JPS5833666B2 - Manufacturing method of electrode plates for alkaline storage batteries - Google Patents

Manufacturing method of electrode plates for alkaline storage batteries

Info

Publication number
JPS5833666B2
JPS5833666B2 JP52093589A JP9358977A JPS5833666B2 JP S5833666 B2 JPS5833666 B2 JP S5833666B2 JP 52093589 A JP52093589 A JP 52093589A JP 9358977 A JP9358977 A JP 9358977A JP S5833666 B2 JPS5833666 B2 JP S5833666B2
Authority
JP
Japan
Prior art keywords
core material
active material
side edges
electrode plate
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52093589A
Other languages
Japanese (ja)
Other versions
JPS5427936A (en
Inventor
広二 外園
典夫 広沢
英男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52093589A priority Critical patent/JPS5833666B2/en
Publication of JPS5427936A publication Critical patent/JPS5427936A/en
Publication of JPS5833666B2 publication Critical patent/JPS5833666B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/124

Description

【発明の詳細な説明】 本発明は、アルカリ蓄電池用極板、とくにニッケルーカ
ドミウム蓄電池におけるカドミウム陰極板の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing electrode plates for alkaline storage batteries, particularly cadmium cathode plates for nickel-cadmium storage batteries.

ニッケルーカドミウム円筒形蓄電池の一般的な構成方法
は、第1図に示す如く陰極端子を兼ねた電池ケースaの
内底部に絶縁円板すを位置させ、セパレータCを介して
帯状のニッケル陽極板dと、カドミウム陰極板eとを渦
巻状に巻回した極板群を挿入する。
The general method for constructing a nickel-cadmium cylindrical storage battery is to place an insulating disk at the inner bottom of a battery case A, which also serves as a cathode terminal, as shown in Figure 1, and insert a strip-shaped nickel anode plate through a separator C. d and a cadmium cathode plate e that are spirally wound.

この後、陽極リードfを封口板gに固定した陽極端子り
に接続し、アルカリ電解液をケース内に注入して、封口
板gの周縁にケースの開口端部を内方へ屈曲してかしめ
つけることで密封するものである。
After this, the anode lead f is connected to the anode terminal fixed to the sealing plate g, an alkaline electrolyte is injected into the case, and the open end of the case is bent inward around the periphery of the sealing plate g. It is sealed by tightening it.

ここで使用するカドミウム陰極板は、作業性および極板
特性に優れることから、これまでのニッケル焼結基板に
カドミウム活物質を含浸充填するものから、芯材に直接
カドミウムを主体としたペースト状の活物質を塗着し、
これを化成するものに移行している。
The cadmium cathode plate used here has excellent workability and plate properties, so instead of the conventional nickel sintered substrate impregnated and filled with cadmium active material, a paste-like cadmium-based cathode plate is used directly on the core material. Apply the active material,
We are now transitioning to chemical products.

このようなペースト状陰極活物質を芯材に塗着して得る
陰極板の一般的な製造過程は、第2図に示す如く、パン
チング加工等で多数の孔をあけ多孔性とした中央部分1
と、長孔2を境として接する無孔の両側縁部3,31と
からなる芯材4を用意し、多孔性の中央部分の両面にペ
ースト状の陰極活物質5を連続的に塗着し、−次的に活
物質の厚さを調整した後、化成処理し、ついで活物質の
多孔度と厚さを調整するために一対のロール6等で単に
加圧するものである。
The general manufacturing process for a cathode plate obtained by applying such a paste-like cathode active material to a core material is as shown in Figure 2, in which a central portion 1 is made porous by punching a large number of holes.
and non-porous side edges 3, 31 that are in contact with each other with the elongated hole 2 as the boundary, a core material 4 is prepared, and a paste-like cathode active material 5 is continuously applied to both sides of the porous central portion. -Next, after adjusting the thickness of the active material, it is subjected to a chemical conversion treatment, and then simply pressurized with a pair of rolls 6 or the like in order to adjust the porosity and thickness of the active material.

ところがこの化成処理後の加圧工程において、活物質が
塗着された部分である芯材の中央部分1と無孔の両側縁
部3,31とでは活物質が加圧されるとともに多孔性で
伸延し易い中央部分0方が、両側縁部3,31よりも芯
材の長さ方向に沿って伸延し易く、画部分の伸延率に差
が生じるため、第3図に示す如く加圧後における極板は
タイヤ状に彎曲したり、波打ち状態が生じる問題があっ
た。
However, in the pressurizing process after this chemical conversion treatment, the active material is pressurized and becomes porous in the central part 1 of the core material, which is the part where the active material is applied, and the non-porous side edges 3, 31. The central part 0, which is easier to stretch, is easier to stretch along the length direction of the core material than the side edges 3, 31, and there is a difference in the stretching ratio of the image parts, so as shown in FIG. There was a problem in that the electrode plate in the conventional method was bent like a tire or wavy.

そこで、この彎曲や波打ち現象を防止するため、これま
では、第4図に示す如く、帯状の芯材4に連続してペー
スト状陰極活物質5をスリットまたはブレード7を用い
て塗着し、これを−次的に一対の加圧ロールで厚さ調整
し、化成装置10に導入して化成処理した後、カッター
8で後述する加圧工程でも極板が彎曲したり波打ったり
することのない様、一対の加圧ロール6に切断面を直角
に向けて通せる長さり。
Therefore, in order to prevent this curvature and waving phenomenon, as shown in FIG. Next, the thickness of the electrode plate is adjusted using a pair of pressure rolls, and after being introduced into the chemical conversion equipment 10 and subjected to chemical conversion treatment, the electrode plate is used with a cutter 8 to prevent bending or waving even during the pressure process described later. It is long enough to pass through a pair of pressure rolls 6 with the cut surface facing at right angles.

に切断9し、一対の加圧ロール6で加圧して活物質層の
多孔度および厚さを調整していた。
The active material layer was cut into pieces 9 and pressed with a pair of pressure rolls 6 to adjust the porosity and thickness of the active material layer.

そしてこの加圧工程を経た極板9を再度90°向きがえ
してカッター11で所定幅に切断して渦巻状に巻回する
に適した短冊状極板12としていた。
Then, the electrode plate 9 that had undergone this pressurizing step was turned again by 90° and cut into a predetermined width with a cutter 11 to form a strip-shaped electrode plate 12 suitable for being spirally wound.

しかしこの製造法では、途中に帯状の極板の切断および
向きがえする工程が入るため、作業が分断され、極板を
作業性よく効率的に製造することはできなかった。
However, this manufacturing method involves a step of cutting and reorienting the strip-shaped electrode plate, which divides the work and makes it impossible to efficiently manufacture the electrode plate with good workability.

本発明は、このようなカドミウム陰極板の製造において
従来の製造法の欠点を解決し、連続的に作業性よく極板
を製造することができる製造法を提供するものである。
The present invention solves the drawbacks of conventional manufacturing methods in manufacturing such cadmium cathode plates, and provides a manufacturing method that can continuously manufacture electrode plates with good workability.

以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.

第5図は本発明のカドミウム陰極板の製造法における製
造工程を示し、帯状の芯材4を順次送り出しながら、そ
の多孔性の中央部分に、ブレード7を用いてカドミウム
を主体としたペースト状の陰極活物質5を連続的に塗着
し、乾燥後一対の加圧ロール13により一次的に厚さ調
整して化成装置10に導入して化成処理する。
FIG. 5 shows the manufacturing process in the method for manufacturing a cadmium cathode plate of the present invention. While the strip-shaped core material 4 is being sent out one after another, a paste-like material mainly composed of cadmium is applied to the porous central portion of the core material 4 using a blade 7. The cathode active material 5 is continuously applied, and after drying, the thickness is temporarily adjusted using a pair of pressure rolls 13, and the material is introduced into a chemical conversion device 10 for chemical conversion treatment.

ついで化成処理した帯状極板の無孔な両側縁部3,31
を、加圧ロール6による加圧工程前に予め一対の伸延装
置14により一定量だけ伸延させる。
Then, the non-porous side edges 3, 31 of the band-shaped electrode plate were subjected to chemical conversion treatment.
is stretched by a predetermined amount by a pair of stretching devices 14 before the pressing process by the pressure roll 6.

この伸延装置14は、加圧ロール6による加圧工程で前
述したように活物質が塗着された中央部分1と両側縁部
3,31とが伸延量において差を生じ、彎曲することが
生じるので、これを解決すべく予め伸延率の小さい芯材
4の両側縁部3,31を一定量だけ伸延させ、後で施さ
れる加圧工程での芯材中央部分と両側縁部との伸延量の
差に見合う分だけ、両側縁部3,31を芯材の長さ方向
に伸ばすものである。
In this distraction device 14, as described above, the center portion 1 to which the active material is coated and the side edges 3, 31 have a difference in the amount of distraction during the pressurization process using the pressure roll 6, and may be curved. Therefore, in order to solve this problem, the both side edges 3, 31 of the core material 4, which have a small elongation ratio, are stretched by a certain amount in advance, and the center portion of the core material and the both side edges are stretched by a certain amount in the pressurization process that will be performed later. Both side edges 3, 31 are extended in the length direction of the core material by an amount commensurate with the difference in amount.

この芯材両側縁部3,31の伸延は芯材全体にわたり連
続的にその長さ方向に伸延させることでもよいが、作業
的に容易で確実に彎曲を防止することのできる間欠的な
伸延であってもよい。
The core material side edges 3, 31 may be stretched continuously in the length direction over the entire core material, but it may be an intermittent distraction method that is easy to work with and can reliably prevent curvature. There may be.

第5図に示した伸延装置14は、この間欠的な伸延装置
である。
The distraction device 14 shown in FIG. 5 is an intermittent distraction device.

第6図、第7図はこの伸延装置14を示し、両側縁部3
,31の裏面側に位置するV形溝を有する固定絞りダイ
ス15と、これに嵌合するナイフ形先端をもつポンチ1
6および側縁部を押えつけて固定する一対の押え具17
とからなり、ダイス15のV形溝18の幅αと深さβと
は、加圧工程で発生する芯材中央部分1と両側縁部分3
,3′の伸延量の差δを、芯材の長孔2相互間のピッチ
P相当の伸延量の差Aδ゛に換算し、このJδがピ゛ノ
チP間で伸びるように設定されている。
6 and 7 show this distraction device 14, with both side edges 3
, 31, and a punch 1 having a knife-shaped tip that fits therein.
6 and a pair of pressers 17 that press down and fix the side edges.
The width α and depth β of the V-shaped groove 18 of the die 15 are the center part 1 of the core material and the side edge parts 3 generated in the pressing process.
, 3' is converted into the difference Aδ in the amount of distraction corresponding to the pitch P between the long holes 2 of the core material, and this Jδ is set so that it extends between the pitches P. .

従って化成処理済の帯状極板を長孔2のピッチPに応じ
て順次移動させてゆけば、長孔2の中心線がダイス15
の■形溝18上に位置する。
Therefore, if the chemical conversion-treated band-shaped electrode plate is sequentially moved according to the pitch P of the long holes 2, the center line of the long holes 2 will be at the die 15.
It is located on the ■-shaped groove 18 of.

この状態で押え具17を下降させて側縁部3,3/の移
動を防止し、ポンチ16を下降させることによりV形溝
18とポンチ16の先端のナイフ形部との間で側縁部3
,3′がV字状に伸延される。
In this state, the presser 17 is lowered to prevent the side edges 3, 3/ from moving, and the punch 16 is lowered to prevent the side edges from moving between the V-shaped groove 18 and the knife-shaped portion at the tip of the punch 16. 3
, 3' are extended in a V-shape.

これを長孔2間の設けられている部分毎に施すことによ
り、第6図のように浅いV字汁19が間欠的に形成され
る。
By applying this to each portion between the elongated holes 2, a shallow V-shaped liquid 19 is formed intermittently as shown in FIG.

従ってこのV字溝19の長さだけ両側縁部3,31は予
め加圧伸延されており、ついで一対の加圧ロール6間を
通過させて活物質層の多孔度および厚さを調整する場合
に、芯材4の中央部分が芯材の長さ方向に大きく伸延し
ても、両側縁部3,31は予め伸延されているため、伸
延の程度は最終的に中央部分と両側縁部分とで一致し、
伸延率の差に起因した極板の彎曲や波打ち現象は生じな
く、連続して平板状態の極板が得られる。
Therefore, both side edges 3 and 31 are stretched in advance by the length of this V-shaped groove 19, and then passed between a pair of pressure rolls 6 to adjust the porosity and thickness of the active material layer. Even if the central portion of the core material 4 is stretched significantly in the length direction of the core material, since both side edges 3 and 31 have been stretched in advance, the extent of the distraction will ultimately be the same between the central portion and both side edge portions. matches,
There is no bending or waving of the electrode plate due to the difference in elongation ratio, and a continuous flat electrode plate can be obtained.

この加圧工程の後、従来同様カッター11で極板を所定
幅に切断すれば、電池サイズに応じた短冊状の極板12
が得られる。
After this pressurizing step, if the electrode plate is cut to a predetermined width with a cutter 11 as in the conventional case, a strip-shaped electrode plate 12 corresponding to the battery size is produced.
is obtained.

このように、本発明の製造法では加圧工程以前に帯状極
板の芯材の両側縁部分を、加圧工程で生じる芯材中央部
分と両側縁部分との伸延量の差と同量だけ予め伸延させ
るものであるから、極板の彎曲や波打ちが防止でき、帯
状芯材の供給、ペースト状活物質の塗着、化成、切断の
各工程を連続した一連の作業の中で行なうことができ、
作業性よく高品質の陰極板を得ることかできる利点があ
る。
As described above, in the manufacturing method of the present invention, before the pressing step, the both side edge portions of the core material of the strip-shaped electrode plate are stretched by an amount equal to the difference in the amount of elongation between the center portion of the core material and the both side edge portions that occurs during the pressing step. Since it is stretched in advance, it is possible to prevent bending and waving of the electrode plate, and the steps of supplying the strip core material, applying the paste active material, forming, and cutting can be performed in a continuous series of operations. I can do it,
It has the advantage of being easy to work with and producing high quality cathode plates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は帯状カドミウム陰極板を用いたニッケルーカド
ミウム円筒形蓄電池を示す縦断面図、第2図は帯状の芯
材とペースト状陰極活物質の塗着との関係を示す図、第
3図は化成処理後に帯状極板を単に加圧すると生じる極
板の彎曲を示す図、第4図は従来のカドミウム陰極板の
製造工程を示す図、第5図は本発明の実施例における極
板の製造工程を示す図、第6図は伸延装置と帯状極板と
の関係を示す図、第7図は伸延装置を示す拡大図である
。 1・・・・・・多孔性の中央部分、2・・・・・・長孔
、3,3′・・・・・・無孔な側縁部、4・・・・・・
芯材、5・・・・・・ペースト状活物質、10・・−・
・・化成装置、14・・−・・・伸延装置。
Fig. 1 is a longitudinal cross-sectional view showing a nickel-cadmium cylindrical storage battery using a strip-shaped cadmium cathode plate, Fig. 2 is a diagram showing the relationship between the strip-shaped core material and the application of paste-like cathode active material, and Fig. 3 4 is a diagram showing the curvature of the electrode plate that occurs when a strip-shaped electrode plate is simply pressurized after chemical conversion treatment. FIG. 4 is a diagram showing the manufacturing process of a conventional cadmium cathode plate. FIG. FIG. 6 is a diagram showing the manufacturing process, FIG. 6 is a diagram showing the relationship between the distraction device and the strip-shaped electrode plate, and FIG. 7 is an enlarged view showing the distraction device. 1...Porous central part, 2...Long hole, 3,3'...Non-porous side edge part, 4...
Core material, 5...Paste active material, 10...
...Chemical conversion device, 14...Distraction device.

Claims (1)

【特許請求の範囲】 1 中央部分を多孔性とし、両側縁部を無孔とした帯状
の芯材の前記中央部分にペースト状陰極活物質を連続し
て塗着する工程と、この陰極活物質が塗着された芯材を
連続的に化成する工程と、芯材の両側縁部を芯材の長さ
方向に一定量伸延させる伸延工程と、芯材全体を加圧し
活物質塗着部分の多孔度と厚さを一定に調整する加圧工
程とからなることを特徴とするアルカリ蓄電池用極板の
製造法。 2 伸延工程で加えられる芯材両側縁部の伸延量が、加
圧工程で生じる活物質が塗着された中央部分と、両側縁
部との伸び量の差と同等である特許請求の範囲第1項記
載のアルカリ蓄電池用極板の製造法。 3 芯材両側縁部の伸延は、間欠的または連続的に施さ
れる特許請求の範囲第1項または第2項記載のアルカリ
蓄電池用極板の製造法。
[Scope of Claims] 1. A step of continuously applying a paste-like cathode active material to the center portion of a strip-shaped core material whose center portion is porous and whose side edges are non-porous, and this cathode active material. There is a process of continuously chemically converting the core material coated with active material, a stretching process of stretching both edges of the core material by a certain amount in the length direction of the core material, and a process of applying pressure to the entire core material to separate the parts coated with the active material. A method for producing electrode plates for alkaline storage batteries, characterized by comprising a pressurizing process for adjusting porosity and thickness to a constant value. 2. Claim No. 2, wherein the amount of elongation of both side edges of the core material applied in the elongation process is equivalent to the difference in the elongation amount between the center portion to which the active material is applied and the both side edges, which occurs during the pressurizing process. A method for producing an electrode plate for an alkaline storage battery according to item 1. 3. The method for manufacturing an electrode plate for an alkaline storage battery according to claim 1 or 2, wherein the stretching of both side edges of the core material is performed intermittently or continuously.
JP52093589A 1977-08-03 1977-08-03 Manufacturing method of electrode plates for alkaline storage batteries Expired JPS5833666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52093589A JPS5833666B2 (en) 1977-08-03 1977-08-03 Manufacturing method of electrode plates for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52093589A JPS5833666B2 (en) 1977-08-03 1977-08-03 Manufacturing method of electrode plates for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPS5427936A JPS5427936A (en) 1979-03-02
JPS5833666B2 true JPS5833666B2 (en) 1983-07-21

Family

ID=14086470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52093589A Expired JPS5833666B2 (en) 1977-08-03 1977-08-03 Manufacturing method of electrode plates for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JPS5833666B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2421075A2 (en) 2010-08-18 2012-02-22 GS Yuasa International Ltd. Battery electrode sheet and manufacturing method therefor
JP2015057796A (en) * 2010-08-18 2015-03-26 株式会社Gsユアサ Electrode sheet for battery and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686462A (en) * 1979-12-18 1981-07-14 Matsushita Electric Ind Co Ltd Manufacture of cell cadmium plate
JPS5875768A (en) * 1981-10-30 1983-05-07 Matsushita Electric Ind Co Ltd Manufacture of pasted electrode for battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2421075A2 (en) 2010-08-18 2012-02-22 GS Yuasa International Ltd. Battery electrode sheet and manufacturing method therefor
US8637189B2 (en) 2010-08-18 2014-01-28 Gs Yuasa International Ltd. Battery electrode sheet and manufacturing method therefor
JP2015057796A (en) * 2010-08-18 2015-03-26 株式会社Gsユアサ Electrode sheet for battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5427936A (en) 1979-03-02

Similar Documents

Publication Publication Date Title
US4196757A (en) Offset perforated lead-acid battery grid method
JPH05225989A (en) Manufacture of thin type battery
JPH07335208A (en) Coated electrode for battery, and its manufacture
CN113488608B (en) Unit pole piece preparation method, unit pole piece and lithium battery
JPS5833666B2 (en) Manufacturing method of electrode plates for alkaline storage batteries
JP2001357840A (en) Working method and working device of electrode sheet for battery
JPH0393156A (en) Production equipment for lithium negative electrode
JPS59117062A (en) Production method of alkaline cell electrode plate
CA1136211A (en) Orienting and sizing battery grids and articles formed thereby
JPH0462750A (en) Manufacture of positive plate
US5642561A (en) Methods of producing thin profile batteries and battery terminal housing members
JP2005044539A (en) Manufacturing method of secondary battery electrode and roll press device
US3881952A (en) Lead-acid battery plates with expanded lead sheet grids
US4642876A (en) Apparatus useful in the manufacture of electrolytic capacitors
JPS6048865B2 (en) Manufacturing method for electrode plates for alkaline storage batteries
JPH07335209A (en) Coated electrode for battery, and its manufacture
US2963760A (en) Slide fastener and treatment thereof
JP2002124252A (en) Manufacturing method of electrode for storage battery
US6678926B2 (en) Method and apparatus for manufacturing battery plates
JP2006196218A (en) Manufacturing apparatus and method of electrode of secondary battery
US4336704A (en) Apparatus for orienting and sizing battery grids
JP2679055B2 (en) Conductive core for alkaline batteries
CA1142222A (en) Battery grids
US2104797A (en) Electrical condenser and spacing strip therefor
JP2870085B2 (en) Manufacturing method of lithium electrode for lithium battery