JPS6046920A - Separation of lithium from water associated with natural gas - Google Patents

Separation of lithium from water associated with natural gas

Info

Publication number
JPS6046920A
JPS6046920A JP15434783A JP15434783A JPS6046920A JP S6046920 A JPS6046920 A JP S6046920A JP 15434783 A JP15434783 A JP 15434783A JP 15434783 A JP15434783 A JP 15434783A JP S6046920 A JPS6046920 A JP S6046920A
Authority
JP
Japan
Prior art keywords
lithium
adsorbent
water
natural gas
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15434783A
Other languages
Japanese (ja)
Other versions
JPS64328B2 (en
Inventor
Hirotoshi Yamauchi
山内 博利
Sachiko Fuse
布旋 幸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAZAKIKEN
Original Assignee
MIYAZAKIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAZAKIKEN filed Critical MIYAZAKIKEN
Priority to JP15434783A priority Critical patent/JPS6046920A/en
Publication of JPS6046920A publication Critical patent/JPS6046920A/en
Publication of JPS64328B2 publication Critical patent/JPS64328B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To recover lithium from water associated with natural gas, in high efficiency, by attaching magnesium to amorphous hydrated aluminum oxide, and using the product as an adsorbent. CONSTITUTION:Sodium aluminate is dissolved in an aqueous solution of sodium hydroxide, an oxidizing agent is added to the solution, carbon dioxide gas is introduced into the solution at about 5 deg.C, and the precipitate produced by hydrolysis is separated by filtration and is washed and dried to obtain amorphous hydrated aluminum oxide. The aluminum oxide is dispersed in an aqueous solution of magnesium sulfate and stirred, and the solid component attached with magnesium is separated and used as an adsorbent. The adsorbent has an Al content of about 27-28%, Mg content of about 2.2-2.6%, water-content of about 44-45%, and Mg/Al ratio of about 0.08-0.1.

Description

【発明の詳細な説明】 従来からリチウム塩類は、耐熱陶器、硬質ガラスグリー
ス、及び空調用冷媒などに使用され、年々そのm要量は
増加している。 さらに最近エネルギーに関連した研死
として接融a炉及びリチウム電池の開発が進むにつれて
、そのためのリチウム需要は相当急速に増大することが
予想されるにのため、最近、溶存リチウム資fMが注目
され海水や地熱水からのリチウム採取法が検討され雉め
た。
DETAILED DESCRIPTION OF THE INVENTION Lithium salts have traditionally been used in heat-resistant ceramics, hard glass grease, air conditioning refrigerants, and the like, and the amount required is increasing year by year. Furthermore, as the development of welded a-fired furnaces and lithium batteries progresses, the demand for lithium is expected to increase rapidly, and dissolved lithium resources fM have recently attracted attention. Methods for extracting lithium from seawater and geothermal water have been studied and have been studied.

一方天然ガス付随水にはリチウムが約1.h6.0g/
lの範囲で含有されていて海水よりかなり高い濃度であ
ることから、その採取において有利な点が考えられる。
On the other hand, water associated with natural gas contains approximately 1.0% lithium. h6.0g/
Since the concentration is considerably higher than that in seawater, it is considered to be advantageous in its collection.

は殆んど適用できなかった。 この場合、ケイ素の妨害
が当然考えられるので、ケイ素を見金に除去して行なっ
ても1漣であった。
could hardly be applied. In this case, interference by silicon is naturally considered, so even if silicon was removed as a precaution, only one result was obtained.

そこで、これが何に原因しているのか“種々予備実験に
より検討したとこ、5、共存するマグネシウムの濃度が
大きく1讐していることが判った。
So, we conducted various preliminary experiments to find out what was causing this, and found that 5. The concentration of coexisting magnesium was greatly affected.

この発明は、この点に着目し、予めマグネシウムを付着
した含水酸化アルミニウムを主成分とす・る吸着剤(以
下Mg付着吸着剤と略記する)を用いて吸着実験を行な
ったところ、マグネシウムを付着しない無定形含水酸化
アルミニウムを主成分とした吸着剤(以下Mg無吸着剤
と略記する)に比べて■吸着速屍が著しく増大する■共
存するケイ素の影Vが極めて少ない■PHの影響も少な
い等の利点を見出した結果に基づくものである。
This invention focused on this point, and conducted an adsorption experiment using an adsorbent whose main component is hydrated aluminum oxide to which magnesium had been attached (hereinafter abbreviated as Mg-attached adsorbent). Compared to adsorbents whose main component is amorphous hydrated aluminum oxide (hereinafter abbreviated as Mg-free adsorbents), the adsorption rate is significantly increased. ■ The shadow of coexisting silicon is extremely small. ■ The influence of PH is also small. This is based on the results of discovering the following advantages.

今回、用いた吸着剤の調製法であるが、はじめにMg無
吸着剤を作製した。 その調製法であるが、部による分
解生成物)を添加し、液温を約58Cに保ちながら、P
llが9.5に低下するまで、二酸化原画ガスを尋人撹
拌し加水分解する。 加水分解により生成する沈殿を冷
水で゛濾別洗浄し、室温約2500において減圧乾燥し
た。 無足形含水噺化アルミニウムの1@詔はンく線回
折により行なった。
Regarding the preparation method of the adsorbent used this time, first, an Mg-free adsorbent was prepared. The method for preparing it is to add P.
The carbon dioxide original gas is agitated and hydrolyzed until the ll value decreases to 9.5. The precipitate produced by the hydrolysis was filtered and washed with cold water, and dried under reduced pressure at room temperature of about 2,500°C. The analysis was carried out by 1@yaku ray diffraction of hydrated aluminum without legs.

次に、Mg付層吸着剤の調製法であるが、減圧しながら
上記Mg無吸着剤0.1部に0.05モルIl+ij酸
マグネシウム溶液100部(PH約7.0)を添加した
1夛撹拌時間を変えて先−5゛マグネシウム付漸を行な
い、゛遠心分離によりン尤殿を水25部で2回洗浄した
。14られたMg付着級着剤0看部に天然ガス付随水1
00部を加えて24時間リチウム吸数層行ない、吸着剤
濾別後の濾液の残存リチウム濃度を次光分析法によりめ
リチウム吸着量を算出しプこ。 第一図に、マグネシウ
ム付着時間とリチウム吸着量の関係を示す。 この結果
ふら、マグネシウム付着時間は48時間としブζ。
Next, as for the preparation method of the Mg layered adsorbent, 100 parts of a 0.05 mol Il + ij acid magnesium solution (pH about 7.0) was added to 0.1 part of the above Mg-free adsorbent under reduced pressure. The precipitate was added with magnesium for 5 minutes while changing the stirring time, and the precipitate was washed twice with 25 parts of water by centrifugation. 14 Mg adhesion grade adhesive 0 parts and natural gas associated water 1 part
After adding 00 parts of lithium and carrying out lithium absorption layer for 24 hours, the remaining lithium concentration of the filtrate after filtering off the adsorbent was determined by optical analysis and the amount of lithium adsorbed was calculated. Figure 1 shows the relationship between magnesium adhesion time and lithium adsorption amount. As a result, the magnesium deposition time was set at 48 hours.

この条件で得られるMg付着吸着剤の減圧Gシ燥後の組
成は、アルミニウム含6’ M 27.0〜28.0%
、マグネシウム含有量2.2〜2.6%、水分含有M 
44. O〜4?i、 0%、組成比Mg/AI 0.
08〜0.10であつ7ヒ。
The composition of the Mg-attached adsorbent obtained under these conditions after vacuum G-shielding is 27.0 to 28.0% aluminum-containing 6'M.
, magnesium content 2.2-2.6%, moisture content M
44. O~4? i, 0%, composition ratio Mg/AI 0.
08-0.10 and 7hi.

上記で得られたMg無吸着剤とMg付着吸着剤を用いて
模擬海水と実試料について吸着実験゛を行ない、吸着速
度、ケイ累の影響およびPHの影響さらに吸着等温線に
ついて比叔検耐を行なつ/ζ。
Adsorption experiments were conducted on simulated seawater and actual samples using the Mg-free adsorbent and Mg-attached adsorbent obtained above, and comparative tests were conducted on the adsorption rate, the influence of silica, the influence of PH, and the adsorption isotherm. Gyo Natsu/ζ.

その結果上記で示したように、両者に著しい相違が見ら
れ、天然ガス付随水中のリチウムを採取するのにMg付
イi吸着剤が極めて効果的であることが判明した。 こ
の発明によるリチウム採取法は、天然ガス付随水ノこり
でなく、海水や地熱水等の清祥リチウム資源に対しても
効果的なl+i5用がμfijはと考えられる。
As a result, as shown above, there was a significant difference between the two, and it was found that the Mg-attached adsorbent was extremely effective in extracting lithium from water associated with natural gas. It is believed that the lithium extraction method according to the present invention is effective for l+i5 not only for water associated with natural gas but also for lithium resources such as seawater and geothermal water.

次に、この発明の実施例を示す。Next, examples of this invention will be shown.

実施例1 模擬Tiσ水100部にMg無吸着剤肌1部またはガス
付随水100部にMg付層吸着剤0.1部を添加して、
室の組成(分析値)は次表のとおりである。
Example 1 Adding 1 part of Mg-free skin to 100 parts of simulated Tiσ water or 0.1 part of Mg-layered adsorbent to 100 parts of gas-associated water,
The composition (analytical values) of the chamber is shown in the table below.

第2図に数層時間とリチウム吸7r′!量の関係を示す
。 ここで明らかなように、Mg無吸着剤の場合、模擬
海水を対象試料としているが、それでも見かけの吸着平
衡に達するのに約120時間を要するのに対し、Mg付
着吸着剤の場合は実試料でも約6時間で吸着平衡が得ら
れ、吸着速度が著しく増大す剤の場合、上記天球ガスイ
」随水へのリチウム添加iを変えて(リチウム濃度1.
2mg/Iの場合は、リチウムを一部除去して)上記実
施例1と同様に操作してポめた。
Figure 2 shows several layer times and lithium absorption 7r'! Shows the relationship between quantities. As is clear here, in the case of the Mg-free adsorbent, simulated seawater is used as the target sample, but it still takes about 120 hours to reach an apparent adsorption equilibrium, whereas in the case of the Mg-attached adsorbent, the target sample is simulated seawater. However, in the case of an agent that can achieve adsorption equilibrium in about 6 hours and significantly increase the adsorption rate, by changing the amount of lithium added to the above-mentioned celestial gas water (lithium concentration 1.
In the case of 2 mg/I, the procedure was repeated in the same manner as in Example 1 above (with some of the lithium removed).

一方、Mg無吸着剤の場曾は、上記天然ガス付随水のケ
イ禦をMg無吸着剤で予め除去した試料と上記検j疑1
11j水についてリチウム添加量を変えて同様に行なっ
た。
On the other hand, in the case of Mg-free water, the above-mentioned test sample 1 was compared with a sample in which the silica of the water associated with natural gas was previously removed with Mg-free water.
The same procedure was carried out for 11j water by changing the amount of lithium added.

その結果、模擬τIσ水におけるMg勲吸着剤の吸着等
温線の直線部分の傾きは約1であっ7ζ。 ま7こシ付
着吸着剤の等yrni線はわっ゛ふながら曲線として得
られた。
As a result, the slope of the straight line part of the adsorption isotherm of the Mg adsorbent in the simulated τIσ water is approximately 1 and 7ζ. The isoirni line of the adhered adsorbent was obtained in the form of a curved line, albeit somewhat vaguely.

さらに、リチウム14 度3 、75 mg/lの天然
ガス付随水に対するMg付着吸着剤のリチウム吸着量は
6.08mg/gであるのに対して、Mg無吸着剤の場
合はほとんどリチウム吸着性を示さないか、予めケイ素
を除去した天然ガス付随水に対してはリチウム吸着1社
0.36 mg/gを示した。 このように、両者間に
、大きな吸着量の差が確認された。
Furthermore, the amount of lithium adsorbed by the adsorbent adsorbed with Mg against water associated with natural gas containing 14 degrees 3 and 75 mg/l of lithium is 6.08 mg/g, whereas the amount of lithium adsorbed by the adsorbent without Mg is almost 6.08 mg/g. For natural gas-associated water that was not shown or had silicon removed in advance, lithium adsorption from one company was 0.36 mg/g. Thus, a large difference in adsorption amount was confirmed between the two.

実施例3 ケイ素を段階的に濃度を変えて添加し、Pl(を7.9
に調整したリチウム濃度1.5 mg/Iの模擬海水1
00部にMg付付着層層剤1部またはMg無吸気″j剤
0.11・市を加え、24時間撹拌吸着を行なった。 
以下は、上記実施例1と同様に操作し、第4図のような
ケイ素濃度とリチウム吸4量の関係をめた。
Example 3 Silicon was added stepwise at different concentrations, and Pl (7.9
Simulated seawater 1 with a lithium concentration of 1.5 mg/I adjusted to
To 00 parts, 1 part of the adhesion layer agent with Mg or 0.11 parts of the Mg non-intake agent was added, and adsorption was carried out with stirring for 24 hours.
The following operations were performed in the same manner as in Example 1 above, and the relationship between silicon concentration and lithium absorption amount as shown in FIG. 4 was determined.

その結果、Mg無吸着剤の場合、共存ケイ素により著し
く影響を受け、ケイ素濃度が′tOmg/l のとき、
共存しないときのリチウム吸着量の約5%しか吸着しな
かった。 一方、マグネシウム付着吸着剤のリチウム吸
着量は、ケイ素が213 mg/ I 共存していても
、約4%低下したにすぎなかった。
As a result, in the case of Mg-free adsorbent, it is significantly affected by coexisting silicon, and when the silicon concentration is 'tOmg/l,
Only about 5% of the amount of lithium adsorbed when they were not present together was adsorbed. On the other hand, the amount of lithium adsorbed by the adsorbent adsorbing magnesium decreased by only about 4% even when 213 mg/I of silicon coexisted.

実施例生 第5図は、PHとリチウム吸4量の関係舎示したもので
ある。 ことでは、室温を約25°C1吸着時間を24
時間として、PHの調整には塩酸とアンモニア水をハJ
いた。PRを調整した上記天然ガス付随比べて、pHの
影響が少ないことがわ力1つブこ。
Figure 5 shows the relationship between pH and lithium absorption amount. In this case, the room temperature is about 25°C, and the adsorption time is 24°C.
To adjust the pH, use hydrochloric acid and aqueous ammonia.
there was. Compared to the above-mentioned natural gas with adjusted PR, one advantage is that there is less influence of pH.

実施例5 吸府央験後の吸着剤中のアルカリおよ“びアルカリ土類
金属の分析紫行った。
Example 5 Analysis of alkali and alkaline earth metals in the adsorbent after the Sufuo test was carried out.

天然ガス付随水100部(PH7,90)をMg付着吸
漸剤0.1部に添加し、24時間吸着実験した。
100 parts of natural gas-associated water (PH 7,90) was added to 0.1 part of the Mg adhesion absorbent, and an adsorption experiment was conducted for 24 hours.

この、吸着剤を濾別後、Sl、5部の純水で2回洗浄し
ろ規定の塩酸に溶解した希釈液について原す吸光分析を
行った。 その結果、ナトリウム帆77 n+g/gカ
リウム0.28mg/g 、カルシウム1−Omg/g
 、マグネシウム9.8mg/gであった。
After removing the adsorbent by filtration, it was washed twice with 5 parts of pure water and subjected to absorption analysis on the diluted solution dissolved in specified hydrochloric acid. As a result, sodium sail 77 n+g/g potassium 0.28mg/g, calcium 1-Omg/g
, magnesium 9.8 mg/g.

実施例6 吸着リチウムの脱着回収を行った。Example 6 The adsorbed lithium was desorbed and recovered.

脱着は実施例5と同じ吸着実験操作を繰刀6し、洗浄乾
燥後得られたリチウム吸着剤5部に水30部を添加し、
6時間煮1□j!!することによって行った。
For desorption, the same adsorption experiment procedure as in Example 5 was repeated 6 times, and 30 parts of water was added to 5 parts of the lithium adsorbent obtained after washing and drying.
Boiled for 6 hours 1□j! ! I went by doing.

部を添加してIIIg量15部まで加熱濃縮して生じる
1;改litの析出物を熱いうちに濾別除去した。 こ
の濾11ダ15部にさらに屍酸ナトリウム肌75部を添
加し加熱すると炭酸リチウムが析出してくるので、熱い
うちに濾別洗Wさらに乾燥することによって約0゜11
部の炭酸リチウムを回収することができた。
The precipitate of 1; modified lit was removed by filtration while hot. When 75 parts of sodium chloride is further added to 15 parts of this filter 11 and heated, lithium carbonate will precipitate.
We were able to recover 100% of lithium carbonate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマグネシウム付着時間とリチウム吸イ1量の関
係曲線図。 第2図は吸着時間とリチウム吸着量の関係図(○−Mg
付層吸着剤、八−Mg無吸着剤)。 第3図はMg付着吸着剤とMg無吸着剤の吸着等温線図
(〇−曳付着吸着剤、八−Mg無吸着剤(模擬海水)、
ローMg無吸着剤(ケイ素除去付随水))。 第4図はケイ素濃度とリチウム数層量の関係曲線図(○
、△の符号は第2図に同じ)。 出願人 宮崎県知φ 松形祐尭 代理人 宮崎県工業試験場長 通し 昇第1図 20 40 60 80 マグネシウム付着時間(hr) 第2図 吸着時間(hr) 第3図 リチウム濃度(■g/l) 第4図 ケイ素濃度(+ng/l)
FIG. 1 is a graph showing the relationship between magnesium adhesion time and lithium adsorption amount. Figure 2 shows the relationship between adsorption time and lithium adsorption amount (○-Mg
layered adsorbent, 8-Mg non-adsorbent). Figure 3 is an adsorption isotherm diagram of Mg-adhered adsorbent and Mg-free adsorbent (〇-adsorbent with adhesion, 8-Mg-free adsorbent (simulated seawater),
Raw Mg-free adsorbent (water associated with silicon removal)). Figure 4 is a relationship curve diagram between silicon concentration and lithium number layer amount (○
, △ signs are the same as in Fig. 2). Applicant: Miyazaki Prefecture Chiφ Yutaka Matsugata Agent: Miyazaki Prefectural Industrial Research Institute Director Toshi Noboru Figure 4 Silicon concentration (+ng/l)

Claims (1)

【特許請求の範囲】[Claims] 無足形含水酸化アルミニウムにマグネシウムi#液を添
加して撹拌、濾別、更に水洗して得られる組成比Mg/
Alが肌08〜0.10のマグネシウムを付着した含水
酸化アルミニウムを主成分とする吸着剤を用いた天然ガ
ス付随水中のリチウムの採取法。
Composition ratio Mg/
A method for collecting lithium from natural gas-associated water using an adsorbent whose main component is hydrated aluminum oxide to which magnesium is attached with an Al content of 08 to 0.10.
JP15434783A 1983-08-23 1983-08-23 Separation of lithium from water associated with natural gas Granted JPS6046920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15434783A JPS6046920A (en) 1983-08-23 1983-08-23 Separation of lithium from water associated with natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15434783A JPS6046920A (en) 1983-08-23 1983-08-23 Separation of lithium from water associated with natural gas

Publications (2)

Publication Number Publication Date
JPS6046920A true JPS6046920A (en) 1985-03-14
JPS64328B2 JPS64328B2 (en) 1989-01-06

Family

ID=15582170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15434783A Granted JPS6046920A (en) 1983-08-23 1983-08-23 Separation of lithium from water associated with natural gas

Country Status (1)

Country Link
JP (1) JPS6046920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039656A (en) * 2007-08-09 2009-02-26 Denka Seiken Co Ltd Method for modifying adsorbability and/or elution property of aluminum hydroxide adsorbent
JP2014210252A (en) * 2013-04-05 2014-11-13 株式会社ササクラ Evaporation processing method of aqueous solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039656A (en) * 2007-08-09 2009-02-26 Denka Seiken Co Ltd Method for modifying adsorbability and/or elution property of aluminum hydroxide adsorbent
JP2014210252A (en) * 2013-04-05 2014-11-13 株式会社ササクラ Evaporation processing method of aqueous solution
US10329166B2 (en) 2013-04-05 2019-06-25 Sasakura Engineering Co., Ltd. Evaporative treatment method for aqueous solution

Also Published As

Publication number Publication date
JPS64328B2 (en) 1989-01-06

Similar Documents

Publication Publication Date Title
US7786038B2 (en) Composite metal oxide adsorbent for fluoride removal
WO2020093880A1 (en) Magnetic magnesium-manganese layered double metal oxide composite material, preparation and application
CN108928880B (en) Method for treating wastewater containing radioactive elements
JP3050147B2 (en) Adsorbent for air separation, production method thereof and air separation method using the same
JPS6046920A (en) Separation of lithium from water associated with natural gas
KR101737944B1 (en) A method of recovering indium or tin from indium or tin-containing solution or mixture with adsorption and further desorption procedure
TWI730557B (en) Method for recovering lithium
CN108946860B (en) Application of functional composite material in uranium-containing wastewater treatment
CN107051386A (en) The carbon material of chromium ion and its preparation in a kind of energy adsorption aqueous solution
CN109173984A (en) A method of Pb In Exhausted Water is removed using composite material
KR20140069874A (en) Method for recovering indium from indium containing solution or mixture
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JP2002001259A (en) Method for removing and recovering phosphorus, aluminum and heavy metals from various carbonized materials
JPS6362546A (en) Composite type lithium adsorbent and its production
WO2020220194A1 (en) Preparation method for iron-aluminum composite bone char fluoride removal agent and prepared fluoride removal agent
CN110918050A (en) Zeolite material adsorbent and preparation method thereof
JPS58156530A (en) Recovering method of lithium from gerothermal water and brine
JP4547528B2 (en) Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same
JPH10128106A (en) Adsorbent for oxygen psa(pressure swing adsorption), its preparation and preparation of oxygen using it
JPH0218906B2 (en)
JPS6136973B2 (en)
JP4238111B2 (en) Fluorine ion recovery material manufacturing method and fluorine ion recovery method
JPH0632762B2 (en) Method for desorbing lithium from manganese oxide-based lithium adsorbent
Wu et al. Study on optimal conditions and adsorption kinetics of copper from water by collodion membrane cross-linked poly-γ-glutamic acid
JPH0357814B2 (en)