JPS6046516B2 - Overcharge detection method for sealed storage batteries - Google Patents

Overcharge detection method for sealed storage batteries

Info

Publication number
JPS6046516B2
JPS6046516B2 JP51123859A JP12385976A JPS6046516B2 JP S6046516 B2 JPS6046516 B2 JP S6046516B2 JP 51123859 A JP51123859 A JP 51123859A JP 12385976 A JP12385976 A JP 12385976A JP S6046516 B2 JPS6046516 B2 JP S6046516B2
Authority
JP
Japan
Prior art keywords
anode
auxiliary electrode
hydrogen gas
cathode
sealed storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51123859A
Other languages
Japanese (ja)
Other versions
JPS5355748A (en
Inventor
三司 上野
保 城上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51123859A priority Critical patent/JPS6046516B2/en
Priority to DE2746652A priority patent/DE2746652C3/en
Priority to US05/842,889 priority patent/US4143212A/en
Publication of JPS5355748A publication Critical patent/JPS5355748A/en
Publication of JPS6046516B2 publication Critical patent/JPS6046516B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は水素ガス酸化補助極を備えた密閉型蓄電池に係
り、特に過充電時に発生する酸素ガスの検出方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sealed storage battery equipped with a hydrogen gas oxidation auxiliary electrode, and particularly to a method for detecting oxygen gas generated during overcharging.

従来、、ニッケル−亜鉛蓄電池、ニッケル−カドミウム
蓄電池等の密閉型蓄電池においては過充電時に多量の酸
素ガスを発生し、電池内圧力の上昇、容器の膨張、電解
液の漏れによる障害など種々の問題があつた。
Conventionally, sealed storage batteries such as nickel-zinc storage batteries and nickel-cadmium storage batteries generate a large amount of oxygen gas when overcharged, causing various problems such as increased internal pressure, expansion of the container, and failures due to electrolyte leakage. It was hot.

従来、このような障害を取り除くために、充電が完了し
、過充電を検出する方法として以下の如き方法が知られ
ている。(1)電池電圧検出方法、(2)通電量を記憶
させるクーロメーター方法、(3)電池温度上昇や触媒
温度上昇による検出方法、(4)電解液比重変化による
検出1 →μ一:}1−本ーゝμ、゛ Ll1−、Oは
、いずれも検出誤差が大きく、実用上満足できるもので
はなかつた。例えば蓄電池の充電末期の端子電圧を検出
し、過充電を検知する電池電圧検出方法では電池内部抵
抗の変化、充電中の発熱による温度変化等により端子電
圧を一定に保持し難いため過充電の検出が困難であつた
。また他の過充電検出方法として、電池内に酸素ガス吸
収極を設け、この酸素ガス吸収極と陰極との間の電位差
を測定する事により過充電を検出する方法がある。この
方法は過充電時に発生した酸素ガスを、酸素ガス吸収極
と陰極との間に流れる酸素ガス吸収電流として測定する
ものであるが、この方法では酸素ガス吸収極自体が容易
に酸化され、劣化してしまう。そのため感度が悪くなり
、過充電の検出精度が悪くなるという欠点があつた。本
発明は上記の点を鑑み環境温度、充電々流等の影響をう
けず正確に応動する密閉型蓄電池の過充電検出方法を提
供する事を目的とする。
Conventionally, in order to eliminate such a problem, the following method is known as a method for detecting overcharging after charging is completed. (1) Battery voltage detection method, (2) Coulometer method to memorize the amount of energization, (3) Detection method using battery temperature rise or catalyst temperature rise, (4) Detection method using electrolyte specific gravity change 1 →μ1:}1 -Hon-μ, Ll1-, and O all had large detection errors and were not practically satisfactory. For example, in a battery voltage detection method that detects overcharging by detecting the terminal voltage of a storage battery at the end of charging, overcharging is detected because it is difficult to maintain a constant terminal voltage due to changes in battery internal resistance, temperature changes due to heat generation during charging, etc. was difficult. Another overcharge detection method is to detect overcharge by providing an oxygen gas absorption electrode in the battery and measuring the potential difference between the oxygen gas absorption electrode and the cathode. This method measures the oxygen gas generated during overcharging as an oxygen gas absorption current flowing between the oxygen gas absorption electrode and the cathode, but with this method, the oxygen gas absorption electrode itself is easily oxidized and deteriorates. Resulting in. This resulted in a disadvantage that the sensitivity deteriorated and the overcharge detection accuracy deteriorated. In view of the above points, it is an object of the present invention to provide a method for detecting overcharge of a sealed storage battery that responds accurately without being affected by environmental temperature, charging current, etc.

本発明は陽極と、陰極と、前記陽極および陰極間に介在
させたセパレータと、防水処理を施した水素ガス酸化補
助極と、前記陽極および水素ガス酸化補助極間に直列に
接続したダイオードおよび抵抗体とを具備した密閉型蓄
電池において、過充電時に発生する酸素ガスを陽極と水
素ガス酸化補助極との間の電圧変化により検出する密閉
型蓄電池の過充電検出方法てある。
The present invention comprises an anode, a cathode, a separator interposed between the anode and the cathode, a waterproofed hydrogen gas oxidation auxiliary electrode, a diode and a resistor connected in series between the anode and the hydrogen gas oxidation auxiliary electrode. There is a method for detecting overcharge of a sealed storage battery in which oxygen gas generated during overcharging is detected by a voltage change between an anode and a hydrogen gas oxidation auxiliary electrode.

以下本発明方法を用いるのに適した密閉型蓄電池の構成
例を断面的に示す第1図により説明する。
An example of the configuration of a sealed storage battery suitable for use in the method of the present invention will be described below with reference to FIG. 1, which shows a cross-sectional view.

上記密閉型蓄電池は次の如く構成された発電部を備えて
いる。しかしてこの発電部はニッケル化合物を主成分と
する焼結型の陽極層1と、亜鉛化合物を主成分とする陰
極層2とがセパレータ(電解液保持層を含む)3を介し
て積層されており、これを渦巻状に巻回して構成されて
いる。この発電部は一端開口の陰極端子兼用金属容器7
に電気的絶縁を有する熱収縮性チューブ9を介して内装
されている。4は陽極リード、5は陰極リードを示し、
陽極リード4は陽極端子兼用蓋体6と、また陰極リード
5と陰極端子兼用金属容器7とそれぞれ接続されている
。なお陽極端子兼用蓋体6は陰極端子兼用金属容器7の
開口部に電気絶縁材8を介して封止装着されている。ま
た防水処理を施した水素ガス酸化補助極10はセパレー
タ3を介して空芯部に設けられ抵抗体11およびシリコ
ンダイオード12は水素ガス酸化補助極10および陽極
1間に直列に接続されている。なお補助極リード13は
陽極端子兼用蓋体6に耐電解液性の絶縁性樹脂層を介し
て設けられた補助極端子14に接続されている。上記構
成において、充電時に水素ガス酸化補助極は卑方向に分
極されており、充放電、自己放電により発生した水素ガ
スは電気化学的に酸化され水素吸収電流(H2+20H
−→2H20+?つが流れる。しかし過充電時には酸素
ガス発生と同時に水素吸収電流は急激に減少し、水素ガ
ス酸化補助極は陽極電位に対し急激に.貴方向に分極さ
れ、陽極と水素ガス酸化補助極間の電圧は急激に減少す
る。なお充電を中断すると酸素ガスは陰極により殆んど
吸収され、水素ガス酸化補助極の電位は急激に回復する
。従つて陽極と水素ガス酸化補助極間の電圧を測、定す
る事により過充電時の酸素ガス発生に対する急激な電圧
降下が検知される。
The sealed storage battery has a power generation section configured as follows. However, in the power generation section of the lever, a sintered anode layer 1 mainly composed of a nickel compound and a cathode layer 2 mainly composed of a zinc compound are laminated with a separator (including an electrolyte holding layer) 3 interposed therebetween. It is constructed by winding it into a spiral shape. This power generation section has a metal container 7 which also serves as a cathode terminal and has an open end.
A heat-shrinkable tube 9 having electrical insulation is interposed therebetween. 4 indicates the anode lead, 5 indicates the cathode lead,
The anode lead 4 is connected to a lid 6 which also serves as an anode terminal, and the cathode lead 5 and a metal container 7 which also serves as a cathode terminal. The lid 6 which also serves as an anode terminal is sealed and attached to the opening of the metal container 7 which serves as a cathode terminal via an electrical insulating material 8. Further, a waterproofed hydrogen gas oxidation auxiliary electrode 10 is provided in the air core with a separator 3 in between, and a resistor 11 and a silicon diode 12 are connected in series between the hydrogen gas oxidation auxiliary electrode 10 and the anode 1. The auxiliary electrode lead 13 is connected to an auxiliary electrode terminal 14 provided on the lid 6 which also serves as an anode terminal via an electrolyte-resistant insulating resin layer. In the above configuration, the hydrogen gas oxidation auxiliary electrode is polarized in the base direction during charging, and the hydrogen gas generated by charging and discharging and self-discharge is electrochemically oxidized and the hydrogen absorption current (H2 + 20H
-→2H20+? flows. However, during overcharging, the hydrogen absorption current decreases rapidly at the same time as oxygen gas is generated, and the hydrogen gas oxidation auxiliary electrode sharply decreases with respect to the anode potential. It is polarized in the noble direction, and the voltage between the anode and the hydrogen gas oxidation auxiliary electrode decreases rapidly. Note that when charging is interrupted, most of the oxygen gas is absorbed by the cathode, and the potential of the hydrogen gas oxidation auxiliary electrode rapidly recovers. Therefore, by measuring and determining the voltage between the anode and the hydrogen gas oxidation auxiliary electrode, a sudden voltage drop due to oxygen gas generation during overcharging can be detected.

なお前記陽極一陰極間の電圧や陽極一水素ガス酸化補助
極間の電圧を測定するために、例えば第1図に示す如く
、電圧記録計15,16を設ける。ま17は蓄電池充・
電のための電源部を示す。以下本発明方法を適用した具
体例を示す。
In order to measure the voltage between the anode and the cathode and the voltage between the anode and the hydrogen gas oxidation auxiliary electrode, voltage recorders 15 and 16 are provided, for example, as shown in FIG. 1. 17 is for charging the storage battery.
The figure shows the power supply section for the power supply. Specific examples to which the method of the present invention is applied will be shown below.

密閉型蓄電池として、陽極充電容量1.5Ah、陰極充
電容量4.5Ahの単二形ニッケルー亜鉛蓄電池を上記
の如く構成した。なお水素ガス酸化補助極として見かけ
表面積5C71f1厚さ0.3W1の多孔質ニッケル焼
結体を用い水素ガス吸収触媒として白金及び炭化タング
ステンの混合物を含侵させ、防水処理のためにポリテト
ラフルオロエチレンを結着させたものを用いた。また抵
抗体11は100Ω、ダイオード12はシリコンダイオ
ードを用い、それぞれ耐電解液性樹脂で被覆されている
。電解液は酸化亜鉛を飽和した8規定水酸化カリウム水
溶液を用ノいた。第2図は上記の如く構成されたニッケ
ルー亜鉛蓄電池を300mA16時間充電した際の陽極
−陰極間端子電圧(以下El。と略す。)、陽極一補助
極端子間電圧(以下El3と略す。)および電池内圧力
変化を示す。第2図曲線aにおいてA1〜A2は電池活
物質の充電を示すA2〜A3の電圧上昇は過充電時の進
行を示す。そしてA3に至つて充電々流の大部分は酸素
ガス発生に使用され、この時陽極からの酸素ガスの発生
は急増し、曲線cに示す如く電池内圧力が高くなる。E
l3を示す曲線bでは八から急激な電圧降下が見られる
。これは酸素ガス発生と同時に水素ガス酸化補助極の電
位が貴方向に分極するからである。なおり4においては
酸素ガスが陰極により殆んど吸収されEl3は再び急激
に回復する。次に環境温度を変化させた場合のEl。お
よびEl3を測定し第3図に示す。その結果過充電時の
El。の変化は環境温度により著しく影響を受け高温に
なる程変化が小さくなり過充電時の検出が困難となる。
しかしEl3の変化率は環境温度の変化により影響され
る事なく常に急激な変化(電圧降下)を示し過充電の検
出が正確になる。また第4図は充電々流を変化させた際
のEl2およびEl3を示し、第5図は充放電サイクル
数変化に対するEl2およびEl3を示す。
As a sealed storage battery, an AA nickel-zinc storage battery having an anode charging capacity of 1.5 Ah and a cathode charging capacity of 4.5 Ah was constructed as described above. A porous nickel sintered body with an apparent surface area of 5C71f1 and a thickness of 0.3W1 was used as a hydrogen gas oxidation auxiliary electrode, impregnated with a mixture of platinum and tungsten carbide as a hydrogen gas absorption catalyst, and polytetrafluoroethylene was used for waterproofing. The one that was bound was used. Further, the resistor 11 is 100Ω, the diode 12 is a silicon diode, and each is coated with an electrolyte-resistant resin. As the electrolytic solution, an 8N potassium hydroxide aqueous solution saturated with zinc oxide was used. Figure 2 shows the anode-cathode terminal voltage (hereinafter abbreviated as El), the anode-auxiliary electrode terminal voltage (hereinafter abbreviated as El3), and the anode-cathode terminal voltage (hereinafter abbreviated as El) and Indicates changes in battery internal pressure. In the curve a of FIG. 2, A1 to A2 indicate charging of the battery active material, and voltage increases in A2 to A3 indicate progress during overcharging. Then, at A3, most of the charging current is used to generate oxygen gas, and at this time, the generation of oxygen gas from the anode rapidly increases, and the pressure inside the cell increases as shown by curve c. E
In curve b showing l3, a rapid voltage drop is seen from 8 onwards. This is because the potential of the hydrogen gas oxidation auxiliary electrode is polarized in the noble direction at the same time as oxygen gas is generated. In Naori 4, most of the oxygen gas is absorbed by the cathode, and El3 rapidly recovers again. Next, El when changing the environmental temperature. and El3 were measured and shown in FIG. As a result, El during overcharging. The change in is significantly affected by the environmental temperature, and the higher the temperature, the smaller the change becomes, making it difficult to detect overcharging.
However, the rate of change of El3 is not affected by changes in environmental temperature and always shows a rapid change (voltage drop), making it possible to accurately detect overcharge. Further, FIG. 4 shows El2 and El3 when the charging current is changed, and FIG. 5 shows El2 and El3 when the number of charging and discharging cycles changes.

その結果El2は充電々流や充放電サイクル数の変化に
よる電池容量低下、内部抵抗増加等により著しい影響を
受け過充電の検出が困難となる。これに対しEl3は過
充電時に急激な変化(電圧降下)を示し、確実に過充電
を検出する事がてきる。以上の如く充電末期のEl。
As a result, El2 is significantly affected by a decrease in battery capacity due to changes in charging current and the number of charge/discharge cycles, an increase in internal resistance, etc., making it difficult to detect overcharging. On the other hand, El3 exhibits a rapid change (voltage drop) during overcharging, making it possible to reliably detect overcharging. As described above, El at the end of charging.

の変化は環境温度、充電々流、充放電サイクル数に影響
を受け過充電の検出が困難であつた。これに対し本発明
方法を用い、El3を測定する事により上記諸条件の影
響を受ける事なく、充電末期の酸素ガス発生によるEl
3の著しい電圧降下を示し、過充電を容易にt出する事
ができる。
Changes in battery life are affected by environmental temperature, charging current, and number of charge/discharge cycles, making it difficult to detect overcharging. On the other hand, by using the method of the present invention and measuring El3, it is possible to measure El3 without being affected by the above conditions, and to measure El3 due to oxygen gas generation at the end of charging.
It shows a significant voltage drop of 3, and can easily be overcharged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る密閉型蓄電池の過充電本出装置の
構成例を示す説明図、第2図乃至第5!?は本発明に係
る密閉型蓄電池の過充電検出方法』よび装置の諸特性を
示す曲線図である。 1・・・・・・陽極層、2・・・・・・陰極層、3・・
・・・・セパレータ、6・・・・・・陽極端子兼用蓋体
、7・・・・・・陰極端子兼用金属容器、10・・・・
・・水素ガス酸化補助極、11・・・・・・抵抗体、1
2・・・・ダイオード、13・・・・・・補助極リード
、14・・・・・・補助極端子。
FIG. 1 is an explanatory diagram showing a configuration example of an overcharging device for a sealed storage battery according to the present invention, and FIGS. 2 to 5! ? 1 is a curve diagram showing various characteristics of a method and device for detecting overcharge of a sealed storage battery according to the present invention. 1... Anode layer, 2... Cathode layer, 3...
Separator, 6... Lid body that also serves as an anode terminal, 7... Metal container that also serves as a cathode terminal, 10...
...Hydrogen gas oxidation auxiliary electrode, 11...Resistor, 1
2... Diode, 13... Auxiliary pole lead, 14... Auxiliary pole terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極と、陰極と、前記陽極および陰極間に介在させ
たセパレータと、防水処理を施した水素ガス酸化補助極
と、前記陽極および水素ガス酸化補助極間に直列に接続
したダイオードおよび抵抗体とを具備し、過充電時に酸
素ガスが発生する密閉型蓄電池において、過充電時に発
生する酸素ガスを陽極と水素ガス酸化補助極との間の電
圧変化により検出する事を特徴とした密閉型蓄電池の過
充電検出方法。
1 an anode, a cathode, a separator interposed between the anode and the cathode, a waterproofed hydrogen gas oxidation auxiliary electrode, a diode and a resistor connected in series between the anode and the hydrogen gas oxidation auxiliary electrode; A sealed storage battery characterized by detecting oxygen gas generated during overcharging by a voltage change between an anode and a hydrogen gas oxidation auxiliary electrode. Overcharge detection method.
JP51123859A 1976-10-18 1976-10-18 Overcharge detection method for sealed storage batteries Expired JPS6046516B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP51123859A JPS6046516B2 (en) 1976-10-18 1976-10-18 Overcharge detection method for sealed storage batteries
DE2746652A DE2746652C3 (en) 1976-10-18 1977-10-17 Encapsulated accumulator cell
US05/842,889 US4143212A (en) 1976-10-18 1977-10-17 Sealed storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51123859A JPS6046516B2 (en) 1976-10-18 1976-10-18 Overcharge detection method for sealed storage batteries

Publications (2)

Publication Number Publication Date
JPS5355748A JPS5355748A (en) 1978-05-20
JPS6046516B2 true JPS6046516B2 (en) 1985-10-16

Family

ID=14871148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51123859A Expired JPS6046516B2 (en) 1976-10-18 1976-10-18 Overcharge detection method for sealed storage batteries

Country Status (1)

Country Link
JP (1) JPS6046516B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727573A (en) * 1980-07-25 1982-02-13 Furukawa Battery Co Ltd:The Sealed storage battery
JP6378923B2 (en) * 2014-04-22 2018-08-22 株式会社日立製作所 Power storage system and operation method thereof

Also Published As

Publication number Publication date
JPS5355748A (en) 1978-05-20

Similar Documents

Publication Publication Date Title
EP0241552B1 (en) Control of the charging of pressurized gas-metal electrical storage cells
US4143212A (en) Sealed storage battery
JP2015507322A (en) battery
CA2157930C (en) Sealed rechargeable battery
US9246198B2 (en) Method for determining when a Li-ion cell comprising a negative electrode made of an alloy is fully charged, associated cell and battery
US5304433A (en) Capacity indicator for lead-acid batteries
Bauer Batteries for space power systems
US5830599A (en) Sealed rechargeable battery
JP2004273139A (en) Lithium secondary battery
WO2022056787A1 (en) Three-electrode battery and energy storage system
JP5875089B2 (en) Nickel metal hydride battery charge amount display device and charge amount display method
CN111129432A (en) Novel reference electrode and three-electrode system for nondestructive testing of lithium ion battery industry and method
JP2000116021A (en) Charging system of sealed nickel hydrogen rechargeable battery
US3350225A (en) Rechargeable sealed secondary battery
JP3913385B2 (en) Secondary battery
JPS6046516B2 (en) Overcharge detection method for sealed storage batteries
US3257238A (en) Hermetically sealed cell
JP3183139B2 (en) Short-circuit detection method for cylindrical batteries
US4689571A (en) Specific gravity detecting device for lead-acid battery
CN216052084U (en) Reference electrode and lithium battery with same
US3901729A (en) Method and apparatus for terminating the charge of storage batteries
JP2006262614A (en) Charger and charging method
US4198594A (en) Method of charging a vented alkaline electrolyte-containing electrochemical cell
JP3173012B2 (en) Battery pack, charging device and charging method
JPS5910544B2 (en) sealed storage battery