JPS6026649B2 - Wire cut electrical discharge machining control method - Google Patents
Wire cut electrical discharge machining control methodInfo
- Publication number
- JPS6026649B2 JPS6026649B2 JP15832976A JP15832976A JPS6026649B2 JP S6026649 B2 JPS6026649 B2 JP S6026649B2 JP 15832976 A JP15832976 A JP 15832976A JP 15832976 A JP15832976 A JP 15832976A JP S6026649 B2 JPS6026649 B2 JP S6026649B2
- Authority
- JP
- Japan
- Prior art keywords
- machining
- discharge machining
- wire
- electric discharge
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/04—Apparatus for supplying current to working gap; Electric circuits specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Numerical Control (AREA)
Description
【発明の詳細な説明】
本発明はワイヤ電極を使用して放電加工を行なうワイヤ
カット放電加工制御方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wire-cut electric discharge machining control method for performing electric discharge machining using a wire electrode.
ワイヤカット放電加工は直径0.05豚から0.3凧程
度の金属線を電極として被加工物との間にX,Y方向の
制御送りを与えて所望の輪郭形状の切断を行なうもので
ある。Wire-cut electric discharge machining uses a metal wire with a diameter of about 0.05 mm to 0.3 mm as an electrode to provide controlled feed in the X and Y directions between the wire and the workpiece to cut the desired contour shape. .
このような加工方法においては×,Y方向の制御送りは
通常ワイヤ電極の中心の軌跡を基準として与えられる。In such a processing method, controlled feed in the x and y directions is usually given with reference to the locus of the center of the wire electrode.
しかしこのワイヤ電極の中心の軌跡が所望の輪郭形状通
りでは被加工物は所望の輪郭形状からワイヤ径及び加工
ギャップ量だけ寸法が違って加工されてしまう。したが
って加工後の寸法が所望の輪郭形状になるようにワイヤ
電極の中iDの軌跡をワイヤ蓬及び加工ギャップ量だけ
ずらして加工するようにしている。However, if the trajectory of the center of the wire electrode follows the desired contour shape, the workpiece will be machined with dimensions that differ from the desired contour shape by the wire diameter and the amount of machining gap. Therefore, the locus of the middle iD of the wire electrode is shifted by the amount of the wire length and the machining gap so that the dimensions after machining become the desired contour shape.
すなわち、第1図において1は所望の輪郭形状であり、
2はワイヤ中心の軌跡である。またAは加工切断された
後、ワイヤ軌跡2の内側が所望である場合であり、Bは
加工切断された後ワイヤ軌跡2の外側が所望である場合
である。ここで所望の輪郭形状とワイヤ電極の中心の軌
跡とのずれの量6をオフセット量という。このオフセッ
ト量は従釆のワイヤカット放電加工においては加工の始
めから終りまで変化しない一定の量であった。さて、こ
のような加工方法で第2図のような板厚変化のある被加
工物3をワイヤ電極4が図中矢印の方向に放電加工した
場合、ワイヤ電極4の外径dと放電加工間隙gとを合せ
た加工溝幅SはAからBのようし、変化する。That is, in FIG. 1, 1 is the desired contour shape,
2 is a trajectory centered on the wire. Further, A is a case where the inside of the wire trajectory 2 is desired after being processed and cut, and B is a case where the outside of the wire trajectory 2 is desired after being processed and cut. Here, the amount of deviation 6 between the desired contour shape and the locus of the center of the wire electrode is referred to as an offset amount. This offset amount was a constant amount that did not change from the beginning to the end of machining in the secondary wire cut electrical discharge machining. Now, when the wire electrode 4 performs electric discharge machining on the workpiece 3 having a thickness change as shown in Fig. 2 in the direction of the arrow in the figure using such a machining method, the outer diameter d of the wire electrode 4 and the electric discharge machining gap The machining groove width S, including the width S, changes from A to B.
したがって加工後の切断面に縦すじあるいは段差を残し
てしまい、加工精度を低下させると共に加工された製品
の価値を落としてしまう。本発明は上記のような従来の
ワイヤカット放電加工方法の欠点を除くため加工状態を
検出し、加工中にオフセット量を変化させるようにした
ものである。Therefore, vertical lines or steps are left on the cut surface after processing, which reduces processing accuracy and reduces the value of the processed product. In order to eliminate the drawbacks of the conventional wire-cut electrical discharge machining method as described above, the present invention detects the machining state and changes the offset amount during machining.
第3図は本発明方法の一実施例を説明する図である。FIG. 3 is a diagram illustrating an embodiment of the method of the present invention.
被加工物3はX−Yテーブル5に取り付けられておりワ
イヤ電極4との間で加工電源6によつて放電加工が行な
われている。またテーブル移動用モータ7はテーブル制
御装置8により駆動されテーブルの×−Y方向の移動を
可能にして所望の形状の加工を制御する。極間状態検出
装置9は放電加工の進行と共に変化する放電加工の加工
溝幅を左右する要素を検出し、電気信号に変換してオフ
セットベクトル制御装置10へと送る。ここでいう放電
加工の進行と共に変化する放電加工の加工溝幅を左右す
る要素とは例えば極間蟹圧、極間電流、パルス電圧を印
加してから放電するまでの時間、加工速度、加工液電導
度等のうち一つあるいは二つ以上の組合せである。オフ
セットベクトル制御装置10はオフセットベクトルの絶
対値を極間状態検出装置9からの信号により制御し、ワ
イヤ中心の軌跡の修正量をテーブル制御装置8へ送る。
テーブル制御装置8は通常の軌跡の補間演算を行ないつ
つ、オフセットベクトル制御装置10からの指令により
軌跡の変更を行い、その結果によりテーブル移動用モー
タを駆動する。この時、極間状態に対するオフセット量
は、あらかじめ記憶されている種々の加工条件によるデ
ータ群の中から選ばれてもよいし、特に高精度を必要と
しなければ単に簡単な関数、例えば一次関数等であって
もよい。ここで前者の具体例としては、次のものが挙げ
られる。The workpiece 3 is mounted on an X-Y table 5, and electrical discharge machining is performed between it and a wire electrode 4 by a machining power source 6. Further, the table moving motor 7 is driven by a table control device 8 to enable movement of the table in the x-y directions and control machining of a desired shape. The machining gap state detection device 9 detects the factors that affect the machining groove width of the electric discharge machining, which changes as the electric discharge machining progresses, converts it into an electric signal, and sends it to the offset vector control device 10. The factors that affect the machining groove width in electrical discharge machining, which changes as the electrical discharge machining progresses, are, for example, the pressure between the machining holes, the current between the machining holes, the time from applying a pulse voltage to discharging, machining speed, and machining fluid. It is one or a combination of two or more of electrical conductivity, etc. The offset vector control device 10 controls the absolute value of the offset vector using the signal from the gap state detection device 9, and sends the amount of correction of the wire center trajectory to the table control device 8.
The table control device 8 performs normal trajectory interpolation calculations, changes the trajectory based on commands from the offset vector control device 10, and drives the table moving motor based on the result. At this time, the offset amount for the machining gap state may be selected from a group of pre-stored data based on various machining conditions, or may be simply a simple function, such as a linear function, if high precision is not required. It may be. Here, specific examples of the former include the following.
即ち、極間電圧をIV単位でデジタル化し、これをVG
とする。ここでVGは0から300までの値をとる。ま
た同様に加工速度を0.1肌/分でデジタル化しこれを
Fcとし、このFcは0から100までの値をとる。さ
らに、加工液電導度についてもIKQ/c虎単位にデジ
タル化しRwとし、Rwは0から100までの値をとる
。ここで、オフセットベクトルの絶対値を表わす三次元
の配列を考え、OFとすれば、OFは、、VG,Fc,
Rwを指定することにより一意的に決定される。In other words, the voltage between electrodes is digitized in IV units, and this is converted into VG.
shall be. Here, VG takes a value from 0 to 300. Similarly, the processing speed is digitized at 0.1 skin/min, and this is set as Fc, and this Fc takes a value from 0 to 100. Further, the electrical conductivity of the machining fluid is also digitized in units of IKQ/c and expressed as Rw, where Rw takes a value from 0 to 100. Here, if we consider a three-dimensional array representing the absolute value of the offset vector and let it be OF, OF is, VG, Fc,
It is uniquely determined by specifying Rw.
例えば、VG=100.Fc=20,Rw=20とすれ
ば、OF(100,20,20)=180〔し〕のごと
くである。この三次元配列のOFの値(300×100
×ION固ある)は、実験等によりあらかじめ適当な値
を定めておけばよい。又、後者の具体例としては、次の
ものが挙げられる。For example, VG=100. If Fc=20 and Rw=20, OF(100, 20, 20)=180. The OF value of this three-dimensional array (300 x 100
×ION (specific) may be determined in advance by an appropriate value through experiments or the like. Further, specific examples of the latter include the following.
即ち、加工間隙の長ご‘ま、極間電圧にほぼ比例するこ
とが実験的に確認されており、あまり高い精度を望まな
ければ、オフセット量を極間電圧に比例するよう変更制
御すればよい。この場合は、簡単にオフセットベクトル
の絶対値=k×極間電圧(k‘ま比例定数)とすればよ
い。In other words, it has been experimentally confirmed that the length of the machining gap is almost proportional to the voltage between the machining holes, and if you do not want very high accuracy, you can change and control the offset amount so that it is proportional to the voltage between the machining holes. . In this case, it is sufficient to simply set the absolute value of the offset vector=k×voltage between electrodes (k' is a proportionality constant).
第4図に本発明による制御を適用した場合の加工中の溝
幅の様子を掲げる。FIG. 4 shows the groove width during machining when the control according to the present invention is applied.
2に示すのがワイヤ電極の中心の軌跡であり、溝幅の片
側はほぼ直線になっている。2 shows the locus of the center of the wire electrode, and one side of the groove width is almost a straight line.
すなわち、本発明は加工中の溝幅の変化による加工精度
の低下をオフセット量を変更制御することにより溝幅自
身が変化しても加工された製品には実質的に影響をおよ
ぼこないようにするところに特徴がある。In other words, the present invention controls the decrease in processing accuracy due to changes in the groove width during processing by changing the offset amount so that even if the groove width itself changes, it does not substantially affect the machined product. There are characteristics in what you do.
第1図はワイヤ電極中心の軌跡を所望の輪郭形状よりオ
フセット量だけずらす場合の説明図。
第2図は従来方法における溝幅変化の様子の説明図、第
3図は本発明方法の説明図、第4図は本発明方法におけ
る溝幅変化の様子の説明図である。なお、図中同一符号
はそれぞれ同一又は相当部分を表わす。2・・・ワイヤ
電極の中心の軌跡、6・・・加工電源、8・・・テーブ
ル制御装置、9・・・極間状態検出装置、10・・・オ
フセットベクトル制御装置。
第1図
第2図
第3図
第4図FIG. 1 is an explanatory diagram when the locus of the center of the wire electrode is shifted from the desired contour shape by an offset amount. FIG. 2 is an explanatory diagram of how groove width changes in the conventional method, FIG. 3 is an explanatory diagram of the method of the present invention, and FIG. 4 is an explanatory diagram of how groove width changes in the method of the present invention. Note that the same reference numerals in the figures represent the same or corresponding parts. 2... Locus of the center of the wire electrode, 6... Processing power source, 8... Table control device, 9... Inter-electrode state detection device, 10... Offset vector control device. Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
、この微少間隙に加工液を供給しながら繰返しパルス放
電を行ない、且つワイヤ電極もしくは被加工物を予定さ
れた加工経路に従つて進行させて上記被加工物を放電加
工するワイヤカツト放電加工制御方法であつて、上記ワ
イヤ電極と被加工物とで形成される微少間隙において放
電加工の進行と共に変化する放電加工の加工溝幅を左右
する要素を検出し、この検出信号に応じてワイヤ電極と
被加工物との相対移動経路を変更制御することを特徴と
するワイヤカツト放電加工制御方法。1. Place the wire electrode facing the workpiece through a small gap, repeatedly perform pulse discharge while supplying machining fluid to this small gap, and advance the wire electrode or the workpiece along the planned machining path. A wire-cut electric discharge machining control method for electric discharge machining the workpiece using a wire cut electric discharge machining method, the wire cut electric discharge machining control method comprising: an element that influences the machining groove width of the electric discharge machining, which changes as the electric discharge machining progresses in a minute gap formed between the wire electrode and the workpiece; 1. A wire cut electrical discharge machining control method, comprising: detecting the detection signal, and changing and controlling a relative movement path between a wire electrode and a workpiece in accordance with the detection signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15832976A JPS6026649B2 (en) | 1976-12-28 | 1976-12-28 | Wire cut electrical discharge machining control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15832976A JPS6026649B2 (en) | 1976-12-28 | 1976-12-28 | Wire cut electrical discharge machining control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5383192A JPS5383192A (en) | 1978-07-22 |
JPS6026649B2 true JPS6026649B2 (en) | 1985-06-25 |
Family
ID=15669251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15832976A Expired JPS6026649B2 (en) | 1976-12-28 | 1976-12-28 | Wire cut electrical discharge machining control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6026649B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56146626A (en) * | 1980-04-16 | 1981-11-14 | Fanuc Ltd | Wire-cut discharge processing method |
JPS57166606A (en) * | 1981-04-04 | 1982-10-14 | Fanuc Ltd | Numerical control working method |
US4403131A (en) * | 1981-07-30 | 1983-09-06 | Corning Glass Works | Electrical discharge machining utilizing a counter slot |
JPS59142021A (en) * | 1983-01-29 | 1984-08-15 | Fanuc Ltd | Automatic measuring system of offset value in wire cut electric discharge machine |
JP6908647B2 (en) * | 2019-03-12 | 2021-07-28 | ファナック株式会社 | Wire electric discharge machine and machining program editing device |
-
1976
- 1976-12-28 JP JP15832976A patent/JPS6026649B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5383192A (en) | 1978-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910008244B1 (en) | Wire cut electrical discharge machine | |
JPH025531B2 (en) | ||
EP2311594A2 (en) | Wire electric discharge machine and finish machining method of wire electric discharge machine | |
JP2003165030A (en) | Wire electric discharge machining device and wire electric discharge machining method | |
JPH027772B2 (en) | ||
JPS6026649B2 (en) | Wire cut electrical discharge machining control method | |
EP0246333A1 (en) | Electric discharge wire cutting methods and apparatus therefor | |
JPH06190637A (en) | Electric discharge device, electrode and method | |
GB2103985A (en) | Traveling-wire electroerosive cutting method and apparatus | |
JP2914101B2 (en) | Wire electric discharge machining method and apparatus | |
JPS55112727A (en) | Electric discharge processing device for wire cutting | |
JPS6351809B2 (en) | ||
JPH04764B2 (en) | ||
EP1393844A2 (en) | Wire electric discharge machine | |
JP4786134B2 (en) | Cutting device | |
JPH0478412B2 (en) | ||
US3383302A (en) | Electrical stock removal electrode | |
JPS61146419A (en) | Electric discharge machine | |
JPH0478411B2 (en) | ||
JPH0158009B2 (en) | ||
JPS58114823A (en) | Machining control system for wire-cut electric discharge machine | |
JPS6242736B2 (en) | ||
JPS61241024A (en) | Wire cut electric discharge machine | |
JPS62287936A (en) | Wire electrode guiding device | |
JPH0751945A (en) | Electric discharge machining method |