JPS6047457A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS6047457A JPS6047457A JP58156692A JP15669283A JPS6047457A JP S6047457 A JPS6047457 A JP S6047457A JP 58156692 A JP58156692 A JP 58156692A JP 15669283 A JP15669283 A JP 15669283A JP S6047457 A JPS6047457 A JP S6047457A
- Authority
- JP
- Japan
- Prior art keywords
- type
- oxide film
- drain
- semiconductor device
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 24
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 230000005669 field effect Effects 0.000 claims description 21
- 238000002955 isolation Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000002513 implantation Methods 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 10
- 150000002500 ions Chemical class 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 238000007493 shaping process Methods 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 10
- 229910052796 boron Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- -1 phosphorus ions Chemical class 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66659—Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7835—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0928—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Element Separation (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔従来技術〕
従来のこの種の半導体装置として、T、Yan+agu
ehi 、S、Morkmoto (IEDM’8l−
255)により示されたドリフトレイヤー付電界効果ト
ランジスタがある。この概念をP型トランジスタについ
そ第1図に示す。すなわち、この第1図において、符号
(1)はソース電極、(2)はゲート電極、(3)はド
リフトレイヤー、(4)はドレイン電極であり、また(
5)はN型シリコン基板、(1)は選択酸化!(SOP
)、(9)社ドリフトレイヤー低濃度P現部、(10)
はゲート酸化膜、(11)はソース高濃度P型Uli、
(12)はドレイン高濃度Pi部である。[Detailed Description of the Invention] [Prior Art] As a conventional semiconductor device of this type, T, Yan+agu
ehi, S, Morkmoto (IEDM'8l-
There is a field effect transistor with a drift layer shown by No. 255). This concept is illustrated in FIG. 1 for a P-type transistor. That is, in this FIG. 1, symbol (1) is a source electrode, (2) is a gate electrode, (3) is a drift layer, (4) is a drain electrode, and (
5) is an N-type silicon substrate, and (1) is selective oxidation! (SOP
), (9) Drift layer low concentration P current part, (10)
is the gate oxide film, (11) is the source high concentration P-type Uli,
(12) is a drain high concentration Pi portion.
そしてこのトランジスタの製造工程としては、まず3Ω
−副板上の高抵抗N型基板(5)に500A程度の酸化
シリコン膜、 1.oooX程度の窒化シリコン膜を順
次に成長させ、ホトレジストマスクを用いてこの窒化シ
リコン膜をエツチングしてから、13 2
さらにこのホトレジストをマスクに、lO/cn1程度
の低濃度のボロン注入を行なってドリフトレイヤー低濃
度P型部(9)を形成する。ついで前記ホトレジストマ
スクを除去したのち、前記窒化シリコン膜をマスクに、
選択酸化を行なって選択酸化膜(SOP ) (7)を
形成する。次に前記窒化シリコン膜を除去した上でゲー
ト酸化膜(10)を形成し、かつこのゲート酸化膜(1
0)上の一部からドリフトレイヤー(3)部の選択酸化
膜(7)上の一部にかけ連続してゲート電極(2)を形
成する。続いて前記ゲート電極(2)上のレジストおよ
び選択酸化膜(7)をマスクに、1015/crn!程
度の密度でボロン注入を行ない、ソース高濃度P屋部(
11)およびドレイン高濃度P型部(12)を形成して
アニールする。その後、さらに前記基板(5)の全面に
ゲート酸化膜(10)としてのCVD酸化シリコン膜を
形成し、かつこれにコンタクト穴をあけてから、電極配
線。The manufacturing process for this transistor begins with a 3Ω
- A silicon oxide film of about 500A on the high resistance N-type substrate (5) on the sub-plate, 1. After sequentially growing a silicon nitride film of about ooo A low concentration P type layer layer (9) is formed. Then, after removing the photoresist mask, using the silicon nitride film as a mask,
Selective oxidation is performed to form a selective oxide film (SOP) (7). Next, after removing the silicon nitride film, a gate oxide film (10) is formed, and this gate oxide film (10) is formed.
0) A gate electrode (2) is formed continuously from a part on the top to a part on the selective oxide film (7) of the drift layer (3). Then, using the resist and selective oxide film (7) on the gate electrode (2) as a mask, 1015/crn! Boron is implanted at a density of about
11) and a drain high concentration P type part (12) are formed and annealed. After that, a CVD silicon oxide film as a gate oxide film (10) is further formed on the entire surface of the substrate (5), and a contact hole is formed in this, and then electrode wiring is formed.
ソース電極(1)およびドレイン電極(4)を形成する
のである。A source electrode (1) and a drain electrode (4) are formed.
こ\でこのトランジスタの構成においては、ドレイン電
極(4)に高電圧を印加すると、空乏層がゲート酸化#
(10)直下のチャネル部の端からドリフトレイヤー低
濃度P型部内に拡がって行き、このようにしてこの空乏
層によシソ−スミ極(1)とドレイン電極(4)間の電
位差の耐圧がはソ決定される。In this transistor configuration, when a high voltage is applied to the drain electrode (4), the depletion layer becomes gate oxidized.
(10) It spreads into the low concentration P-type part of the drift layer from the end of the channel part immediately below, and in this way, this depletion layer increases the withstand voltage of the potential difference between the bottom electrode (1) and the drain electrode (4). is decided.
またドリフトレイヤー(3)部の選択酸化膜(7)はゲ
ート電極(2)とドレイン電極(4)との耐圧を向上さ
せると共に、前記空乏層に印加される電界を均一化する
働きをしている。そしてこのトランジスタでの動作は、
ゲート電極(2)がしきい値電圧を越えると、ゲート酸
化膜(10)直下のチャネルがON状態となってホール
が流れ始め、これが前記箪乏層内を経てドレイン高濃度
P壓部(12)に達することによってなされるのである
。In addition, the selective oxide film (7) in the drift layer (3) part functions to improve the breakdown voltage between the gate electrode (2) and the drain electrode (4) and to equalize the electric field applied to the depletion layer. There is. And the operation of this transistor is
When the gate electrode (2) exceeds the threshold voltage, the channel directly under the gate oxide film (10) is turned on and holes begin to flow, passing through the depletion layer to the drain high concentration P portion (12). ).
しかしながら、このような従来例によるドリフトレイヤ
ー付電界効果トランジスタにおいては、前記したように
、ソース電極とドレイン電極との耐圧が空乏層の耐圧に
よってはヌ決定されるために、もし何らかの原因により
ドレイン電極にサージ電圧が加えられて、これが空乏層
の耐圧を越えるような場合には、ゲート酸化膜が容易に
破壊されてしまうという不都合があって好ましくないも
のであった。However, in such a conventional field effect transistor with a drift layer, as mentioned above, the breakdown voltage between the source electrode and the drain electrode is determined by the breakdown voltage of the depletion layer, so if for some reason the drain electrode If a surge voltage is applied to the depletion layer and the voltage exceeds the withstand voltage of the depletion layer, the gate oxide film is easily destroyed, which is undesirable.
この発明は従来のこのような欠点に鑑み、半導体基板に
組み込まれる高耐圧電界効果トランジスタの部分のみに
、基板とは反対導電形の拡散領域(以下タブ(tab)
と略称する)を設け、このタブとドレイン電極との而」
圧を、ソース電極とドレイン電極との耐圧よシも低くし
て、ゲート酸化膜を保腹するようにしたものである。In view of these conventional drawbacks, the present invention provides a diffusion region (hereinafter referred to as TAB) of a conductivity type opposite to that of the substrate only in the portion of a high voltage field effect transistor incorporated in a semiconductor substrate.
) is provided, and the relationship between this tab and the drain electrode is
The voltage is lower than the withstand voltage of the source electrode and the drain electrode to maintain the gate oxide film.
以下、この発明に係る半導体装置の実施例につき、第2
図ないし第5図を参照して詳細に説明する0
第2図はこの発明の一実施例を適用した半導体装置、こ
\ではドリフトレイヤー付電界効果トランジスタの概要
構成を示している。この第2図実施例装置において前記
第1図従来例装置と同一符号は同一または相当部分を示
しておシ、また符号(6)は前記N型シリコン基板(5
) J: !Qも高濃度のN型タブである。Hereinafter, the second embodiment of the semiconductor device according to the present invention will be described.
This will be described in detail with reference to the drawings to FIG. 5. FIG. 2 shows a schematic configuration of a semiconductor device to which an embodiment of the present invention is applied, in this case a field effect transistor with a drift layer. In the device of the embodiment shown in FIG. 2, the same reference numerals as in the conventional device shown in FIG.
) J: ! Q is also a highly concentrated N-type tab.
そしてこの第2図実施例でのトランジスタの製造工程と
しては、まず3Ω・譚以上の高抵抗P型基板(5)上に
500A程度の酸化シリコン膜を成長させ、その高耐圧
トランジスタ該当部分に対し、ホトレジストマスクを用
いて10 cm 程度の密度のリンを選択的にイオン注
入させ、かつ熱拡散して前記基板(5)よりも高濃度の
N型のタブ(6)を形成するもので、以後は前記第1図
従来例と同様の工程により、このタブ(6)上に高耐圧
電界効果トランジスタを構成させるが、このときそのソ
ース電極(1)とドレイン電極(4)との間の耐圧より
も、タブ(6)とドレイン高濃度P型部(12)との接
合逆耐圧の方が低くなるように、このタブ(6)の不純
物製置を決定しておく。In the manufacturing process of the transistor in the embodiment shown in FIG. 2, first, a silicon oxide film of about 500A is grown on a high-resistance P-type substrate (5) of 3Ω·tan or more, and the corresponding part of the high-voltage transistor is , using a photoresist mask to selectively ion-implant phosphorus at a density of about 10 cm and thermally diffusing it to form an N-type tub (6) with a higher concentration than the substrate (5). A high breakdown voltage field effect transistor is formed on this tab (6) by the same process as the conventional example shown in FIG. Also, the impurity placement of this tab (6) is determined so that the junction reverse breakdown voltage between the tab (6) and the drain high concentration P type portion (12) is lower.
従ってこの第2図実施例での高耐圧電界効果トランリス
タにおいては、何らかの理由によりドレイン電極(4)
にサージ電圧が印加されたとすると、サージの立上りの
速い部分に対しては、静電容量分圧が支配的であるため
に、従来例でのように基板(5)K直接々しているドレ
イン高濃度P型部(12)の接合容量よりも、この実施
例でのタブ(6)に接している接合容量の方が大きく、
実際にドレインに印加される電圧はこの実施例での方が
低くなる。Therefore, for some reason, the drain electrode (4) is
When a surge voltage is applied to the part where the surge rises quickly, the capacitance partial voltage is dominant, so the drain which is directly connected to the substrate (5) K as in the conventional example is The junction capacitance in contact with the tab (6) in this example is larger than the junction capacitance of the high concentration P-type part (12).
The voltage actually applied to the drain is lower in this embodiment.
またこれよりも遅い立上りの負のサージに対しては、こ
の実施例の場合、ソース電極(1)とドレイン電極(4
)との間の耐圧よりも、タブ(6)とドレイ/電極(4
)との耐圧の方が低いために、ドリフトレイヤー(3)
内とゲー)[化膜(10)下とのチャネル部分区発生す
る空乏層が耐圧を越えてゲート酸化膜(10)を破壊す
る以前に、ドレイン電極(4)に印加される電荷がタブ
(6)に流れて、このゲート酸化膜(10)を保護し得
る。そして、さらに正のサージが印加されたときにも、
タブ(6)のシート抵抗の方が基板(5)のそれよりも
低いため(、より良い保護を行なうことができるのであ
る。In addition, in the case of this embodiment, for a negative surge that rises slower than this, the source electrode (1) and the drain electrode (4
) than the withstand voltage between the tab (6) and the drain/electrode (4).
), the drift layer (3)
Before the depletion layer generated in the channel area under the gate oxide film (10) exceeds the withstand voltage and destroys the gate oxide film (10), the charge applied to the drain electrode (4) reaches the gate oxide film (10). 6) to protect this gate oxide film (10). And even when a positive surge is applied,
Since the sheet resistance of the tab (6) is lower than that of the substrate (5), it provides better protection.
なお、前記第2図実施例では、N型のシリコン基板を用
いたが、P型のシリコン基板を用い、これに選択的にP
型のタブを設けて、NmO高iJ圧電界効果トランジス
タを含む半導体装置を構成させても同様の効果を奏し得
ることは勿論である。In the embodiment shown in FIG. 2, an N-type silicon substrate was used, but a P-type silicon substrate was used, and P was selectively applied to it.
Of course, the same effect can be achieved even if a semiconductor device including an NmO high iJ piezoelectric field effect transistor is constructed by providing a mold tab.
続いてこの発明を0MO8(相補を電界効果トランジス
タ) 4?’J成の半導体装置に適用した場合について
、その一実施例による製造工程を第3図(、)ないしく
e)に示す。この実施例においては、特にこの発明を適
用するC’MO8措成の半導体装置の製造工程数が、通
常の、すなわち高耐圧トランジスタを含まないCMO8
構成の半導体装置の製造工程数と同一であって、その工
程を細管変更せずに実施可能であることをあられしてい
る。Next, this invention is 0MO8 (complementary is field effect transistor) 4? A manufacturing process according to an embodiment of the present invention is shown in FIGS. In this embodiment, in particular, the number of manufacturing steps for a C'MO8 semiconductor device to which the present invention is applied is different from that of a conventional C'MO8 semiconductor device that does not include a high-voltage transistor.
The number of manufacturing steps is the same as that of the semiconductor device having the same configuration, and the steps can be performed without changing the thin tube.
この第3図実施例においても前記第2図実施例と同一符
号は同一または相当部分を示している。In this embodiment of FIG. 3 as well, the same reference numerals as in the embodiment of FIG. 2 indicate the same or corresponding parts.
この実施例では、まず3Ω・m以上の高抵抗N渦基板(
5)上に500A程度の酸化シリコン膜を成長させ、そ
の高耐圧トランジスタ該当部分に対し、ホトレジストマ
スクを用いて10 ’Kpm2程度の密度のリンを選択
的にイオン注入させ、かつこのレジストを一旦除去して
から、高耐圧トランジスタ部以外の低圧トランジスタ該
当部分に対し、新たなホトレジストマスクを用いて10
’)’cm’程度の密度のボロンを同様1c選択的に
イオン注入させ、さらにこのレジストをも除去したのち
に熱拡散して、基板(5)よシも高濃度のN型のタブ(
6)およびP型のタブ(15)を形成し、また残りの酸
化シリコン膜を除去する(第3図(a))0ついで前記
基板(5)上に500A程度の酸化シリコン1(16)
、さらに窒化シリコン膜(17)を順次に形成してから
、ホトレジストマスク(18)を用いて素子分離用およ
びドリフトレイヤー用の選択酸化膜(SOP)(7)形
成領域部分に該当する窒化シリコン膜(17)を選択的
に除去する(第3図(b))。次に素子分離用のホトレ
ジストマスク(19)を用いて、N壓高耐圧電界効果ト
ランジスタおよび低圧トランジスタ形成部としての、素
子分離用低濃度P型部(8)およびドリフトレイヤー低
濃度Pff1部(9)に対しそれぞれ同時にボロン注入
(20)を行なう(第3図(c) )o続いて前記各ホ
トレジストマスクCl8) 。In this example, first, a high resistance N vortex substrate of 3Ω・m or more (
5) Grow a silicon oxide film of about 500A on top, selectively implant phosphorus ions at a density of about 10'Kpm2 into the corresponding part of the high voltage transistor using a photoresist mask, and remove this resist once. After that, apply a new photoresist mask to the corresponding part of the low-voltage transistor other than the high-voltage transistor part for 10 minutes.
In the same way, boron with a density of about 1cm is selectively implanted into 1C, and after this resist is also removed, it is thermally diffused to form a highly concentrated N-type tab (
6) and a P-type tab (15) are formed, and the remaining silicon oxide film is removed (FIG. 3(a)).Next, a silicon oxide film 1 (16) of about 500A is formed on the substrate (5).
Then, silicon nitride films (17) are sequentially formed, and then a photoresist mask (18) is used to remove the silicon nitride film corresponding to the formation region of the selective oxide film (SOP) (7) for element isolation and drift layer. (17) is selectively removed (FIG. 3(b)). Next, using a photoresist mask (19) for element isolation, a low concentration P-type part (8) for element isolation and a low concentration Pff1 part (9 ) are simultaneously implanted with boron (20) (FIG. 3(c)), followed by each of the photoresist masks Cl8).
(19)を除去したのち、酸素またはH2Oを熱拡散し
て窒化シリコン1漢(1T)のない領域に選択酸化膜(
SOP ) (7)を形成するが、このとき同時に素子
分離用の(SOP)とトリットレイヤーの(SOP)も
形成される(第3図(d))。さらに窒化シリコン膜(
17)を除去し、かつチャネル注入を行なったのちに、
酸化シリコン膜(16)を除去してゲート酸化膜(10
)を形成し、以後、NN)ランリスタのソース、ドレイ
ンのイオン注入工程を除いて前記従来例と同一の工程に
エフ、N型の低圧電界効果トランジスタ(14)と共に
、P型の高耐圧電界効果トランジスタを含んだ半導体装
置を構成するのである(第3図(e))。After removing (19), oxygen or H2O is thermally diffused to form a selective oxide film (1T) in the area where silicon nitride is not present.
SOP (7) is formed, and at the same time, an element isolation (SOP) and a trit layer (SOP) are also formed (FIG. 3(d)). In addition, silicon nitride film (
After removing 17) and performing channel implantation,
The silicon oxide film (16) is removed and the gate oxide film (10) is removed.
), and hereafter, in the same process as the conventional example except for the ion implantation process of the source and drain of the NN) runlister, a P-type high-voltage field effect transistor (14) is formed together with F and N-type low-voltage field effect transistors (14). This constitutes a semiconductor device including a transistor (FIG. 3(e)).
すなわち、この工9にしてこの第3図実施例では、素子
分離用の低濃度P型部(8)および選択酸化膜(SOP
) (7)と、ドリフトレイヤーの低濃度P型部(9
)および選択酸化M (SOP ) ff)とは、これ
をそれぞれに同一工程をてより形成するために、工程数
を何部増加させずに高集積、高性能の高耐圧P型トラン
ジスタを含むCMO8描成の半導体装置を、通常のこれ
を含まないCMO8′M成の半導体装置と同一工程で製
造することができるのである。That is, in this step 9 and the embodiment shown in FIG.
) (7) and the low concentration P-type part of the drift layer (9
) and selective oxidation M (SOP ) ff) are CMO8s containing highly integrated, high-performance, high-voltage P-type transistors, which are formed using the same process without increasing the number of processes. The semiconductor device depicted can be manufactured in the same process as a normal CMO 8'M semiconductor device which does not include this.
また、ここで、このように素子分離用の低濃度P型部(
8)とドリフトレイヤーの低濃度P型部(9)とを同一
工程で同時に形成できる理由の一つは、ドリフトレイヤ
ーの低濃度P型部(9)の不純物濃度が、素子分離用の
低濃度P型部(8)の不純物濃度にはソ等しいときに最
適の性能を発揮できるからである。In addition, here, as shown in FIG.
8) and the low-concentration P-type part (9) of the drift layer can be formed simultaneously in the same process. This is because optimal performance can be achieved when the impurity concentration of the P-type portion (8) is equal to .
その実験データとして、ドリフトレイヤーの低濃度P型
部(9)形成のためのボロン注入量を変えたときのトラ
ンジスタ特性曲想の変化を第4図(、)ないしくc)に
示しである。そしてこのときの条件としては前記第3図
(、)中に示されているト1リフト長(21)が4μm
、ゲート長(22)が同様に4μm、ゲート巾が100
/1m、ゲート酸化膜(10)厚が600^で、ボロン
注入量は、第4図(、)が3.5X1013/1m”
、同図(b)が5. OX 1013/ cm2.同図
(c)が8、OX 10 ”/ cm”である。As experimental data, changes in transistor characteristics when the amount of boron implanted to form the low concentration P-type part (9) of the drift layer is varied are shown in FIGS. The conditions at this time are that the lift length (21) shown in FIG. 3 (, ) is 4 μm.
, the gate length (22) is also 4 μm, and the gate width is 100
/1m, the thickness of the gate oxide film (10) is 600^, and the amount of boron implanted is 3.5X1013/1m in Figure 4 (,).
, the figure (b) is 5. OX 1013/cm2. The figure (c) is 8, OX 10 "/cm".
第4[凶(c)では、ドレイン電極(4)とソース電極
(1)との電位差が40Vを越えるとバイポーラ動作が
始まって急に電流が増加しており、またこの電位差が4
0V以下でもドレイン電流が増加する傾向にある。この
傾向は空乏層がドリフトレイヤーの低濃度P型部(9)
よりもチャネル領域の方に多く伸びて実効ゲート長が短
かくなっており、従ってこのときには高耐圧化のだめの
ドリフトレイヤーの意味があまりないことを示している
。また第4図(b)のときは、ドレイン電極(4)とソ
ース電極(1)との電位差が70V以下、20V以上の
間で増)AJすると、そのドレイン電流が少し増加する
傾向にある。In the fourth case (c), when the potential difference between the drain electrode (4) and the source electrode (1) exceeds 40V, bipolar operation begins and the current suddenly increases;
The drain current tends to increase even below 0V. This tendency is observed in the low concentration P-type region where the depletion layer is a drift layer (9).
It extends more toward the channel region than the actual gate length, and the effective gate length becomes shorter. Therefore, in this case, it is shown that there is little point in using a drift layer to increase the breakdown voltage. Further, in the case of FIG. 4(b), when the potential difference between the drain electrode (4) and the source electrode (1) increases between 70 V or less and 20 V or more, the drain current tends to increase slightly.
すなわち、チャネル領域に空乏層が拡がっていることを
示している。さらに第4図(、)において社、空乏層が
殆んどドリフトレイヤーXの方に伸びていることを示し
ている。In other words, this shows that the depletion layer is expanding in the channel region. Furthermore, FIG. 4(,) shows that the depletion layer almost extends toward the drift layer X.
そしてまた第4図(、)と(b)とにおいては、そのリ
ニア領域の電流値も飽和領域の電流値も相互にt″!譬
等しく、その特性も最適化されていることから、従って
ドリフトレイヤーの低濃度P型部(9)の形成のための
最適なボロン注入量としては、お\よそ3.5〜5.
OX 10” / cm 2を挙げることができ、この
範囲内であれば問題がないと言える。また一方、素子分
離用の低濃度P型部(8)の不純物濃度は、選択酸化膜
(SOP ) (7)上に必然的にされるフイ崎ドトラ
ンジスタのしきい値と、N現高濃度部、素子分離用の低
濃度Pi部(8)間との耐圧によって決まル、通常は共
に20V前後に設定される。そしてそのときにこの素子
分離用の低濃度P型部(8)を形成するためのボロン注
入量は3.5 X 10 ”7cm”前後である。よっ
てドリフトレイヤーの低6・音度P型部(9)を形成す
るだめのボロン注入量と、素子分^1ト用の低濃度P型
部(8)を形成するためのボロン注入量とを同−景、す
なわち3.5 X 10 ”/ cm2に設定できるの
である。Furthermore, in Fig. 4(,) and (b), the current value in the linear region and the current value in the saturation region are equal to each other, t''!, and their characteristics are also optimized, so there is no drift. The optimum boron implantation amount for forming the low concentration P-type part (9) of the layer is approximately 3.5-5.
OX 10"/cm2, and it can be said that there is no problem within this range. On the other hand, the impurity concentration of the low concentration P type part (8) for element isolation is a selective oxide film (SOP). (7) Determined by the withstand voltage between the threshold value of the Fisaki field transistor inevitably created above and the high concentration N current region and the low concentration Pi region for element isolation (8), both of which are usually around 20V. At that time, the amount of boron implanted to form the low concentration P-type part (8) for element isolation is approximately 3.5 x 10 "7 cm". The amount of boron implanted to form the acoustic P-type part (9) and the amount of boron implanted to form the low concentration P-type part (8) for the element part are shown in the same view, that is, 3. It can be set to 5 x 10”/cm2.
さらにまた前記各実施例での高耐圧電界効果トランジス
タにおいては、ゲート電極(乃およびドリフトレイヤー
(3)によシ、ドレイン高濃度Pi部(12)を取り囲
むように、すなわち環状に形成するのが一般的であるが
、ゲート電極(2)を直線状に形成することもできる。Furthermore, in the high-voltage field effect transistors of the above embodiments, the gate electrode (and the drift layer (3)) is preferably formed so as to surround the drain high concentration Pi portion (12), that is, in an annular shape. Although it is common, the gate electrode (2) can also be formed in a linear shape.
しかしこの場合、その製造工程でのマスク合わせ精度の
関係から次のような制約を生ずる。However, in this case, the following restrictions arise due to the mask alignment accuracy in the manufacturing process.
このための状況を第5図実施例に示す。この第5図実施
例においても前記第2図および第3図実施例と同一符号
は同一または相当部分を示しており2、また符号(23
)は前記電界効果トランジスタの電流の流れる方向に垂
直な方向のドレインの長さくドレイン巾)、(24)は
同上方向のソースの長さくノース巾)、(25)は同上
方向のドリフトレイヤーの長さくドリフトレイヤー巾)
、(26)はマスクずれした素子分離用のホトレジスト
マスク、(27)はマスクずれによるゲート長である。A situation for this purpose is shown in an embodiment in FIG. In the embodiment shown in FIG. 5 as well, the same reference numerals as in the embodiments shown in FIGS.
) is the length and drain width of the drain in the direction perpendicular to the current flow direction of the field effect transistor), (24) is the length and north width of the source in the same upward direction, and (25) is the length of the drift layer in the same upward direction. Drift layer width)
, (26) is a photoresist mask for element isolation with mask displacement, and (27) is the gate length due to mask displacement.
この第5図実施例において、今、仮にドリフトレイヤー
11(25)がソース巾(24)と一致して設計されて
いる場合には、常に発生するマスクずれに伴ない、この
マスクずれした素子分熱用のホトレジストマスク(2G
)のために、ドリフトレイヤー(3)の端部がソース領
域の端部からはみ出して、このマスクずれによるゲート
長(27)が所期のゲート長よりも短かくなり、ゲート
長の制御ができなくなる虞れがある。そこでこの実施例
ではソース巾(24)よりもドリフトレイヤー中(25
)を短かく設定してこれを改善している。また別にドレ
イン高濃度P型部(12)の端部での耐圧が低下するか
ら、同P型部(12)の周辺に低濃度のP型部を形成し
なければならない。従ってこ\でもこの実施例では素子
分離用のホトレジストマスク(19)をドレイン高濃度
P型部(12)の外側に設け、ソース巾(24)よりも
ドレイン中(23)を短かく設定してこれを改善してい
る。すなわち、このようにしてゲート電極(2)を直線
状に形成し得るのである。In this embodiment of FIG. 5, if the drift layer 11 (25) is designed to match the source width (24), the mask misaligned elements will be Heat photoresist mask (2G
), the end of the drift layer (3) protrudes from the end of the source region, and the gate length (27) due to this mask shift becomes shorter than the intended gate length, making it impossible to control the gate length. There is a risk that it will disappear. Therefore, in this embodiment, the width of the drift layer (25) is larger than the width of the source (24).
) is set shorter to improve this. Additionally, since the withstand voltage at the end of the drain highly doped P-type portion (12) decreases, a lightly doped P-type portion must be formed around the P-type portion (12). Therefore, in this embodiment, a photoresist mask (19) for element isolation is provided outside the drain heavily doped P-type region (12), and the drain center (23) is set shorter than the source width (24). We are improving this. That is, the gate electrode (2) can be formed in a straight line in this way.
以上詳述したように、この発明によるときは、半導体基
板上に選択的に形成された基板よりも高り度のタブ内に
高耐圧電界効果トランジスタを形成させるようにしたの
で耐サージ性を格段に向上でき、また従来での0MO8
構成の半導体装置に対してもその製造工程を何部変更も
しくは増加させずに適用することが可能であり、さらに
この高耐圧電界効果トランジスタのゲート電極を直線状
にも形成できてその小型化に有利であるなどの特長を有
するものである。As detailed above, according to the present invention, the high withstand voltage field effect transistor is formed in the tab which is selectively formed on the semiconductor substrate and is higher than the substrate, so the surge resistance is significantly improved. It can be improved to 0 MO8 compared to conventional
It can be applied to semiconductor devices with the same structure without changing or increasing any part of the manufacturing process, and the gate electrode of this high-voltage field effect transistor can also be formed in a straight line, which contributes to miniaturization. It has advantages such as advantages.
第1図は従来例による高耐圧電界効果トランジスタを含
む半導体装置の概要構成を示す断面図、第2図はこの発
明の一実施例による同上半導体装置の概要構成を示す断
面図、第3図(、)ないしく、)はこの発明の一実施例
を0MO8構成の半導体装置に適用する場合の製造工程
を順次に示すそれぞれ断面図、第4図(、)ないしくc
)は同上高耐圧電界効果トランジスタのドリフトレイヤ
ー低濃度P型部の不純物濃度を変更した場合のそれぞれ
特性図、第5図れ他の実施例による同上半導体装置の概
要構成を示す断面図である。
(1)・・・・ソース電極、(2)・・・・ゲート電極
、(3)・・・・ドリフトレイヤー、(4)・・・・ド
レイン電極、(5)・・・・N型シリコン基板、(6)
・・・・N型タブ、(T)・・・・選択酸化膜(sop
)、(8)・・・・素子分離用低濃度P型部、(9)・
・・・ドリフトレイヤー低濃度Pi部、(io)・・Φ
拳ゲート酸化膜、(11)・・・・ソース高濃度P型部
、(12)・・・・ドレイン高濃度P型部、(13)・
・・・チャネルカット用高濃度N型部、(14?・・・
・N型電界効果トランジスタ、(15)・・−・P型タ
ブ、(16)・・・・酸化シリコン膜、(17)・・・
・窒化シリコンL (1B)・曝・・ホトレジストマス
ク、(19)・・・・素子分離用ホトレジストマスク。
代理人大岩増雄
23
第1図
第2図
第4図
VDS
VDS
VDS
第5図
手続補正書(自発)
3、補正をする者
5、補正の対象
明細書の発明の詳細な説明の欄
6、補正の内容
(1)明細書第3頁第18行〜第19行の「ゲー督・酸
化膜(10)Jを「スムースコート膜」と補正する。
(2) 同書第5頁第10行の「基板とは反対導電形」
を「基板と同一導電形」と補正する。
(3)同書第6頁第7行の「P型」を1N型」と補正す
る。
(4)同書第6頁第10行のr 10 ”cm2Jを[
10′2/ cm ” Jと補正する。
(5)同書第8頁第19行の「その高耐圧」を「そのP
型高耐圧」と補正する。
(6)同書第9頁第2行の「高耐圧」をrP型高市・l
圧」と補正する。
(7)同書第9頁第3行の「低圧」を1N型」と補正す
る。
(8)同書第9頁第16行〜第17行の「N型高剛圧電
界効果トランジスタおよび低圧」を「N型」と補正する
。
以 」二FIG. 1 is a cross-sectional view showing the general structure of a semiconductor device including a conventional high voltage field effect transistor, FIG. 2 is a cross-sectional view showing the general structure of the same semiconductor device according to an embodiment of the present invention, and FIG. , ) or ) are sectional views sequentially showing the manufacturing process when an embodiment of the present invention is applied to a semiconductor device with 0MO8 configuration, and FIGS.
) is a characteristic diagram when the impurity concentration of the low concentration P-type part of the drift layer of the high voltage field effect transistor is changed, and FIG. 5 is a cross-sectional view showing the general structure of the semiconductor device according to another embodiment. (1)...Source electrode, (2)...Gate electrode, (3)...Drift layer, (4)...Drain electrode, (5)...N-type silicon Substrate, (6)
...N-type tab, (T) ... selective oxide film (sop
), (8)...Low concentration P type part for element isolation, (9)...
...Drift layer low concentration Pi part, (io)...Φ
Fist gate oxide film, (11)...Source high concentration P type part, (12)...Drain high concentration P type part, (13)...
...High concentration N-type part for channel cut, (14?...
・N-type field effect transistor, (15)...P-type tub, (16)...silicon oxide film, (17)...
- Silicon nitride L (1B) - Exposure... Photoresist mask, (19)... Photoresist mask for element isolation. Agent Masuo Oiwa 23 Figure 1 Figure 2 Figure 4 VDS VDS VDS Figure 5 Procedural amendment (voluntary) 3. Person making the amendment 5. Detailed description of the invention in the specification to be amended 6. Amendment Contents (1) Correct "Gate film/oxide film (10) J" on page 3, lines 18 to 19 of the specification to be "smooth coat film." (2) "Opposite conductivity type to the substrate" on page 5, line 10 of the same book
is corrected to "same conductivity type as the substrate". (3) "P type" on page 6, line 7 of the same book is corrected to "1N type". (4) r 10 ”cm2J on page 6, line 10 of the same book [
10′2/cm” J. (5) In the same book, page 8, line 19, “the high withstand voltage” is changed to “the P
Corrected as "high pressure resistance". (6) "High withstand voltage" on page 9, line 2 of the same book is rP type Takaichi/l
Correct it as "pressure". (7) "Low pressure" on page 9, line 3 of the same book is corrected to "1N type". (8) "N-type high-rigidity voltage field effect transistor and low voltage" on page 9, lines 16 to 17 of the same book is corrected to "N-type". ”2
Claims (3)
濃度の第1導電形および第2導電形の拡散領域をそれぞ
れ選択的に形成し、仁の第1導電形拡散領域上には、第
2導電形のソースおよびドレインを形成すると共に、ド
レインとゲート部との間に選択酸化膜を形成し、かつこ
の選択酸化膜下に第2導電形の不純物注入による領域を
形成して高耐圧電界効果トランジスタとし、また第2導
電形拡散領域上には、低圧電界効果トランジスタを形成
したことを特徴とする半導体装置。(1) On the semiconductor substrate of the first conductivity type, diffusion regions of the first conductivity type and the second conductivity type, which are also highly concentrated in this substrate, are selectively formed. In this method, a source and a drain of the second conductivity type are formed, a selective oxide film is formed between the drain and the gate part, and a region is formed by implanting impurities of the second conductivity type under the selective oxide film. 1. A semiconductor device comprising a high voltage field effect transistor and a low voltage field effect transistor formed on a second conductivity type diffusion region.
散領域以外の基板上の選択酸化膜下に形成される素子分
離のための不純物注入領域と同一に形成したことを特徴
とする特許請求の範囲第1項記載の半導体装置。(2) The impurity implantation region under the selective oxide film is formed in the same manner as the impurity implantation region for element isolation formed under the selective oxide film on the substrate other than the first conductivity type diffusion region. A semiconductor device according to claim 1.
−ドレイン巾よシも大きくしたことを特徴とする特許請
求の範囲第1項記載の半導体装置。 この発明は半導体装置、特に高耐圧電界効果トランジス
タを含む半導体装置VC関するものである。(3) Source rflt of high voltage field effect transistor
- The semiconductor device according to claim 1, characterized in that the drain width is also increased. The present invention relates to a semiconductor device, particularly a semiconductor device VC including a high voltage field effect transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58156692A JPS6047457A (en) | 1983-08-26 | 1983-08-26 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58156692A JPS6047457A (en) | 1983-08-26 | 1983-08-26 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6047457A true JPS6047457A (en) | 1985-03-14 |
Family
ID=15633245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58156692A Pending JPS6047457A (en) | 1983-08-26 | 1983-08-26 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6047457A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52131483A (en) * | 1976-04-28 | 1977-11-04 | Hitachi Ltd | Mis-type semiconductor device |
JPS5320876A (en) * | 1976-08-11 | 1978-02-25 | Seiko Instr & Electronics Ltd | Semiconductor device and its production |
JPS5323577A (en) * | 1976-08-18 | 1978-03-04 | Hitachi Ltd | Complementary type insulated gate effect transistor |
JPS54105987A (en) * | 1978-02-07 | 1979-08-20 | Seiko Epson Corp | Manufacture of semiconductor device |
JPS5646556A (en) * | 1979-09-21 | 1981-04-27 | Nec Corp | Field effect transistor |
JPS57162363A (en) * | 1981-03-13 | 1982-10-06 | Western Electric Co | Semiconductor device and method of producing same |
-
1983
- 1983-08-26 JP JP58156692A patent/JPS6047457A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52131483A (en) * | 1976-04-28 | 1977-11-04 | Hitachi Ltd | Mis-type semiconductor device |
JPS5320876A (en) * | 1976-08-11 | 1978-02-25 | Seiko Instr & Electronics Ltd | Semiconductor device and its production |
JPS5323577A (en) * | 1976-08-18 | 1978-03-04 | Hitachi Ltd | Complementary type insulated gate effect transistor |
JPS54105987A (en) * | 1978-02-07 | 1979-08-20 | Seiko Epson Corp | Manufacture of semiconductor device |
JPS5646556A (en) * | 1979-09-21 | 1981-04-27 | Nec Corp | Field effect transistor |
JPS57162363A (en) * | 1981-03-13 | 1982-10-06 | Western Electric Co | Semiconductor device and method of producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11502675A (en) | Method of manufacturing composite substrate made of semiconductor on insulator | |
JPS63304657A (en) | Manufacture of semiconductor device | |
JPS6225452A (en) | Manufacture of cmos transistor | |
JPS59121976A (en) | Semiconductor device | |
US4547959A (en) | Uses for buried contacts in integrated circuits | |
JP2510599B2 (en) | Field effect transistor | |
US7238563B2 (en) | Semiconductor device having isolation region and method of manufacturing the same | |
JPS6047456A (en) | Semiconductor device | |
JPS6047457A (en) | Semiconductor device | |
JPS60175458A (en) | Semiconductor device and manufacture thereof | |
JPS6025028B2 (en) | Manufacturing method of semiconductor device | |
JPS6038856A (en) | Manufacture of semiconductor device | |
JPH06177376A (en) | Manufacture of mos field-effect semiconductor device | |
US6110767A (en) | Reversed MOS | |
JPS63131565A (en) | Semiconductor device | |
JP2554993B2 (en) | Semiconductor device | |
JPS62211955A (en) | Manufacture of semiconductor device | |
JPS61251063A (en) | Complementary insulated gate field effect transistor integrated circuit | |
JPH0584068B2 (en) | ||
JPH0410564A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPH08111511A (en) | Fabrication of semiconductor device | |
JPH02105576A (en) | Field effect transistor | |
JPH0456280A (en) | Semiconductor device and manufacture thereof | |
JPH0319709B2 (en) | ||
JPS63308385A (en) | Manufacture of buried-gate field-effect transistor |