JPS6047049B2 - Machining fluid injection device for electrical discharge machining equipment - Google Patents

Machining fluid injection device for electrical discharge machining equipment

Info

Publication number
JPS6047049B2
JPS6047049B2 JP4479379A JP4479379A JPS6047049B2 JP S6047049 B2 JPS6047049 B2 JP S6047049B2 JP 4479379 A JP4479379 A JP 4479379A JP 4479379 A JP4479379 A JP 4479379A JP S6047049 B2 JPS6047049 B2 JP S6047049B2
Authority
JP
Japan
Prior art keywords
machining
injection
electrode
machining fluid
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4479379A
Other languages
Japanese (ja)
Other versions
JPS55137846A (en
Inventor
茂男 山田
敏郎 大泉
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4479379A priority Critical patent/JPS6047049B2/en
Publication of JPS55137846A publication Critical patent/JPS55137846A/en
Publication of JPS6047049B2 publication Critical patent/JPS6047049B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/10Supply or regeneration of working media

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は、放電加工装置に係り、特にその加工電極と
被加工物との間の加工間隙に加工液を供給するたの加工
液噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining apparatus, and more particularly to a machining fluid injection device for supplying machining fluid to a machining gap between a machining electrode and a workpiece.

放電加工において加工電極と被加工物との間の微小な
加工間隙にパルス電流を通電して正常な加工を行なうた
めには、加工により発生する加工屑あるいはガス等を加
工間隙から外部に排出する必要があり、このため常に清
浄な加工液を上記加工間隙に供給するようにしている。
In electrical discharge machining, in order to apply a pulse current to the minute machining gap between the machining electrode and the workpiece to perform normal machining, it is necessary to expel machining debris or gas generated during machining from the machining gap to the outside. Therefore, clean machining fluid is always supplied to the machining gap.

この加工液の供給は、従来加工電極に加工液を供給する
ための穴を設けて行なわれて来たが、加工条件によつて
は、総形加工等、加工電極に上記加工液供給穴を設ける
ことが好ましくない場合、あるいは設けることができな
い場合が多々あり、この様な時には加工間隙に向けて、
加工電極の外側から噴射ノズル等により加工液を供給し
ている。しカルこの場合上記墳射ノズルの最良な方向を
決定することは極めて難しく、正常な加工状態て加工を
続けることは困難であつた。 この様な欠点を改良する
ものとして、従来例えば第1図〜第3図に示す装置が提
案されている。
This machining fluid supply has conventionally been carried out by providing a hole in the machining electrode for supplying the machining fluid, but depending on the machining conditions, such as in general machining, the machining fluid supply hole may be provided in the machining electrode. There are many cases where it is undesirable or impossible to provide, and in such cases, it is necessary to
Machining liquid is supplied from the outside of the machining electrode using a spray nozzle or the like. In this case, it was extremely difficult to determine the best direction for the injection nozzle, and it was difficult to continue machining under normal machining conditions. In order to improve these drawbacks, devices shown in FIGS. 1 to 3 have been proposed.

第1図、第2図において1は被加工物、2は加工電極、
8は加工電極2の回転可能な加工液噴射ノズルで、その
噴流は常時加工間隙Cに向うようになつている。4は上
記ノズルを回転させるモータ、5は極間の電圧を検出す
る装置て、極間電圧と基準電圧との電位差に応じモータ
4を回転させ停止させ、あるいは回転速度を制御する。
In Figs. 1 and 2, 1 is the workpiece, 2 is the processing electrode,
Reference numeral 8 denotes a rotatable machining liquid spray nozzle of the machining electrode 2, and its jet stream is always directed toward the machining gap C. 4 is a motor for rotating the nozzle, and 5 is a device for detecting the voltage between the electrodes, which rotates and stops the motor 4 or controls the rotation speed according to the potential difference between the voltage between the electrodes and the reference voltage.

例えば電圧検出装置5によつて検出される加工間隙Cの
・電圧と基準電圧との差がなくなつたとき、これを安定
加工状態とみなし、モータ4による噴射ノズル3の回転
を停止させる制御を行なう。 また第3図は、加工電極
2の回りに、加工間隙Cに向う複数の噴出用ノズル6a
〜6dを固定して設置し、これらの各ノズルへの加工液
の供給を回転制御弁7により制御するようにしたもので
、回転制御弁7の弁体8は第1図と同様にモータ4およ
び電圧検出装置5によつて回転させられる。
For example, when there is no longer a difference between the voltage of the machining gap C detected by the voltage detection device 5 and the reference voltage, this is regarded as a stable machining state, and control is performed to stop the rotation of the injection nozzle 3 by the motor 4. Let's do it. Further, FIG. 3 shows a plurality of jet nozzles 6a facing the machining gap C around the machining electrode 2.
~6d are fixedly installed, and the supply of machining fluid to each nozzle is controlled by a rotation control valve 7. The valve body 8 of the rotation control valve 7 is connected to the motor 4 as in FIG. and is rotated by the voltage detection device 5.

したがつて、弁体8の回転位置に応じて、中央通路hの
切欠1がケーシング9の通孔a−dのいずれかと連通し
、ノズル6a〜6dのうちの最も安定した加工のできる
ノズルから加工液が噴射されるわけである。このような
従来装置は、被加工物と加工電極との間に、両者が接近
する方向の相対的な送りだけを与える場合には、加工液
の好ましい供給方向を自動的に設定できるための一定の
上記効果を得ることができる。
Therefore, depending on the rotational position of the valve body 8, the notch 1 of the central passage h communicates with any of the through holes a to d of the casing 9, and the nozzle that can perform the most stable processing among the nozzles 6a to 6d is connected to the notch 1 of the central passage h. The machining fluid is injected. When such conventional devices only provide relative feed between the workpiece and the machining electrode in the direction in which they approach each other, a constant flow rate is required to automatically set the preferred supply direction of the machining fluid. The above effects can be obtained.

しかしながら被加工物と加工電極との間に、両者が接近
する方向と直交する方向の要素をもつ補助変位を与える
場合には、加工面の位置がこの補助変位に伴つて変化す
るため、新しい加工面に対する適正な加工液供給を維持
することができない。すなわち新しい加工面には加工液
の噴射されない場合が生じて不安定な加工状態となり、
このためめモータ4が回転して加工液噴射方向の変更が
行なわれるが、一度不安定な加工状態となつた加工面を
瞬時に安定状態に戻すことは不可能であり、さらに安定
状態に移行する前に異なる方向の補助変位が与えられれ
ば噴射方向の制御がより複雑となつて不安定状態の解消
に長期間を要することとなり、結局補助変位について安
定した加工を行なうことはできないこととなる。本発明
は、このような従来装置の欠点を解消し、補助変位につ
いて適切な方向からの加工液噴射が行なえるようにする
ことを目的としたもので、加工電極の周囲に異なる噴射
方向をもつ複数の噴射ノズルを配設するとともに、補助
変位の方向と同期させてこれら噴射ノズルに選択的に加
工液を供給し、もつて補助変位の方向と加工液の噴射方
向とに一定の関係を与えることにより、安定した加工状
態が得られるようにしたことを特徴としている。以下図
示実施例について本発明を説明する。
However, when applying an auxiliary displacement between the workpiece and the machining electrode that has an element in a direction perpendicular to the direction in which they approach each other, the position of the machining surface changes with this auxiliary displacement, resulting in a new machining process. Unable to maintain proper machining fluid supply to the surface. In other words, the machining fluid may not be sprayed onto the newly machined surface, resulting in an unstable machining condition.
For this reason, the motor 4 rotates to change the machining fluid injection direction, but it is impossible to instantly return the machining surface to a stable state once it has become unstable, and the machining surface shifts to a more stable state. If an auxiliary displacement in a different direction is given before the auxiliary displacement is applied, the control of the injection direction becomes more complicated and it takes a long time to resolve the unstable state, and in the end it becomes impossible to perform stable machining with the auxiliary displacement. . The purpose of the present invention is to eliminate the drawbacks of such conventional devices and to make it possible to spray machining fluid from an appropriate direction for auxiliary displacement. A plurality of injection nozzles are arranged, and machining liquid is selectively supplied to these injection nozzles in synchronization with the direction of auxiliary displacement, thereby giving a certain relationship between the direction of auxiliary displacement and the injection direction of machining liquid. This makes it possible to obtain stable machining conditions. The invention will now be described with reference to the illustrated embodiments.

第4図において、10a〜10dは被加工物1と加工電
極2との間の加工間隙に向けて設置した噴射ノズルで、
断面正方形の加工電極2の各々の辺部に対応させて設け
られており、これらの噴射ノズル10a〜10dに対す
る給液管11a〜11dはそれぞれ噴射方向切換装置1
2の噴出管13a〜13dに接続されている。14a〜
14dは噴出管13a〜13dど供給通路15との間に
それぞれ挿入された電磁弁で、これら電磁弁の開閉制御
は、補助変位に関するデータを含むテープ16からの信
号を受ける数値制御装置17が行なう。
In FIG. 4, 10a to 10d are injection nozzles installed toward the machining gap between the workpiece 1 and the machining electrode 2;
The liquid supply pipes 11a to 11d for these injection nozzles 10a to 10d are provided corresponding to each side of the machining electrode 2 having a square cross section.
It is connected to the second ejection pipes 13a to 13d. 14a~
Reference numeral 14d indicates electromagnetic valves inserted between the ejection pipes 13a to 13d and the supply passage 15, and the opening/closing control of these electromagnetic valves is performed by a numerical control device 17 that receives signals from the tape 16 containing data regarding auxiliary displacement. .

なおnは加工電極2の昇降信号である。すなわち上記構
成に係る本装置は、テープ16からの情報により、刻々
変化する補助変位の方向が与えられ、この信号に基き数
値制御装置17が噴射方向切換装置12の電磁弁14a
〜14dを開閉制御するのである。
Note that n is a signal for raising and lowering the processing electrode 2. That is, in this device having the above configuration, the direction of the auxiliary displacement that changes every moment is given by the information from the tape 16, and based on this signal, the numerical control device 17 controls the solenoid valve 14a of the injection direction switching device 12.
~14d is controlled to open and close.

例えば加工電極2と被加工物1間の相対的な進行方向が
矢印A方向である場合には、加工進行方向前方の噴射ノ
ズル10aから加工液が噴射されるように電磁弁14a
だけを開き、同様に矢印B方向の場合には電磁弁14d
を開いて噴射ノズル10dから加工液を噴射させる。補
助変位の方向と加工液の噴射方向に関する上記例示は絶
対的なものではなく、上記A方向とB方向の場合にそれ
ぞれ逆に加工進行方向後方の噴射ノズル10c,10b
から加工液を噴射させる場合もありうる。要は、補助変
位の方向および他の加工条件を勘案し、実験的、経験的
に最も好ましい加工状態となるように、補助変位の方向
に対応した加工液の噴射方向を定めればよい。噴射方向
切換装置12の切換スイッチ18は、加工液の噴射方向
を加工電極2に関し正反対に切換えるものである。すな
わち例えば噴射ノズル10aからの噴射状態を瞬時に噴
射ノズル10cからの噴射に切換える。なお特定の補助
変位の方向に対して複数箇所の噴射ノズルから噴射させ
ることができるのは勿論であり、また極間電圧検出装置
によつて検出した加工電極2と被加工物1間の電圧値に
基き、加工液墳流の噴射力を変えることもできる。第5
図は加工電極2の断面形状が長方形である場合の噴射ノ
ズルの設置例を示すもので、加工電極2の長辺部分には
それぞれ各2個の噴射ノズル10を配設している。
For example, when the relative traveling direction between the machining electrode 2 and the workpiece 1 is in the direction of arrow A, the solenoid valve 14a is configured so that the machining fluid is injected from the injection nozzle 10a at the front in the machining direction.
Similarly, in the direction of arrow B, the solenoid valve 14d is opened.
is opened to inject machining fluid from the injection nozzle 10d. The above examples regarding the direction of the auxiliary displacement and the injection direction of the machining fluid are not absolute, and in the case of the A direction and the B direction, the injection nozzles 10c and 10b at the rear in the machining progress direction are opposite to each other.
There may also be cases where machining fluid is injected from. In short, the direction of the machining liquid jetting direction corresponding to the direction of the auxiliary displacement may be determined in consideration of the direction of the auxiliary displacement and other machining conditions so as to obtain the most preferable machining state experimentally and empirically. The changeover switch 18 of the injection direction switching device 12 is used to switch the injection direction of the machining liquid to the opposite direction with respect to the machining electrode 2 . That is, for example, the injection state from the injection nozzle 10a is instantaneously switched to the injection from the injection nozzle 10c. Of course, it is possible to inject from multiple injection nozzles in the direction of a specific auxiliary displacement, and the voltage value between the machining electrode 2 and the workpiece 1 detected by the inter-electrode voltage detection device Based on this, it is also possible to change the jetting force of the machining liquid mound. Fifth
The figure shows an example of installing the injection nozzles when the cross-sectional shape of the processing electrode 2 is rectangular, and two injection nozzles 10 are arranged on each long side of the processing electrode 2.

このように噴射ノズルの数は加工電極形状に応じて適宜
定めるもので、これら噴射ノズルからの加工液の噴射を
上記と同様に制御すれは、補助変位に対する好ましい加
工液噴射方向を得ることがてきる。以上のように本発明
は、補助変位の方向に同期させて加工液の噴射方向を変
化させるものであるから、補助変位による新たな加工面
およびその他の加工面に対して加工液を効率的に供給す
ることができ、したがつて安定した加工状態により高精
度の加工が可能となるという効果が得られる。
In this way, the number of injection nozzles is determined as appropriate depending on the shape of the machining electrode, and by controlling the injection of machining fluid from these injection nozzles in the same manner as described above, it is possible to obtain a preferable machining fluid jet direction for the auxiliary displacement. Ru. As described above, the present invention changes the injection direction of the machining fluid in synchronization with the direction of the auxiliary displacement, so the machining fluid can be efficiently applied to new machining surfaces and other machining surfaces due to the auxiliary displacement. Therefore, it is possible to obtain the effect that high-precision machining is possible due to stable machining conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の加工液噴射装置の例を示す接続図、第2
図は第1図の装置の噴射ノズルの回動状態を示す要部の
平面図、第3図は従来の他の加工噴射装置を示す要部の
接続図、第4図は本発明に係る加工液噴射装置の実施例
を示す斜視図、第5図は本発明の他の実施例を示す要部
の斜視図である。 1:被加工物、2:加工電極、10a〜10d,10:
噴射ノズル、12:噴射方向切換装置。
Figure 1 is a connection diagram showing an example of a conventional machining fluid injection device;
The figure is a plan view of the main parts showing the rotating state of the injection nozzle of the apparatus shown in Fig. 1, Fig. 3 is a connection diagram of the main parts showing another conventional processing injection device, and Fig. 4 is the processing according to the present invention. FIG. 5 is a perspective view showing an embodiment of the liquid injection device; FIG. 5 is a perspective view of main parts showing another embodiment of the present invention. 1: Workpiece, 2: Processing electrode, 10a to 10d, 10:
Injection nozzle, 12: injection direction switching device.

Claims (1)

【特許請求の範囲】[Claims] 1 加工電極と被加工物との間に、相対的に両者が接近
する方向の主送りと、この主送りに直交する方向の要素
をもつ補助変位とを与え、かつ上記加工電極と被加工物
との間の加工間隙に加工液を供給しながら放電を行なわ
せて被加工物を加工する放電加工装置において、上記加
工電極の周囲に、上記加工間隙に向けて異なる方向から
加工液を噴射する複数の噴射ノズルを配設するとともに
、上記補助変位の方向に同期させてこれら噴射ノズルに
選択的に加工液を供給する噴射方向切換装置を設けたこ
とを特徴とする放電加工装置の加工液噴射装置。
1 A main feed in a direction in which the two relatively approach each other, and an auxiliary displacement having an element in a direction orthogonal to this main feed are applied between the processing electrode and the workpiece, and the processing electrode and the workpiece are In an electric discharge machining device that processes a workpiece by causing electrical discharge while supplying machining fluid to a machining gap between the two, the machining fluid is injected from different directions around the machining electrode toward the machining gap. Machining fluid injection of an electric discharge machining apparatus, characterized in that a plurality of injection nozzles are arranged and an injection direction switching device is provided for selectively supplying machining fluid to these injection nozzles in synchronization with the direction of the auxiliary displacement. Device.
JP4479379A 1979-04-12 1979-04-12 Machining fluid injection device for electrical discharge machining equipment Expired JPS6047049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4479379A JPS6047049B2 (en) 1979-04-12 1979-04-12 Machining fluid injection device for electrical discharge machining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4479379A JPS6047049B2 (en) 1979-04-12 1979-04-12 Machining fluid injection device for electrical discharge machining equipment

Publications (2)

Publication Number Publication Date
JPS55137846A JPS55137846A (en) 1980-10-28
JPS6047049B2 true JPS6047049B2 (en) 1985-10-19

Family

ID=12701289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4479379A Expired JPS6047049B2 (en) 1979-04-12 1979-04-12 Machining fluid injection device for electrical discharge machining equipment

Country Status (1)

Country Link
JP (1) JPS6047049B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116863U (en) * 1988-01-29 1989-08-07
JPH0236472U (en) * 1988-08-31 1990-03-09

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3202640C2 (en) * 1982-01-28 1984-02-02 Aeg-Elotherm Gmbh, 5630 Remscheid Device for planetary eroding
JPS59175928A (en) * 1983-03-23 1984-10-05 Inoue Japax Res Inc Working liquid supplying device of electric discharge machine for parting line working

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116863U (en) * 1988-01-29 1989-08-07
JPH0236472U (en) * 1988-08-31 1990-03-09

Also Published As

Publication number Publication date
JPS55137846A (en) 1980-10-28

Similar Documents

Publication Publication Date Title
EP0814380A3 (en) Method for manufacturing liquid jet recording head
JPS6047049B2 (en) Machining fluid injection device for electrical discharge machining equipment
US5922412A (en) Method of eliminating unevenness in pass-reversal thermal spraying
JPH0230425A (en) Electric discharge machining device
US4479045A (en) Traveling-wire electroerosive cutting method and apparatus
JPS5822629A (en) Wire cut electric spark machining apparatus
KR101968763B1 (en) System for painting surfaces by spray method
JPS58217232A (en) Wire-cut electric discharge machine
JPH01249148A (en) Method for controlling coating pattern of rotary atomizing electrostatic coating machine
JPS6279865A (en) Automatic spray gun
JPH1177544A (en) Jet honing device
JPS6026649B2 (en) Wire cut electrical discharge machining control method
JPH10166155A (en) Plasma cutting device
JPH0724386A (en) Method and device for controlling coated pattern width of sealing agent
US4559435A (en) Spark-erosive planetary eroding apparatus with variable flow rate of dielectric fluid
JPS5946731B2 (en) Electric processing equipment
JPH0569233A (en) Wire cut electric discharge machining device
JPH04183577A (en) Jet jetting type work device
JPS5815075Y2 (en) Machining fluid supply nozzle device
JPS61249214A (en) Electrode for electric discharge contour machining
JPS6174666A (en) Electrostatic painting device
JPS6117550B2 (en)
JP3168094B2 (en) Cleaning water control device for local cleaning device
JPH0317986Y2 (en)
JPS6354488B2 (en)