JPS6046701A - Motor-driven vehicle - Google Patents

Motor-driven vehicle

Info

Publication number
JPS6046701A
JPS6046701A JP58178573A JP17857383A JPS6046701A JP S6046701 A JPS6046701 A JP S6046701A JP 58178573 A JP58178573 A JP 58178573A JP 17857383 A JP17857383 A JP 17857383A JP S6046701 A JPS6046701 A JP S6046701A
Authority
JP
Japan
Prior art keywords
brake
circuit
speed
current
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58178573A
Other languages
Japanese (ja)
Inventor
Yoshiichi Morishita
森下 芳一
Yoshiharu Wada
和田 芳治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58178573A priority Critical patent/JPS6046701A/en
Publication of JPS6046701A publication Critical patent/JPS6046701A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To prevent a vehicle from slipping in backward traveling at an ascent stopping time and at a descent stopping time by switching the type of a brake when a regenerative current or a generating current becomes the prescribed value or lower. CONSTITUTION:When a stopping point signal is received from a permanent magmet 24, a soft starting circuit 89 stops feeding a current to an armature 59 by a signal from a controller 74. Simultaneously, a low speed signal is applied to a speed set switching circuit 82, a shunt field becomes maximum, and a regenerative brake is applied to a drive motor 58. When the rotating speed of the motor 58 decreases to cause the regenerative current to stop, the controller 74 operates a generating brake circuit 66. When the generating brake current becomes the prescribed value or lower due to the decrease in the rotating speed, an electromagnetic brake 88 operates.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、路面又はモノトール上を走行する電動車に関
し、たとえはコルフカートに適用できるものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an electric vehicle that runs on a road surface or a monorail, and can be applied to a Corfu cart, for example.

(ロ)従来技術 路面に埋没した一本の誘導線に交流電流を/iIわし、
これにより発生ずる交番磁界を、電動車本体の中心線の
左右に等間隔に設けた2個の検出′−1イルを上記誘導
線の両4Ruに位置させて検知し、この各検出フィルに
発生ず、る誘起起電力を、増幅器を介して偏差検出器で
比較してこの誘起起電力の差により、電動車本体に対す
る誘、導前輪(以下キャスタと云う)の角度制御モータ
を制御して、キーヤスタの向きを変え、電動車本体を誘
導線に沿って誘導走行きせる誘導式電動車は、既に提案
されている(実公昭55−8005号公報)。
(b) Prior art: Applying alternating current to a single guide wire buried in the road surface,
The alternating magnetic field generated by this is detected by two detection filters placed at equal intervals on the left and right sides of the center line of the electric vehicle body, located on both 4Ru of the guide wire, and generated in each detection field. First, the induced electromotive force is compared by a deviation detector via an amplifier, and the angle control motor of the front wheels (hereinafter referred to as casters) is controlled based on the difference in the induced electromotive force with respect to the electric vehicle body. A guide-type electric vehicle that changes the direction of the key star and guides the electric vehicle body along a guide line has already been proposed (Japanese Utility Model Publication No. 55-8005).

と、−ろかこの提案装置において、電動車を停止さける
ため、回生ブレーキ、発電ブレーキ及び電(11ル−ギ
を順次作動さセるようにし1いるが、各)し・−キ間の
切換え・をタ什マ一時間の経jの後に行っているため、
次の欠点がある。即ち登り坂の(υ1(の場合、回生ブ
レーキあるいは発電ブレーキの作動時に、走行速度が零
になり、電磁ブレーキにより電動車本体をロックする迄
に時間があり、1E動11f本体が後退して停車すると
いう不都合がある。、J、た下り坂の停車の場合には、
回生〕゛レーキ及び発電ブレーキで十分に減速される前
に電磁ブレーキが作動することになるため、電動車本体
はスリノブすることになる。
In this proposed device, in order to avoid stopping the electric vehicle, the regenerative brake, the electric brake, and the electric brake (11 lugi are activated sequentially, but each), the switching between the -key, and the Since this is done after an hour of time,
It has the following drawbacks. In other words, in the case of (υ1) on an uphill slope, when the regenerative brake or generation brake is activated, there is time for the traveling speed to reach zero and the electromagnetic brake to lock the electric vehicle body, and the 1E and 11F body backs up and comes to a stop. There is an inconvenience that, when stopping on a downhill slope,
Regeneration: Because the electromagnetic brake is activated before the rake and the electromagnetic brake have sufficiently decelerated, the electric vehicle body becomes slippery.

9(ハ)発明の目的 本発明はかかる点に鑑み発明されたものにし℃、従来の
イ・都合を解消した電動車を提供することを目的とする
9 (c) Purpose of the Invention The present invention has been invented in view of the above points, and an object of the present invention is to provide an electric vehicle that eliminates the conventional disadvantages.

(二〉 発明の構成 かかる目的を達成するため、本発明による電動lpは、
路面又はモルレール十の走行途中において、ブレーキ信
号を検知して、回生ブレーキ、発電ブレーキ及び電磁ブ
レーキを作動−七る電動用であって、回生電流又は発電
電゛流が所定値以下になるのを検出する電流検出手段と
、この手段の出力に基いてブレーキの種類を切換える制
御回路手段とを備えてなるものである。
(2) Structure of the invention In order to achieve the above object, the electric LP according to the present invention has the following features:
Detects a brake signal on the road surface or while the Mole Rail is running and activates the regenerative brake, generation brake, and electromagnetic brake. It comprises a current detecting means for detecting the current, and a control circuit means for switching the type of brake based on the output of this means.

(ホ)実施例 以下本発明による誘導式電動車をゴルフカートに適用し
た一実施例を図面に基いて説明Vる。
(E) Example Hereinafter, an example in which an electric induction vehicle according to the present invention is applied to a golf cart will be explained based on the drawings.

第1図はゴルフカートの斜視図である。この図面におい
て、(1)はカート本体にして、パイプからなる本体フ
レーム(2)を支持主体として、後方両側には駆動車輪
(後輪><3>(3)が設けられ、この車輪間のカバー
(4)内には、この車輪を駆動する駆動モータ、その電
源としての鉛蓄電池及び制御回路部品等が搭載されてい
る。本体フレーム〈1〉はコルフハソグ軟置部(5)及
びバター入れケース(6)等を有し、カート本体(1)
の前方にはキャスタ部(7)の取付ステー(8)が設け
られ、このステーの下面にはキャスク(9〉のカート本
体(1)にス・j7る角度制御用モータ(10)が取イ
1けられ、そのモーフ軸には第1ゾーリ(11)が、欠
取(;1ステー(8)に取イ1けられるキャスタフレー
ム(12ンの軸には第2グーリ(13)が夫々取付ステ
ー上面に、1°シ1ノられ、両ブーり間はタイミングヘ
ルド(14)にて連結され工いる。
FIG. 1 is a perspective view of a golf cart. In this drawing, (1) is the cart body, with the main body frame (2) made of pipes as the main support, and drive wheels (rear wheels><3> (3)) are provided on both rear sides, and between these wheels Inside the cover (4), a drive motor that drives the wheels, a lead-acid battery as its power source, control circuit components, etc. are mounted.The main body frame (1) includes the Corfuhasog softening part (5) and the butter case. (6) etc., and the cart body (1)
A mounting stay (8) for the caster part (7) is provided in front of the caster part (7), and an angle control motor (10) attached to the cart body (1) of the cask (9) is installed on the underside of this stay. A caster frame (12) is attached to the shaft of the caster frame (12), which is attached to the morph shaft, and a second gouri (13) is attached to the shaft of the caster frame (12). The upper surface of the stay is angled by 1°, and the two booms are connected by a timing held (14).

キャスタ部(7)は、取付ステ=(8)即しカー1・本
体(1)に対し回動自在に取イづ()られ、キャスクフ
レーム(12)及びキャスク(9)を主要素として構成
される。キャスタフレーム(12〉には取付ステー〈8
)の01i端よりO1I方に突出する支持板(15)か
取付(Jらね、この支持板の先端左右には、夫々その中
心から等距離離間した第1の一対の検出コイル(15a
>(16bンと第2の一対の検出コイル(17a)(1
7b)か人々所定位置に数名jけられている。この第1
の一スjの検出コイル(16a)(16b)は路面に埋
設された誘導線(18)から放射される交番磁界を検出
jるものであり、その検出出力の偏差によりカート本体
(1)に対するキャスタ(9〉′の角度制御用モータ(
10)を制御するものである。第2の一対の検出フィル
(17’a > (17b )はカート本体(1)の走
行速度制御信号を作り、直線走行路では加速、カーブ走
行路では減速の信号を出力するものである。
The caster part (7) is rotatably mounted on the mounting bracket (8) and the car 1/main body (1), and is composed of a cask frame (12) and a cask (9) as main elements. be done. The caster frame (12) has a mounting stay (8).
) is attached to the supporting plate (15) protruding from the 01i end toward the O1I direction.On the left and right ends of this support plate, a first pair of detection coils (15a
>(16b) and the second pair of detection coils (17a) (1
7b) Several people are being kicked in place. This first
The first detection coils (16a) and (16b) detect the alternating magnetic field emitted from the guide wire (18) buried in the road surface, and the deviation of the detection output causes a change in the cart body (1). Caster (9〉' angle control motor (
10). The second pair of detection filters (17'a > (17b)) generates a traveling speed control signal for the cart body (1), and outputs an acceleration signal on a straight road and a deceleration signal on a curved road.

第1図中(19〉はコントロールボックス、(20)は
ブレーキレバーである。
In Fig. 1, (19) is a control box, and (20) is a brake lever.

次に第2図はコルフカ−1・の前方部の部分拡大断面図
であり、キャスタフレーム(12)に研、気はンサー(
21)を、キヘ・スタ(9)には磁石片〈22)を夫々
取付(プて、キャスタ(9)の回転数を感知する感知手
段(23)を構成する。また支持板〈15)の下面には
、誘導線路に埋設した永久磁石(24)を検知−りる検
出センサー(25)が取付けられている。尚上記感知手
段(23)は磁気的変化を利用するものに限らず、たと
えは光学的変化を利用して構成してもよい。(26)は
路面である。
Next, Figure 2 is a partially enlarged sectional view of the front part of the Corfu Car 1.
21), and a magnet piece (22) is attached to the caster (9) to constitute a sensing means (23) for sensing the rotation speed of the caster (9). A detection sensor (25) that detects a permanent magnet (24) buried in the guide line is attached to the lower surface. Note that the sensing means (23) is not limited to one that utilizes magnetic changes, but may be constructed using, for example, optical changes. (26) is the road surface.

〜 (27)は距離センサーにして、超音波を発信する発信
器と、障害物の反射波を受信する受信器とを備えている
~ (27) is a distance sensor and includes a transmitter that emits ultrasonic waves and a receiver that receives reflected waves from obstacles.

第3図はコントロールボックスの平面図である。この図
面から明らかな如く、コント【コールボ/クス(19)
は、モード切換用セレクタつまみ(28)を有し、この
つまみにより、全自動(停点停止1.)、停点通過、ブ
レーキ解除(手押し)、駐車、有人走行の高速と低速の
各モー1−′を切換え、ゴルノカ−(・の動作モードを
決定する。また、−7ントr」−ルボ7クス<19)I
J、、A氏から0氏までの4人のプレーヤーの各ホール
の全スコアを表示するスー17表示パネル(29)を有
すると共に、4人のプレーヤーの名前欄切換キー(30
)と、スコアをメモリーさけ−るための入力用テンキー
(31)とを有する。
FIG. 3 is a plan view of the control box. As is clear from this drawing, the sketch [Coalbo/Cus (19)]
has a selector knob (28) for mode switching, and this knob can be used to select high-speed and low-speed modes 1. -' to determine the operation mode of the golf car (・.
It has a Sue 17 display panel (29) that displays all the scores for each hole of the four players from Mr. A to Mr. 0, and also has a name field switching key (30) for the four players.
) and an input numeric keypad (31) for storing scores in memory.

(32)は各走行モードのスタートスイッチキーである
。尚コントロールボックス(19)のあいた位置に時刻
及びプレ一時間を表示する表示手段(33)を設()て
もよい。この表示手段〈33)は、第4図に示すように
、時刻・経過時間の表示パネル(34〉と、時刻修正キ
ー(35)<36)と、経過時間のスタート・ストンブ
キー(37)及びリセントキー(38)とを備える。
(32) is a start switch key for each driving mode. In addition, a display means (33) for displaying the time and play time may be provided in an open position of the control box (19). As shown in Fig. 4, this display means (33) includes a display panel (34) for displaying the time and elapsed time, time adjustment keys (35) and <36), a start/stroke key (37) for elapsed time, and a recent key. (38).

第5図はハンドルブレーキ部の要部断面図である。この
図面において、フレーム主体(2)からなるハンドル(
39)と共に手で握られるブレーキレバ120)は、ピ
ンク40)で枢支され、ねしりハイ=(41)及びヘリ
カルハネク42)にで図示位置にイ・I勢きれている。
FIG. 5 is a sectional view of the main part of the handle brake section. In this drawing, the handle (2) consists of a frame main body (2).
The brake lever 120), which is held by hand together with 39), is pivotally supported by a pin 40), and is in the illustrated position at the tension high level (41) and the helical lever 42).

この状態ではブレーキレバー(20〉に設置づたスイッ
プー操作板(43)の第1部位<44)が第1マイクロ
スイツチ(45)をオン状態にしている。フレーキレバ
ー(20)は、握る強さにより2段の動作をする。即ち
、ブレーキレバー〈20)を弱く握ると、第1部位(4
4)が反時バ]方向に回動し−C,第1マイクロスイッ
チ(45)がオンからオフに変り、回生、発電及び電磁
の各ブレーキを順次作動さ七、カー1・本体(1)を停
止t uる。ブレーキレバー(20)をきらに強く握る
と、スイッグ操作体(43)の第2部位(46)が第2
マイクロスイツチ(47〉をオンにし、これにより、発
電及び電磁の両ブレーキを同時に作動させ、カート本体
(1)を急停止す−る。
In this state, the first portion <44) of the switch operation plate (43) installed on the brake lever (20>) turns on the first micro switch (45). The flake lever (20) operates in two stages depending on how hard it is gripped. In other words, when the brake lever (20) is squeezed weakly, the first part (4)
4) rotates in the counterclockwise direction -C, the first micro switch (45) changes from on to off, and the regeneration, power generation, and electromagnetic brakes are activated in sequence. Stop. When the brake lever (20) is squeezed firmly, the second part (46) of the swivel operating body (43)
The micro switch (47) is turned on, thereby simultaneously operating both the electric generation and electromagnetic brakes to bring the cart body (1) to a sudden stop.

次に第6図はコルフカートの電気回路図である。この図
面において、誘導線(18)から発生する交番磁界は、
第1の一対の検出コイル(16a)(16b)にて検出
され、増幅器(48a>(48b)で夫々増幅され、l
■流リレベル変換される。各増幅器の出刃(J、差動比
較増幅器(49)にて差動比較され、そのILlし偏差
出力はチョッパ回路(50)iこ入力される。
Next, FIG. 6 is an electrical circuit diagram of the Corfu cart. In this drawing, the alternating magnetic field generated from the guide wire (18) is
It is detected by the first pair of detection coils (16a) (16b), and amplified by the amplifiers (48a>(48b), respectively.
■ Flow relevel conversion is performed. A differential comparison amplifier (49) performs a differential comparison between the outputs of each amplifier, and the difference output from the differential comparison amplifier (49) is inputted to a chopper circuit (50).

このチョ/バ回路はパルス幅変調回路で構成され、Ii
i+記比較偏差出刃が大きい程チョンバ回路(50)の
出力パルス幅も大きくなり、駆動回路<51)の出力も
大きく、角度制御モータ(1o)の作動範囲を大とし、
キャスタ(9)を誘導線(18)に沿う方向、即ち前記
比較偏差出力が小きくなる方向に制御する。このように
して比較偏差出力が小きくなると、それに応してチョッ
パ回路(5o)の出力パルス幅もノJ・さくなり、角度
制御モータ(1o)の出力も小さくなり、かくしてキャ
スタ(9)をして誘導線(1,8N二を走行さセる。誘
導線(18)がら外れたキヘ・メクを修正する軌跡特性
を第7図に示す。また角度制御モータの回転力特性を第
8図に承り。これらの図面においで、実線特性(52λ
(53)は実施例によるもの、破線特性<54)(55
)は従来装置によるものを示し、この従来装置の特性に
おいては、角度制御モータ(10)あるいはキャスタ(
9)のあそび範囲(W)を越えた時点あるいは位置で角
度側御モータ(lO〉が作動開始するに対し、実施例に
おいでは、常時角度制御モータ(lO)がブヨツバ回路
(50)の出力に基いて作動し、キャスタ(9)をして
、誘導線(18)上を走行させる。尚第7図及び第81
図において、一点鎖線特性(56)(57)は、あそひ
範囲(w)を設けた場合である。
This Cho/ba circuit is composed of a pulse width modulation circuit, and Ii
The larger the i+ comparative deviation blade, the larger the output pulse width of the chomba circuit (50), the larger the output of the drive circuit <51), the larger the operating range of the angle control motor (1o),
The caster (9) is controlled in the direction along the guide line (18), that is, in the direction in which the comparative deviation output becomes smaller. In this way, when the comparative deviation output becomes smaller, the output pulse width of the chopper circuit (5o) also becomes smaller, and the output of the angle control motor (1o) also becomes smaller, and thus the caster (9) Figure 7 shows the trajectory characteristics for correcting the deviation from the guide line (18). Figure 8 shows the rotational force characteristics of the angle control motor. In these drawings, the solid line characteristic (52λ
(53) is based on the example, broken line characteristic <54) (55
) indicates a conventional device; the characteristics of this conventional device include angle control motor (10) or caster (
While the angle side control motor (lO) starts operating at the point or position when the play range (W) of 9) is exceeded, in the embodiment, the angle control motor (lO) is always operated at the output of the sloppy circuit (50). It operates based on the casters (9) and runs on the guide wire (18).
In the figure, the dashed-dotted line characteristics (56) and (57) are for the case where a play range (w) is provided.

第6図に戻っ1、り58)は駆動車輪(3)<3)を駆
動する駆動モータにして、電機子(59)、直巻界磁コ
イル(60)及び分巻界磁コイル(61)からなり、電
機子(59)及び直巻界磁コイル(60)の直列回路は
、直巻駆動回路〈62)及び電/iC検出抵抗(6幻を
介して、蓄電池端子(64)に接続され、分巻界磁コイ
ル(61)は分巻駆動回路(65)を介して蓄電池端子
(64)に接続される。また、電機子り59)と電流検
出抵抗(63)の直列回路と並列に発電ブレーキ回路(
66)が設けられている。直巻駆動回路り62)はパル
ス幅変調回路を含み、分巻駆動回路(65)はパルス幅
変調回路り67)により制御され、この変調回路(67
)には以下のように信号が入力きれる。
Returning to Fig. 6, 1 and 58) are the drive motors that drive the drive wheels (3)<3), and the armature (59), series-wound field coil (60), and shunt-wound field coil (61). The series circuit of the armature (59) and the series field coil (60) is connected to the storage battery terminal (64) via the series drive circuit (62) and the electric/iC detection resistor (6). , the shunt field coil (61) is connected to the storage battery terminal (64) via the shunt drive circuit (65).Also, the shunt field coil (61) is connected to the storage battery terminal (64) via the shunt drive circuit (65). Electrical brake circuit (
66) is provided. The series drive circuit 62) includes a pulse width modulation circuit, and the shunt drive circuit (65) is controlled by a pulse width modulation circuit 67).
) can input signals as follows.

即t)、キ\・スフ(9)に取付(りた磁石片(22〉
からの磁気変化を、キャスタソレーム(12ンに取ト1
(’Jた磁気センs)°−(21)にて検出し、この検
出出力をF−V変換回路(68)に大カリ−る。この変
換回路(68)の出力特イ1゛を第9図(イ)に示す。
Attach the magnet piece (22) to the key (9).
The magnetic change from
('J magnetic sensor s)°-(21) detects, and sends this detection output to the F-V conversion circuit (68). The output characteristic of this conversion circuit (68) is shown in FIG. 9(A).

磁気センサ−(21)の出力は、特性(69)で示す如
く走行速度が大になるにつれ又速度電圧が大きくなるも
のであるに対し、変換回路出力は特性(70〉で示す如
く、走行速度か大になるにつれて速度電圧が小さくなる
ように特性(69)を反転したものである。この変換回
路出力は走行速度に対応した直流レベルの電圧(Va)
として、速度変化量検出回路(71)、差動増幅器(7
2)の−力の入力端子及び加算増幅器(73〉の一方の
入力端子に夫々人力され、検出回路(71)の出力は、
゛フィシ1コブロセツザーを有fる制御回路(74)に
人力される。差動増幅器(72)の他方の入力端子には
、目標速度設定回路(75)の出力が人力される。この
設定回路(75)の出力は、第9図(ロ)に示す特性(
76)から明らかな如く、目標速度に対応した設定電圧
(Vb)であり、変換回路(68)の実走行速度に対応
する電圧(Va)と目標速度電圧(Vb)の差を差動増
幅器(72)にて検出し、この増幅器り72)の利得を
改とすると、差動増幅器(72)の出力はtX(Vb−
V2)となり、この出力は加算増幅器(73〉の他方の
入力端子に入力され、この増幅器出力としてVa+c(
(Vb−Va)を得、この出力により、パルス幅変調回
路(67〉のパルス幅制御信号とし、分巻駆動回路(6
5)の制御により分巻界磁をチョッパ制御する。駆動モ
ータ(5B)の特性は分巻特性であり、分巻界磁のオン
・デユティ−と走行速度は反比例し、オン・デユティ−
が高くなると走行速度は低くなり、オン・デユティ−1
00%のとき、たとえは最低速度3 Km/Hとなる。
The output of the magnetic sensor (21) is such that the speed voltage increases as the running speed increases, as shown in characteristic (69), whereas the output of the converter circuit increases as the running speed increases, as shown in characteristic (70>). The characteristic (69) is inverted so that the speed voltage decreases as the speed increases.The output of this conversion circuit is a DC level voltage (Va) corresponding to the traveling speed.
, a speed change detection circuit (71), a differential amplifier (7
2) - is input to the power input terminal and one input terminal of the summing amplifier (73), respectively, and the output of the detection circuit (71) is
It is manually operated by a control circuit (74) having a controller. The output of the target speed setting circuit (75) is input to the other input terminal of the differential amplifier (72). The output of this setting circuit (75) has the characteristics (
As is clear from 76), the set voltage (Vb) corresponds to the target speed, and the difference between the voltage (Va) corresponding to the actual running speed of the conversion circuit (68) and the target speed voltage (Vb) is calculated by the differential amplifier ( 72), and if the gain of this amplifier 72) is changed, the output of the differential amplifier (72) is tX(Vb-
V2), and this output is input to the other input terminal of the summing amplifier (73), and the output of this amplifier is Va+c(
(Vb-Va) is obtained, and this output is used as a pulse width control signal for the pulse width modulation circuit (67), and is used as a pulse width control signal for the shunt drive circuit (67).
The shunt field is chopper controlled by the control in 5). The characteristics of the drive motor (5B) are shunt characteristics, and the on-duty of the shunt field and the running speed are inversely proportional, and the on-duty
As the value increases, the traveling speed decreases, and on-duty-1
For example, when the speed is 00%, the minimum speed is 3 Km/H.

第9図(ハ)はパルス幅変調回路(67)の入力端子に
対する走行速度の特性(77)と分巻界磁オン・テユテ
イーの特性(78〉を示す。特性(78)から明らかな
如く、オン・デユティ−とパルス幅変調回路(67)の
入力端子は比例関係にあるため、この入力電圧即ち加算
増幅器(73)の出力電圧が高くなることは、特性(7
7)から明らかなように走行速度が低下することを示す
。今、速度設定目標値が5 km/旧こ対し、実 。
FIG. 9(c) shows the running speed characteristic (77) and the shunt field on-tightness characteristic (78) for the input terminal of the pulse width modulation circuit (67).As is clear from the characteristic (78), Since the on-duty and the input terminal of the pulse width modulation circuit (67) are in a proportional relationship, the increase in this input voltage, that is, the output voltage of the summing amplifier (73), is due to the characteristic (7).
7) clearly shows that the running speed decreases. Currently, the speed setting target value is 5 km / compared to the old one.

走行速度か6Km/Hとし、差動増幅器(72)の利得
りが2イ8とすると、F−V変換回路(68〉の出力(
Va)は4■であり、また設定速度電圧(Vb)は5V
であるから、加算増幅器<73)の出力はVa+(x(
Vb −Va)−6Vとなる。このため第9図()旬力
箋ら加算増幅器(73)の出力即ち/<ルメ幅変調回路
(67)の大力電圧6■の時、目標走行速度番よ5 K
m/Hと々゛す、実走行速度6にm/Hを5 Km/H
となるようtこ分巻界磁フィル(61)の界磁電流を制
御する。
If the traveling speed is 6 Km/H and the gain of the differential amplifier (72) is 2-8, the output of the F-V conversion circuit (68) is
Va) is 4■, and the set speed voltage (Vb) is 5V.
Therefore, the output of the summing amplifier <73) is Va+(x(
Vb-Va)-6V. Therefore, when the output of the summing amplifier (73) in FIG.
m/H increases, m/H increases to 5 Km/H to actual traveling speed 6
The field current of the t-turn field filter (61) is controlled so that

而して、パルス幅変調回路(67)には、加算増l1l
si器(73)の出力の他に、ソフト加速回路り79)
σ)1月力が入力され、この2人力の内、電圧の高11
方の人力にてパルス幅変調回路(67)が作動する。ラ
フ1〜加速回路り79)は、制御回路(74)の出力(
ごて作動−4−るものであり、カート本体(1)の急減
速直後の実速度(vO)から復帰すべき高速度(vl)
に移行する場合、即ら分巻界磁のオン・デユティ−を速
度(vl)の対応値にして急加速させるのではなく、オ
ン・テユテイーを速度(vO)の対応値力)ら速度(v
l)の対応値へ徐々にその差を小妨<シて行き、急加速
ではなく、ゆるやかに加速して、(vl)の速度に4−
るものである。具体的には、路面に埋設した永久磁石(
24)からの低速指示信号を検出セン°リー(25)が
検出して、増幅器(80)にて増幅され、波形整形回路
(81)を経て、制御回路(74)に入力され、カート
速度を減速した後、一定のタイマ一時間後に制御回路(
74)からソフト加速回路(79)に指令が出される。
Therefore, the pulse width modulation circuit (67) includes an addition amplifier l1l.
In addition to the output of the SI device (73), the soft acceleration circuit 79)
σ) January power is input, and among these two power, 11 with high voltage
The pulse width modulation circuit (67) is activated by human power. Rough 1 to acceleration circuit 79) is the output of the control circuit (74) (
The high speed (vl) to be recovered from the actual speed (vO) immediately after sudden deceleration of the cart body (1)
In other words, instead of changing the on-duty of the shunt field to a value corresponding to the velocity (vl) and rapidly accelerating it, the on-duty is changed from the corresponding value of the velocity (vO) to the velocity (vl).
Gradually reduce the difference to the corresponding value of l), accelerate not suddenly but slowly, and reach the speed of (vl) by 4-
It is something that Specifically, permanent magnets (
Detection sensor (25) detects the low speed instruction signal from 24), amplifies it in amplifier (80), passes through waveform shaping circuit (81), inputs it to control circuit (74), and adjusts the cart speed. After deceleration, the control circuit (
A command is issued from 74) to the soft acceleration circuit (79).

この指令によりソフト加速回路(79)の出力は、低速
度(■0)に対応リーる電圧(VO)から高速度(vl
)に対する電圧(Vl)−15で徐々に下がっていき、
これによりノくルス幅変調回路(67〉の出力である分
巻界磁のオン・テユテイーも徐々に下がり、走行速度を
高速度(vl)に向って徐々に上っていく。
With this command, the output of the soft acceleration circuit (79) changes from the voltage (VO) corresponding to low speed (■0) to high speed (vl).
), the voltage (Vl) gradually decreases by -15,
As a result, the on-state of the shunt field, which is the output of the Norms width modulation circuit (67), gradually decreases, and the running speed gradually increases toward a high speed (vl).

次に目標速度設定回路(75)は次の3要素の信号が入
力されるものであり、減速成分が太きl/)信号程、そ
の入力信号が優先するものである。この3要素は、カー
ブの大きさによる要素と、障害物との距離要素と、高低
速の指令要素である。フッ−′ブの大ききによるg素は
、誘導線(18)の誘道路にお0るカーブの小きい程、
速度を落と1必要があるためであり、障害物との距離要
素は、障害物とカート本体(1)との距離が/J免くな
る程、速度を落とす必要があるためである。また高低速
指令要素は、高速走行あるいは低速走行時の速度を、駆
動モータ(58〉の出力の範囲内で所望値に自由に設定
し、制御回路(74)からの指令により、速度を切換え
るために必要とするものであり、速度設定切換回路(8
2)の出力が目標速度設定回路(75)に入力きれる。
Next, the target speed setting circuit (75) receives signals of the following three elements, and the thicker the deceleration component of the l/) signal, the higher the priority is given to the input signal. These three elements are a curve size element, a distance element to an obstacle, and a high/low speed command element. The g factor due to the size of the hub is as follows:
This is because the speed needs to be reduced by 1, and the distance factor from the obstacle is such that the speed needs to be reduced as the distance between the obstacle and the cart body (1) becomes /J. In addition, the high/low speed command element freely sets the speed during high speed or low speed travel to a desired value within the output range of the drive motor (58), and switches the speed by a command from the control circuit (74). speed setting switching circuit (8
The output of step 2) can be input to the target speed setting circuit (75).

さてカーブの太きびによる要素の出力は次のようにして
得られる。即ち、第2の一対の検出コイル(17a)<
17b)は、第1の一対の検出コイル(16a)(16
b)の前方にあり、この第1の一対の検出〕コイル間の
中心点(P)は、第10図に示1ように、カーブ走行路
においても誘4線(18)の真上にある。これに対し、
第2の一対の検出コイル(17a)(17b)間の中心
点(Q>は、直線走行路であれば、誘導線(18)の真
上に位置するため、これらの検出=1イル<17a>(
17b)の各出力を増幅器<83a)(83b)にて夫
々増幅し、その出力を差動増幅器(84)にで差動比較
すると、その偏差出力は零である。ところがカーブ走行
路においては、第10図から明らかなように、一方の検
出フィル(17b)が他方の検出コイル(17a)に比
し、誘導線(18)からの離間距離が大きくなるため、
その一方の検出コイル(17b)の出力が/J\さく、
差動増幅器〈84)の偏差出力が大きくなり、この偏差
出力は目標速度設定回路(75)に入力きれて、目標設
定速度を小きくするように作用する。
Now, the output of the element due to the thickening of the curve can be obtained as follows. That is, the second pair of detection coils (17a)<
17b) is a first pair of detection coils (16a) (16
b), and the center point (P) between the first pair of detection coils is directly above the lead 4 wire (18) even on a curved road, as shown in Fig. 10. . In contrast,
Since the center point (Q> between the second pair of detection coils (17a) and (17b) is located directly above the guide line (18) on a straight running road, these detection = 1 coil<17a >(
When the respective outputs of 17b) are amplified by amplifiers 83a and 83b, respectively, and the outputs are compared differentially by a differential amplifier (84), the deviation output is zero. However, on a curved road, as is clear from FIG. 10, one detection filter (17b) is separated from the guide wire (18) by a larger distance than the other detection coil (17a).
The output of one of the detection coils (17b) is /J\saku,
The deviation output of the differential amplifier (84) becomes large, and this deviation output can be input to the target speed setting circuit (75), thereby acting to reduce the target setting speed.

次に障害物との距離要素は、距離センサー(27〉から
散剤された超音波が障害物(85)で反射し、その反射
波が距離センサー(27)に受信諮れ、この発信から受
信までの時間間隔は、計測回路(86〉に−C計測され
、障害物(85)までの距離を電圧とし−C出力し、目
標速度設定回路(75)に人力される。計測回路(86
)の出力は障害物との距離が短かくなる程大きくなり、
ある一定の距離以上近ずくと、判断回路(87〉を経て
、停止18号が制御回路(74〉に入力さtl、発′准
フレーキ回路(66)と′frLmブレーキ回路(88
)を同時に作動d仕、カート本体(1)を急停車させる
Next, the distance element from the obstacle is that the ultrasonic wave dispersed from the distance sensor (27) is reflected by the obstacle (85), the reflected wave is received by the distance sensor (27), and from this transmission to reception. The time interval is measured by -C in the measurement circuit (86), and the distance to the obstacle (85) is outputted as a voltage -C, which is manually input to the target speed setting circuit (75).
) output increases as the distance to the obstacle decreases,
When approaching a certain distance, stop No. 18 is input to the control circuit (74) via the judgment circuit (87).
) are activated at the same time to bring the cart body (1) to a sudden stop.

t’−%低速の指令要素は、駆動モータ(58)の分巻
界−7「ル制御Cコよって設定できる範囲内で、高速光
イ“J速度と低速走行速度に別個に設定されるものであ
り、その速度切換えは、路面トの永久磁石(24)がら
の低速信号を検出センサー(25)にて検出し、波形も
(形l(]1路(81)にて低速信号とじで判定され、
制御311回路〈74ンから低速指令が速度設定切換回
路(82)に5.えられ、この切換回路(82)がら速
度指令が目標速度設定1j4路(75)に入力される。
The t'-% low speed command element is set separately for the high speed and low traveling speed within the range that can be set by the shunt field of the drive motor (58). The speed change is determined by detecting the low speed signal from the permanent magnet (24) on the road surface with the detection sensor (25), and determining the waveform by binding the low speed signal at the road (81). is,
Control 311 circuit <74> The low speed command is sent to the speed setting switching circuit (82) 5. The switching circuit (82) inputs the speed command to the target speed setting 1j4 path (75).

その速度指令1支、タイマ一時間後に高速指令が出るこ
と−oII述のとおりである。
The high speed command is issued after one hour of the speed command, as described in oII.

ところで路面下に埋設された永久磁石(24)から2種
の侶号研束が表われ、この一方は低速信号、他力は停止
信号とし1検出センサー(25)及び波形整形回路(8
1)にて検出きれる。即ち第11図(イ)に示すよ−)
に、永久磁石(24〉のN極が路面側であるとき、検出
セン→)−(25)の出力は同図(ロ)に示すものとな
り、又同図(ハ)の如く永久磁石(24)のS極が路面
側であるときには、検出センサー(25)の出力は同図
(ニ)となる。このように検出センサー(25)の出力
が停止点信号のとさは、ブレーキレバー<20)を弱く
握る場合と同様に、回生、発電及び電磁の各ブレーキ回
路が順次作動してカート本体(1)を停止させる。
By the way, two types of power sensors appear from the permanent magnet (24) buried under the road surface, one of which is a low speed signal and the other is a stop signal, and one detection sensor (25) and a waveform shaping circuit (8).
1) can be detected. That is, as shown in Figure 11 (a).
When the N pole of the permanent magnet (24) is on the road surface side, the output of the detection sensor →)-(25) is as shown in the same figure (b), and as shown in the same figure (c), the permanent magnet (24) ) is on the road surface side, the output of the detection sensor (25) is as shown in (d) in the figure. In this way, when the output of the detection sensor (25) reaches the stop point signal, the regeneration, power generation, and electromagnetic brake circuits are activated in sequence, similar to when the brake lever <20) is squeezed weakly. ) to stop.

而して、カート本体(1〉が始動するに際して、コン1
〜ロールボツクス(19)のモード切換用セレクタつま
み(28)により、駐車以外の所望のモードとし、スタ
ートスイッチキー<32)を押すと、制御回路(74)
からのスタート信号により、ソフトスタート回路〈89
〉が作動する。この回路出力により、直巻駆動回路(6
7)内のパルス幅変調回路のデユティ−を0%から10
0%まで徐々に上げ、駆動モータ(58)の直巻界磁コ
イル(60)及び電機子(59)の直列回路に流れる平
均電流を0%から100%に徐々に増加するため、駆動
モータ(58)のトルクも44に上り、始動時の衝撃が
なく、滑らかな始動動作が行なわれる。
Therefore, when the cart body (1) starts, the controller 1
- Select a desired mode other than parking using the mode switching selector knob (28) of the roll box (19) and press the start switch key <32), the control circuit (74)
The soft start circuit <89
> is activated. This circuit output allows the series drive circuit (6
7) Adjust the duty of the pulse width modulation circuit from 0% to 10
The drive motor ( The torque of 58) has also increased to 44, and there is no shock at the time of starting, and smooth starting operation is performed.

?fE 42 r−:IX 1fiC14電流検出抵抗
(63)を流れ、’?IE 流検出回路(90)及び電
流変化■検出回路(91)にて監視されており、過人電
’lJf、回生型7Il[及び電流変化が検出されて、
人々に対応した信号か制御回路(74)に送られ、駆動
回路(62)(65)及びブレーキ回路(66)(88
)等を制御して、カー1一本体(1)の走行を制御する
? fE 42 r-: IX 1fiC14 Flows through the current detection resistor (63), '? It is monitored by the IE current detection circuit (90) and current change detection circuit (91).
Signals corresponding to people are sent to the control circuit (74), drive circuits (62) (65) and brake circuits (66) (88).
) etc. to control the running of the car 1 body (1).

永久磁石(24)からの停止点信号あるいはブレーキレ
バー(20)を弱く握る場合のように、第12図に示1
−停止信壮(92)を検出1−ると、制御回路(74)
からの信号によりラフ1−スタート回路(89)をオフ
し、これにより直巻駆動回路(62)をオフする。この
ため電機子(59)への給電がなくなるが、カー1本体
(1)は慣性力で動いでおり、この慣性力を弱め、速や
かに停止させる為、回生、発電及び電磁の各ブレーキの
順に作動する。この場合に、制御回路(74)から速度
設定切換回路(82)に低速信号を与え、これにより分
巻界磁が最大となり、駆動モータ(58)には回生ブレ
ーキがかかる。このモータの回転により生ずる電力が蓄
電池に給電される。
The stop point signal from the permanent magnet (24) or the brake lever (20) shown in FIG.
- When the stop Shinso (92) is detected 1-, the control circuit (74)
The rough 1-start circuit (89) is turned off by a signal from the 1-start circuit (89), which turns off the series drive circuit (62). As a result, power is no longer supplied to the armature (59), but the car 1 main body (1) moves by inertia, and in order to weaken this inertia and stop it quickly, regeneration, power generation, and electromagnetic brakes are applied in that order. Operate. In this case, a low speed signal is applied from the control circuit (74) to the speed setting switching circuit (82), whereby the shunt field becomes maximum and regenerative braking is applied to the drive motor (58). Electric power generated by the rotation of this motor is supplied to the storage battery.

この回生ブレーキにより速度即ち駆動モータ(58)の
回転速度が低下するにつれて、発′rL電圧も低くなり
、蓄電池電圧以下になると回生型7fiCが流れなくな
る。この回生電流が流れなくなるタイミングを電流検出
回路(90)にて検出し壬、回生型711E終r信号(
93)を制御回路り74〉に送り、これにより発電ブレ
ーキ回路(66)を動作させ、発電ブレーキをかりる。
As the speed, that is, the rotational speed of the drive motor (58) decreases due to this regenerative braking, the generated rL voltage also decreases, and when the voltage falls below the storage battery voltage, the regenerative type 7fiC will no longer flow. The current detection circuit (90) detects the timing at which this regenerative current stops flowing, and then the regenerative type 711E end r signal (
93) is sent to the control circuit 74>, thereby operating the electromagnetic brake circuit (66) to apply the electromagnetic brake.

この発電ブレーキ′を流も回転速度の低下により次第に
小さくなり、一定値以下になると、この状態を電fiE
検出回路(90)が検出して電磁ブレーキ開始信号(9
4)を出力する。この出力を受け−C制御回路(74〉
は電磁ブレーキ(88)を作動さゼ、駆動モータ(58
)を停止する。第12図中(a)の範囲のものは、平地
走行途中にブレーキが作動する場合の各ブレーキ電/i
ltの波形を<95)(96)(97)で示している。
As the rotational speed decreases, the current flowing through this electrically generated brake' gradually decreases, and when it becomes below a certain value, this state can be resolved by
The detection circuit (90) detects the electromagnetic brake start signal (9
4) Output. Receiving this output -C control circuit (74)
operates the electromagnetic brake (88), and the drive motor (58)
). In the range (a) in Figure 12, each brake electric power/i is used when the brake is activated while driving on flat ground.
The waveforms of lt are shown as <95) (96) (97).

また回生ブレーキ及び発電ブレーキは、最大作動時間が
制御回路(74)内で設定されており、この最大作動時
間内に回生ブレーキ電流が零になる場合、あるいは発電
ブレーキ電流が所定値以下になる場合には、夫々電71
1[検出回路(90)の出力により、ブレーキか切換え
られ、ブレーキ電流がその最大作動時間内に零あるいは
Jフr定値以下にならない場合には、その最大作動Bz
間後にブレーキが切換えられる。第12図中、回生ブレ
ーキの最大作動時間は(T1)に設定され、発電ブレー
キの最大作動時間は(T2)に設定されている。また同
図中、(b)の範囲のものは非常停止に際してのブレー
キ電?AE波形を(98)(99)でパし、(c)の範
囲のものは、下り反走行時のブレーキ電流波形を(10
0)(101)(102)で示す。同図中期間(T3)
は発電ブレーキと電磁ブレーキが同時に作動Jる期間で
ある。
Furthermore, the maximum operating time of the regenerative brake and the generating brake is set within the control circuit (74), and if the regenerative braking current becomes zero within this maximum operating time or the generating brake current becomes less than a predetermined value. There are 71 stations each.
1 [If the brake is switched by the output of the detection circuit (90) and the brake current does not become zero or below the JF r fixed value within its maximum operation time, its maximum operation Bz
After a while, the brakes are switched. In FIG. 12, the maximum operating time of the regenerative brake is set to (T1), and the maximum operating time of the generating brake is set to (T2). Also, in the same figure, is the range (b) used for brake electricity during an emergency stop? The AE waveform is divided by (98) and (99), and for the range (c), the brake current waveform during downhill travel is changed to (10).
0) (101) (102). Period in the same figure (T3)
is the period in which the electromagnetic brake and the electromagnetic brake are activated simultaneously.

(へ)発明の効果 以上の如く本拠明による電動車は、路面又はモルレール
上の走行途中において、ブレーキイ8号を検知して、回
生ブレーキ、発電ブレーキ及び電磁ブレーキを作動さけ
る電動車であって、回生電流又は発電電流が所定値以下
になるのを検出する電流検出手段と、この手段の出力に
基いてブレーキの種類を切換える制御回路手段とを備え
てなるものであるから、次の効果を有する。即ち、登り
坂で停車する場合、回生ブレーキあるいは発電ブレーキ
により、走行速度が零になると、直ちに電磁ブレーキが
作動するので、この時点で電動車本体をロックして停車
することができ、従来装置のように電動車本体が後退す
る不都合がない。また下り坂で停車する場合、回生ブレ
ーキ及び発電ブレーキが十分作動した後に、電磁ブレー
キが作動することになり、電動車本体がスリップするの
が少なくなる。
(f) Effects of the invention As described above, the electric vehicle according to Akira Motomoto is an electric vehicle that detects brake No. 8 while running on a road surface or a mole rail, and avoids operating a regenerative brake, a generating brake, and an electromagnetic brake. , comprises a current detection means for detecting that the regenerative current or generated current becomes less than a predetermined value, and a control circuit means for switching the type of brake based on the output of this means, so that the following effects can be achieved. have In other words, when stopping on an uphill slope, the electromagnetic brake is activated as soon as the traveling speed reaches zero due to regenerative braking or generation braking, so the electric vehicle can be locked and stopped at this point, which is not possible with conventional devices. There is no inconvenience of the electric vehicle body moving backwards. Furthermore, when stopping on a downhill slope, the electromagnetic brake is activated after the regenerative brake and the electric generation brake have sufficiently activated, which reduces the possibility of the electric vehicle body slipping.

尚本発明はモルレール上を走行する電動車にも適用でき
る。
Note that the present invention can also be applied to electric vehicles that run on mole rails.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第12図は本発明の一実施例を示し、第1図
はロルフカートの斜視図、第2図はフルフカートの前方
部の部分拡大断面図、第3図はコントロールボックスの
平面図、第4図はコントロールボックスの時計表示部の
平面図、第5図はハンドルブレーキ部の要部断面図、第
6図はゴルフヵ−1−の電気回路1図、第7UyJはキ
ャスタの軌跡特性I図、第8図は角度制御モータの回転
力特性図、第9図(イ)(LI〉(ハ)はF−V変換回
路の出力特性図、目標速度設定回路の出力特性図及び走
行速度特性図、第10区はコルフカートの動作説明用略
区、第11図(イ)及び(ハ)は永久磁石と検出センサ
ーの関係説明図、同図(ロ)及び(ニ)は検出センナ−
の出力特性図、第12図はブレーキ電流特性図である。 (1) 電動車本体(カート本体)、(90)・電流検
出手段、(74〉・・・制御回路手段。 PWM/V77を圧(V) 第11 (イ) 口 (J\) ★乏 1図 (ロ) → (ニ) 叶
Figures 1 to 12 show an embodiment of the present invention, with Figure 1 being a perspective view of the Rolf Cart, Figure 2 being a partially enlarged sectional view of the front part of the Rolf Cart, and Figure 3 being a plan view of the control box. , Fig. 4 is a plan view of the clock display part of the control box, Fig. 5 is a sectional view of the main part of the handle brake part, Fig. 6 is a diagram of the electric circuit 1 of the golf car-1, and Fig. 7 UyJ is the locus characteristic I of the caster. Figure 8 is a rotational force characteristic diagram of the angle control motor, Figure 9 (a) (LI> (c) is an output characteristic diagram of the F-V conversion circuit, an output characteristic diagram of the target speed setting circuit, and a running speed characteristic diagram) In the figure, Section 10 is an abbreviated section for explaining the operation of the Corfu Cart. FIGS. 11 (A) and (C) are diagrams explaining the relationship between the permanent magnet and the detection sensor.
FIG. 12 is a brake current characteristic diagram. (1) Electric vehicle body (cart body), (90), current detection means, (74>...control circuit means. PWM/V77 pressure (V) 11th (A) Mouth (J\) ★Poor 1 Diagram (b) → (d) Leaf

Claims (1)

【特許請求の範囲】 (1)路面又はモノト−ル上の走行途中において、ブレ
ーキ信号を検知して、回生ブレーキ、発電ブレーキ及び
電磁ブレーキを作動させる電動車であって、回生電流又
は発電電流か所定値以下になるのを検出する電流検出手
段と、この手段の出力に基い又ブレーキの種類を切換え
る制御回路手段とを備えてなる電動車。 <2) +’+ii記制御回路手段は、回生ブレーキ及
び発電フし一−キの作動時間を規正するタイマ一手段を
含Ji、回生電流又は発電電流がこのタイマ一手段のタ
イマ一時間内に前記所定値以下に低下しないときには、
+’+ii記タイマ一時間後に前記制御回路手段にてブ
レーキの種類を切換えるものである特許請求の範囲第1
項記載の電動車。 (3)1°11前記制御回路手段は、前記ブレーキ信号
の種類により、回生ブレーキ、発電ブレーキ及0・電磁
ブレーキをこの順に切換える第1態様と、発電ブレーキ
及び電磁ブレーキのみを同時に作動キ七る第2態様とを
有するものであ乞特許請求の範囲第1項記載の電動車。
[Scope of Claims] (1) An electric vehicle that detects a brake signal while traveling on a road surface or a monorail and operates a regenerative brake, a generating brake, and an electromagnetic brake, which operates a regenerative brake or a generated current. An electric vehicle comprising: a current detecting means for detecting a current falling below a predetermined value; and a control circuit means for switching the type of brake based on the output of the means. <2) The control circuit means described in +'+ii includes a timer means for regulating the operating time of the regenerative brake and the power generation brake, and the regenerative current or the generated current is within one hour of the timer means. When the value does not decrease below the predetermined value,
Claim 1, wherein the type of brake is switched by the control circuit means one hour after the timer described in +'+ii.
Electric vehicles listed in section. (3) 1°11 According to the type of the brake signal, the control circuit means has a first mode of switching the regenerative brake, the generating brake, and the 0/electromagnetic brake in this order, and a mode of operating only the generating brake and the electromagnetic brake at the same time. The electric vehicle according to claim 1, which has a second aspect.
JP58178573A 1983-09-26 1983-09-26 Motor-driven vehicle Pending JPS6046701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178573A JPS6046701A (en) 1983-09-26 1983-09-26 Motor-driven vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178573A JPS6046701A (en) 1983-09-26 1983-09-26 Motor-driven vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58155223A Division JPS6048509A (en) 1983-08-24 1983-08-24 Guided electric motor car

Publications (1)

Publication Number Publication Date
JPS6046701A true JPS6046701A (en) 1985-03-13

Family

ID=16050835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178573A Pending JPS6046701A (en) 1983-09-26 1983-09-26 Motor-driven vehicle

Country Status (1)

Country Link
JP (1) JPS6046701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374102U (en) * 1989-11-18 1991-07-25
JP2016010256A (en) * 2014-06-25 2016-01-18 トヨタ自動車株式会社 Vehicle control unit
EP4091858A1 (en) * 2021-05-17 2022-11-23 Kubota Corporation Electric vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262616A (en) * 1975-11-19 1977-05-24 Hitachi Ltd Electric car braking controller
JPS5694905A (en) * 1979-12-28 1981-07-31 Mitsubishi Electric Corp Controlling method for electric vehicle chopper
JPS5893403A (en) * 1981-11-27 1983-06-03 Hitachi Ltd Regenerative brake controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262616A (en) * 1975-11-19 1977-05-24 Hitachi Ltd Electric car braking controller
JPS5694905A (en) * 1979-12-28 1981-07-31 Mitsubishi Electric Corp Controlling method for electric vehicle chopper
JPS5893403A (en) * 1981-11-27 1983-06-03 Hitachi Ltd Regenerative brake controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374102U (en) * 1989-11-18 1991-07-25
JP2016010256A (en) * 2014-06-25 2016-01-18 トヨタ自動車株式会社 Vehicle control unit
US10239530B2 (en) 2014-06-25 2019-03-26 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus for a regenerative braking system based on the battery input power
EP4091858A1 (en) * 2021-05-17 2022-11-23 Kubota Corporation Electric vehicle

Similar Documents

Publication Publication Date Title
US6320336B1 (en) Bicycle with power assisting function
JPS6046701A (en) Motor-driven vehicle
CN209008642U (en) Electric wheeled stairs-mover
JP5021050B2 (en) Golf cart
JP2674999B2 (en) Train drive system
JPS6048512A (en) Guided electric motor car
KR100478595B1 (en) Automatic guided vehicle
JPS6046702A (en) Motor-driven vehicle
JPS60164816A (en) Controller of motor car
JPS6048509A (en) Guided electric motor car
US20050274558A1 (en) Electric vehicle
JPH08205316A (en) Method for controlling speed of electric vehicle
JPS6166924A (en) Recording and reading device for operation of moving body
JP2002321683A (en) Power-assisted bicycle
JP3999982B2 (en) Guided vehicle
JP3650315B2 (en) Control device for small electric vehicle
JPH0359442B2 (en)
KR101074722B1 (en) Controller for motor-drive wheelchair
JP2000334075A (en) Golf cart
JPH0477322B2 (en)
JPH08337192A (en) Motor assisted bicycle
JPS60124708A (en) Guided motor-driven car
JPH05119830A (en) Guided electric motor vehicle
JP2003306139A (en) Golf cart
JPS6216723Y2 (en)