性及び電池性能に優れている後者のペー
スト式極板の製造方法を改良したものである。
The present invention is an improvement on the latter method of manufacturing paste-type electrode plates, which has excellent workability and battery performance.

従来のペースト状陰極板の製造法は、第1図に示す如く
央部分1を多孔性とし、両側縁部2、2’を無孔とした
帯状のニッケルまたはニッケルメッキした帯状の鉄製芯
材1aの両面に、ペースト状陰極活物質3を塗着し、第
2図、第3図に示す適度な隙間4を有するドクターナイ
フ又はスリツター5の間を通過させる際に、切断後の完
成陰極板の集電体部分に相当する位置に対応して前記ナ
イフ5の隙間に介在させた軟質ゴム6で芯材両面のペー
スト状陰極活物質3をかき落とし、ついで乾燥した後、
アルカリ水溶液中で充放電を行う化成を施していた。
As shown in FIG. 1, the conventional method for producing a paste-like cathode plate is to use a strip-shaped nickel or nickel-plated iron core material 1a with a porous central portion 1 and non-porous side edges 2, 2'. A paste-like cathode active material 3 is applied to both sides of the plate, and the finished cathode plate after cutting is passed through a doctor knife or slitter 5 having an appropriate gap 4 as shown in FIGS. 2 and 3. After scraping off the paste-like cathode active material 3 on both sides of the core material with a soft rubber 6 interposed in the gap between the knives 5 at positions corresponding to the current collector parts, and then drying,
It was chemically converted by charging and discharging in an alkaline aqueous solution.

この後、芯材全体のたわみ、わん曲状態を防止するため
に芯材両側縁部を芯材の長尺方向に一定量伸延し、芯材
全体を加圧して活物質塗着部分の多孔度と厚さを一定に
調整する’ためにローラプレスを施した後、所定寸法に
切断して所望の陰極板としていた。しかし、この従来の
方法では、化成前の大寸法極板から所定幅寸法の基板に
形成する際に、ペースト状陰極活物質に混入させた粘着
材及び補強用門単繊維さらには陰極活物質ペースト自体
の粘性状態により、集電体を形成するため所定部分のペ
ーストのみを削り取ることは困難であつた。
After this, in order to prevent the entire core material from bending or bending, both edges of the core material are stretched a certain amount in the longitudinal direction of the core material, and the entire core material is pressurized to reduce the porosity of the active material coated area. After applying a roller press to adjust the thickness to a constant value, the cathode plate was cut to a predetermined size to obtain the desired cathode plate. However, in this conventional method, when forming a large-sized electrode plate before chemical formation into a substrate of a predetermined width, adhesive material and reinforcing single fibers are mixed into the paste cathode active material, and the cathode active material paste is Due to its viscous state, it was difficult to scrape off only a predetermined portion of the paste to form a current collector.

すなわち、第2図のペースト状活物質塗着時にドクター
ナイフ間に介在する軟質ゴムで集電体を形成する部分の
ペーストを削り取る過程で、ペーストに混入した補強用
単繊維を完全に切断できなく、かつ粘着材も作用するた
め、集電体用形成部分だけでなく、その両端部分の陰極
活物質も芯材から剥離脱落して不均一となり、従つて切
断後の陰極板を用いて電池を形成した後の電池性能に不
均一化を招いていた。 ’さらに前記集電体部分もペー
ストが完全には除去されなく、ペーストが薄く残存する
ために、電池形成時に残存ペーストが脱落して短絡事故
を惹起する等の問題点も存在した。
In other words, in the process of scraping off the paste in the part that forms the current collector with the soft rubber interposed between the doctor knives when applying the active material in paste form as shown in Figure 2, the reinforcing single fibers mixed in the paste cannot be completely cut. , and the adhesive also acts, so not only the current collector forming part but also the cathode active material at both ends peels off from the core material and becomes uneven. Therefore, it is difficult to assemble the battery using the cut cathode plate. This resulted in non-uniformity in battery performance after formation. Furthermore, since the paste is not completely removed from the current collector portion and a thin layer of paste remains, there are other problems such as the remaining paste falling off during battery formation and causing a short circuit accident.

本発明は、ニッケル又はニッケルメッキ鉄製芯材の両面
にペースト状陰極活物質を塗着、乾燥して大寸法極板を
形成した後、切断後において所望陰極板の集電体となる
部分の両面を丸ナイフ、あるいはカッターナイフのごと
き鋭利なナイフ材を用いて陰極活物質のみに一定幅で筋
入れを行い、次いでスリ割フライスの如き多数の刃先を
有する刃物を用いて傷つけることなく筋間の陰極活物質
のみを削り落とすことにより、均一な幅の陰極活物質部
と上下両面で完全に露出した芯材集電体部とを形成して
前記の問題点を除去するとともに、−電池性能に優れた
極板を提供するものてある。
The present invention applies a paste-like cathode active material to both sides of a nickel or nickel-plated iron core material, dries it to form a large-sized electrode plate, and then cuts both sides of the part that will become the current collector of the desired cathode plate. Using a sharp knife material such as a round knife or a cutter knife, make a score with a certain width only on the cathode active material, and then use a cutter with multiple cutting edges such as a slotted milling cutter to cut between the marks without damaging it. By scraping off only the cathode active material, a cathode active material portion with a uniform width and a core current collector portion completely exposed on both the top and bottom surfaces are formed, which eliminates the above-mentioned problems and improves battery performance. There are some that provide excellent electrode plates.

以下、本発明の実施例について図により説明する。第1
図に示したと同様な中央部分1に多数の貫通孔を設ける
とともに両側縁部分2,2’を無孔とした厚さ0.IT
WLのニッケルまたはニツケルメツ.キ鉄板からなる芯
材1aを用意し、第4図に示すようにその左右あるいは
上下の中央部分にカドミウムを主体としたペースト状陰
極活物質をドクターナイフ5を用いて塗着し、乾燥炉4
で乾燥した後、一次的に基板の厚さを調整するための一
対の−加圧ローラ7間を通過させる。ついで上下両面に
おいて幅2wfmの集電体を形成する部分の縁側に刃先
厚み30μ、外径10077!771をもつた一対の丸
ナイフ8を一定の圧力、例えば4〜6k9/ゴ範囲内で
芯材へ押圧して芯材の上下両面に塗着乾燥されたべくー
スト状陰極活物質3のみに筋入れを施す。これによりペ
ーストに混入した補強用単繊維及び筋の ・内外におけ
るペーストは完全に分断される。この後筋入れの施され
た部分の陰極活物質3を、スリ割フライス9として刃幅
1.9〜2.0m771)外径70Tnmのものを使用
して極板送り速度60〜1卯倍の回転数に筋間部分の活
物質を削り落す。この筋入れ及ひ筋間の活物質削り落し
工程は、集電体となる部分の両縁の活物質にエッジをシ
ャープに形成するために、最初筋入れを施した後、筋間
の集電体となる部分のペースト状陰極活物質を削り落す
とよい。
Embodiments of the present invention will be described below with reference to the drawings. 1st
A large number of through holes are provided in the central portion 1 similar to that shown in the figure, and both side edge portions 2, 2' are made non-porous with a thickness of 0. IT
WL nickel or nickel metal. A core material 1a made of a metal plate is prepared, and as shown in FIG.
After drying, the substrate is passed between a pair of pressure rollers 7 for temporarily adjusting the thickness of the substrate. Next, a pair of round knives 8 with a cutting edge thickness of 30 μm and an outer diameter of 10077!771 are applied to the edge of the portion that will form a current collector with a width of 2 wfm on both the upper and lower surfaces, and the core material is pressed at a certain pressure, for example within the range of 4 to 6 k9/go. Incisions are made only in the paste-like cathode active material 3 that has been applied and dried on both the upper and lower surfaces of the core material. As a result, the paste inside and outside of the reinforcing single fibers and muscles mixed in the paste is completely separated. After this, the cathode active material 3 in the scored part is cut into a slotted milling cutter 9 with a blade width of 1.9 to 2.0 m (771) and an outer diameter of 70 Tnm, and the electrode plate feed rate is increased to 60 to 1 tn. The active material in the interstitial areas is scraped off at the rotational speed. In this step of making the creases and scraping off the active material between the creases, in order to form sharp edges on the active material on both edges of the part that will become the current collector, first make the creases, then remove the active material between the creases. It is best to scrape off the paste-like cathode active material on the part that will become the body.

この際、極板の上下に配置した筋入れを施す丸ナイフ、
及び活物質を削り落すスリ割フライスそれぞれの上下問
隙を一定寸法とすると、ペースト状活物質に食い込むと
ともに、芯金のたわみやそりにより芯金の表面に傷を付
けたり、あるいは極端な場合芯材の切れが発生する。こ
れを解決するために、上記丸ナイフおよびスリ割フライ
スはバネ機構により、一定の圧力の下に芯材両面のペー
スト状陰極活物質に食い込み、芯材の両面の活物質塗着
量にバラツキが生じてても、芯金の表面に対し丸ナイフ
およびスリ割フライスは一定圧力でしか接しなく、過大
圧力は逃がす方式としているため、芯材の損傷や切れを
発生するようなことはない。このようにして集電体を形
成した後、従来と同様に化成装置10において、極板を
化成し、充放電時の活物質利用率を高めるためにアルカ
リ溶液中で陰極活物質を電解還元、酸化する。
At this time, a round knife is placed above and below the electrode plate to make the incision.
If the gap between the top and bottom of each slotted milling cutter used to scrape off the active material is set to a certain size, it will bite into the paste-like active material and damage the surface of the core metal due to deflection or warpage, or in extreme cases, the core metal surface will be damaged. Cutting of the material occurs. In order to solve this problem, the round knife and slotted milling cutter have a spring mechanism that bites into the paste-like cathode active material on both sides of the core material under constant pressure, thereby preventing variations in the amount of active material applied on both sides of the core material. Even if this happens, the round knife and slotted milling cutter only come into contact with the surface of the core metal under a constant pressure, and the excess pressure is released, so the core metal will not be damaged or cut. After forming the current collector in this way, the electrode plate is chemically formed in the chemical conversion device 10 as in the conventional case, and the cathode active material is electrolytically reduced in an alkaline solution in order to increase the active material utilization rate during charging and discharging. Oxidize.

ついで芯材全体のたわみ、わん曲状態を防止するため、
に芯材の長尺方向に3Tnm程度伸延装置11にて伸延
する。その後、活物質部分の多孔度と厚さを一定に調整
するために、ローラブレス12を通した後、カッター1
3で極板を所定幅に切断すれば、電池サイズに応じた短
冊状の単位極板14が得られる。第5図は極板の上側に
配置した丸ナイフ及びスリ割フライスに一定の圧力を加
えるバネ機構を示し、15,16はコイルスプリング、
17,18はコイルスプリングの一端を固定した圧力調
整ロッドである。
Next, in order to prevent the entire core material from bending or bending,
Then, the core material is stretched by a stretching device 11 by about 3 Tnm in the longitudinal direction. After that, in order to adjust the porosity and thickness of the active material part to a constant level, the cutter 1 is passed through the roller press 12.
If the electrode plate is cut to a predetermined width in step 3, a rectangular unit electrode plate 14 corresponding to the battery size can be obtained. Figure 5 shows a spring mechanism that applies constant pressure to the round knife and slotted milling cutter placed above the electrode plate, 15 and 16 are coil springs;
17 and 18 are pressure adjusting rods to which one end of a coil spring is fixed.

極板下側のそれも同様に構成している。又、第6図は筋
入れした部分の活物質をスリ割フライスで除去した上面
図であり、細い帯状に多孔性の芯材1aが露出している
The one on the lower side of the electrode plate is constructed in the same way. Further, FIG. 6 is a top view of the active material in the scored portion removed by a slot milling cutter, and the porous core material 1a is exposed in a thin band shape.

これは極板の上側のみでなく、下側も同様である。この
ように本発明の製造法では、芯材両面にペースト状陰極
活物質の塗着、乾燥後に、切断後の所望陰極板の集電体
部分をなす部分のペースト状活物質にナイフ材で筋入れ
し、スリ割フライスで筋間の活物質を削り落すことによ
り、集電体部分と活物質塗着部分との境界はエッジがシ
ャープに出た直線的なものとなつて、電池性能の均一な
優れた極板を提供することができる。
This applies not only to the upper side of the electrode plate but also to the lower side. As described above, in the manufacturing method of the present invention, after coating the paste-like cathode active material on both sides of the core material and drying, the paste-like active material in the part that will form the current collector part of the desired cathode plate after cutting is streaked with a knife material. By cutting off the active material between the streaks with a slotted milling cutter, the boundary between the current collector part and the active material coated part becomes a straight line with sharp edges, resulting in uniform battery performance. It is possible to provide an excellent electrode plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多孔性帯状芯材にペースト状陰極活物質
を塗着した際の一部断面図、第2図はペースト状活物質
の一部を軟質ゴムで削り落した際の上面図、第3図は第
2図の■−■′線に沿つた断面図、第4図は本発明の製
造法の一実施例における工程配置図、第5図はナイフ材
とスリ割フライスとに押圧力をもたせるバネ機構の側面
図、第6図は集電体部分の活物質を削り落した上面図て
ある。 1 ・・・・・・多孔性の中央部、2,2’・・・・・
・無孔の両側縁部、1a・・・・・・帯状芯材、3・・
・・・・ペースト状陰極活物質、5 ・・・・・・ドク
ターナイフ、6 ・・・・・・乾燥炉、8・・・・・・
ナイフ材、9・・・・・・スリ割フライス、10・・・
・・・化成装置。
Figure 1 is a partial cross-sectional view of a conventional porous strip core material coated with a paste cathode active material, and Figure 2 is a top view of a part of the paste active material scraped off with soft rubber. , FIG. 3 is a cross-sectional view taken along the line ■-■' in FIG. FIG. 6 is a side view of the spring mechanism that provides a pressing force, and a top view with the active material of the current collector portion removed. 1... Porous center, 2,2'...
・Non-porous side edges, 1a... Band-shaped core material, 3...
... Paste cathode active material, 5 ... Doctor knife, 6 ... Drying oven, 8 ...
Knife material, 9... Slit milling cutter, 10...
...Chemical conversion equipment.

Claims (1)

【特許請求の範囲】[Claims] 1 両側縁部を無孔とした多孔性の帯状芯材の両面に、
導電材粉末、粘着材及び補強用単繊維を混入したペース
ト状陰極活物質を連続的に塗着して乾燥する工程と、芯
材両面に塗着乾燥させたペースト状活物質のうち切断後
に所望陰極板の集電体となる部分に、一対のナイフ材で
筋入れを行なうとともに筋間の活物質をスリ割フライス
により削り落す工程とを有し、前記筋入れのためのナイ
フ材及び活物質を削り落すスリ割フライスは上下両面よ
り前記芯材に一定圧力で接するようその加圧力を調整し
たことを特徴とするアルカリ蓄電池用極板の製造法。
1. On both sides of a porous belt-shaped core material with non-porous edges,
A process of continuously applying and drying a paste-like cathode active material mixed with conductive material powder, adhesive material, and reinforcing single fibers, and a process of continuously applying and drying the paste-like active material mixed with conductive material powder, adhesive material, and reinforcing single fibers, and applying the desired amount after cutting of the paste-like active material that has been applied and dried on both sides of the core material. The process includes scoring the portion of the cathode plate that will become the current collector with a pair of knife materials, and cutting off the active material between the streaks with a slotted milling cutter. A method for manufacturing an electrode plate for an alkaline storage battery, characterized in that the pressing force of the slotted milling cutter for cutting off the core material is adjusted so that it contacts the core material at a constant pressure from both the upper and lower surfaces.
JP54165032A 1979-12-18 1979-12-18 Manufacturing method for electrode plates for alkaline storage batteries Expired JPS6048865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54165032A JPS6048865B2 (en) 1979-12-18 1979-12-18 Manufacturing method for electrode plates for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54165032A JPS6048865B2 (en) 1979-12-18 1979-12-18 Manufacturing method for electrode plates for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPS5686460A JPS5686460A (en) 1981-07-14
JPS6048865B2 true JPS6048865B2 (en) 1985-10-29

Family

ID=15804537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54165032A Expired JPS6048865B2 (en) 1979-12-18 1979-12-18 Manufacturing method for electrode plates for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JPS6048865B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107975A (en) * 1984-10-31 1986-05-26 Shin Kobe Electric Mach Co Ltd Slitter for coating paste
JPS6369469U (en) * 1986-10-24 1988-05-10
EP1128455A1 (en) 2000-02-22 2001-08-29 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrode plates for batteries
JP5127119B2 (en) 2005-04-25 2013-01-23 パナソニック株式会社 Electrode mixture paste coating method and coating apparatus

Also Published As

Publication number Publication date
JPS5686460A (en) 1981-07-14

Similar Documents

Publication Publication Date Title
EP0742601B1 (en) Cylindrical battery with spirally wounded electrode assembly
US6444357B1 (en) Non-aqueous electrolyte secondary battery
US4318430A (en) Apparatus for making rechargeable electrodes for electrochemical cells
JPS6048865B2 (en) Manufacturing method for electrode plates for alkaline storage batteries
JP2840369B2 (en) Manufacturing method of battery electrode plate
JP2869156B2 (en) Manufacturing method of positive electrode plate
US4296187A (en) Integrated carbon/insulator structure and method for fabricating same
US4029856A (en) Sintered porous plaque battery plates and method of making same
HU197645B (en) Method for making cadmium electrode reinforced by polymer of alakaline accumulators
US4377033A (en) Integrated carbon/insulator structure and method for fabricating same
JPH11176424A (en) Manufacture of electrode plate tape for battery
JP2016058181A (en) Method for manufacturing electrode plate for nonaqueous secondary battery
JPS5833666B2 (en) Manufacturing method of electrode plates for alkaline storage batteries
JPS5834899B2 (en) Manufacturing method of electrode plates for lead-acid batteries
JPH11242956A (en) Manufacture of electrode body for battery
JP7510912B2 (en) Method for manufacturing electrode plate and method for manufacturing battery
JPH11233102A (en) Manufacture and manufacturing device of plate for battery
JPH11317220A (en) Production of sheet electrode
JPH04249855A (en) Manufacture of organic electrolyte battery
JP3350906B2 (en) Equipment for manufacturing zinc plates for alkaline zinc storage batteries
JPH06196159A (en) Manufacture of zinc plate for alkaline zinc storage battery and device therefore
JPH06231762A (en) Dispersion liquid of hydrogen storage alloy powder
JPS5983354A (en) Manufacture of organic electrolyte battery
JPH0680589B2 (en) Paste type cadmium electrode
JPH1173952A (en) Positive pole plate for cylindrical alkaline storage battery and the cylindrical alkaline storage battery