JP3173012B2 - Battery pack, charging device and charging method - Google Patents

Battery pack, charging device and charging method

Info

Publication number
JP3173012B2
JP3173012B2 JP40110790A JP40110790A JP3173012B2 JP 3173012 B2 JP3173012 B2 JP 3173012B2 JP 40110790 A JP40110790 A JP 40110790A JP 40110790 A JP40110790 A JP 40110790A JP 3173012 B2 JP3173012 B2 JP 3173012B2
Authority
JP
Japan
Prior art keywords
battery
charging
temperature
nickel
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP40110790A
Other languages
Japanese (ja)
Other versions
JPH04210738A (en
Inventor
木村佳司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP40110790A priority Critical patent/JP3173012B2/en
Publication of JPH04210738A publication Critical patent/JPH04210738A/en
Application granted granted Critical
Publication of JP3173012B2 publication Critical patent/JP3173012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は繰り返し充電可能な二次
電池を用いた電池パックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery pack using a rechargeable secondary battery.

【0002】[0002]

【従来の技術】現在、電池パックに使用する二次電池と
してニッケルカドミウム電池が広く使用されている。
2. Description of the Related Art At present, nickel cadmium batteries are widely used as secondary batteries used in battery packs.

【0003】ニッケルカドミウム電池を使用した電池パ
ックの回路図と充電器を含んだ回路図を図5に示す。ニ
ッケルカドミウム電池51が電池パック52に内蔵され
ており、充電器53に直結されている。
FIG. 5 shows a circuit diagram of a battery pack using a nickel cadmium battery and a circuit diagram including a charger. A nickel cadmium battery 51 is contained in a battery pack 52 and is directly connected to a charger 53.

【0004】完全放電したニッケルカドミウム電池に1
Cの定電流で充電を行った場合のニッケルカドミウム電
池の端子間電圧と表面温度の変化のグラフを図6に示
す。ここで「C」というのは電池に於いて、電流量と電
池容量の比を示す単位である。1Ahの電池容量の電池
に対して1Aの充電を行うことを1C充電と呼び、2A
の充電を行うことを2C充電と呼ぶ。
[0004] A fully discharged nickel cadmium battery
FIG. 6 is a graph showing changes in the inter-terminal voltage and the surface temperature of the nickel cadmium battery when charging was performed at a constant current of C. Here, “C” is a unit indicating the ratio between the amount of current and the battery capacity in a battery. Charging 1A for a battery having a battery capacity of 1Ah is called 1C charging and 2A charging.
Charging is referred to as 2C charging.

【0005】図6において、ニッケルカドミウム電池の
端子間電圧は期間61の間、充電の進行と共に電池電圧
が上昇していく。この間は充電電流の電気エネルギーが
電池内部の化学エネルギーに変換され、充電が進行して
いく。
In FIG. 6, the voltage between the terminals of a nickel cadmium battery increases during the period 61 as the charging proceeds. During this time, the electric energy of the charging current is converted into chemical energy inside the battery, and charging proceeds.

【0006】期間62になると電池は満充電状態にな
り、化学エネルギーの蓄積能力が限界に達する。このた
め、充電電流の電気エネルギーは、もはや化学エネルギ
ーには変換されず、熱エネルギーへと変換される。その
結果、電池の表面温度が上昇する。それに伴いニッケル
カドミウム電池では充電端子電圧が低下する特性を有し
ている。この現象は「−△V現象」と呼ばれ、充電中、
満充電時に現われるニッケルカドミウム電池の特徴であ
る。
In the period 62, the battery is fully charged, and the ability to store chemical energy reaches its limit. For this reason, the electrical energy of the charging current is no longer converted into chemical energy, but is converted into thermal energy. As a result, the surface temperature of the battery increases. Accordingly, the nickel cadmium battery has a characteristic that the charging terminal voltage decreases. This phenomenon is called "-△ V phenomenon", and during charging,
This is a feature of nickel cadmium batteries that appear when fully charged.

【0007】ニッケルカドミウム電池を充電する時に注
意しなくてはならない問題に過充電がある。過充電を行
うと電池温度が高くなり、電池内部の有機物質が急速に
劣化し、電池寿命が著しく短くなる。
[0007] One problem that must be noted when charging nickel cadmium batteries is overcharging. When overcharging is performed, the battery temperature rises, the organic substances inside the battery rapidly deteriorate, and the battery life is significantly shortened.

【0008】また、過大な電流で過充電を行うと、電池
内部に多量のガスを発生し、安全弁が動作して内部の電
解液が外へ漏れてしまう。その結果、電池容量が極端に
低下するだけでなく、有害物質を放出することになる。
Further, when overcharging is performed with an excessive current, a large amount of gas is generated inside the battery, and the safety valve operates to leak the electrolyte inside. As a result, not only the battery capacity is extremely reduced, but also harmful substances are released.

【0009】そのため、ニッケルカドミウム電池を充電
する際には、満充電状態を検出して充電電流を減少させ
るか、満充電でも継続的に充電してよい電流量で連続し
て充電を行うかのいずれかの方法を取る必要がある。
Therefore, when charging a nickel cadmium battery, it is necessary to reduce the charging current by detecting a fully charged state, or to continuously charge the battery with a current amount that can be continuously charged even when fully charged. You need to take one of these measures.

【0010】満充電状態で連続的に流せる電流は普通、
最大0.2Cまでである、しかし、この充電電流では完
全放電の電池を満充電にするのに6時間以上を要する。
さらに短時間で電池を満充電にしたい場合においてはこ
の充電方法は使用できない。電池が満充電になるまで1
Cで充電し、満充電を検出後、充電電流を微少電流に変
化させるといった充電方法を行うと、完全放電状態から
1時間強で満充電にすることができる。満充電の検出に
はニッケルカドミウム電池の充電特性である「−△V現
象」を利用するのが普通である。ニッケルカドミウム電
池1セルあたり「−△V値」が10mVから20mVで
満充電の検出を行うのが普通である。図5の様な充電回
路においては、充電器側がこの「−△V」による満充電
検出機能を有し、満充電検出後、充電電流を微少電流に
切り換える機能を持つのが普通である。
The current that can be continuously passed in a fully charged state is usually
Up to 0.2 C, but at this charge current it takes more than 6 hours to fully charge a fully discharged battery.
If the battery is to be fully charged in a shorter time, this charging method cannot be used. 1 until the battery is fully charged
If charging is performed by charging the battery at C and detecting a full charge and then changing the charging current to a very small current, the battery can be fully charged in just over an hour from a completely discharged state. For detecting full charge, it is common to use the “−ΔV phenomenon” which is a charge characteristic of a nickel cadmium battery. Normally, full charge detection is performed when the “−ΔV value” per nickel cadmium battery cell is 10 mV to 20 mV. In the charging circuit shown in FIG. 5, it is usual that the charger side has a function of detecting full charge by this "-.DELTA.V", and has a function of switching the charging current to a small current after detecting the full charge.

【0011】ニッケル水素電池は起電力が1セル辺り
1.2Vでニッケルカドミウム電池とほぼ同じである。
ニッケル水素電池は、単位体積当りのエネルギー密度、
単位重量当りのエネルギー密度共にニッケルカドミウム
電池を超えている。つまり、ニッケルカドミウム電池に
そのまま置き換えて使用でき、かつ、容量がニッケルカ
ドミウム電池より多いという利点がある。しかし、逆に
急速充電の制御が難しいといった欠点がある。その欠点
を以下に示す。
The nickel-metal hydride battery has an electromotive force of 1.2 V per cell, which is almost the same as the nickel-cadmium battery.
Nickel-metal hydride batteries have an energy density per unit volume,
The energy density per unit weight exceeds that of nickel cadmium batteries. That is, there is an advantage that the nickel cadmium battery can be used as it is, and the capacity is larger than that of the nickel cadmium battery. However, on the contrary, there is a disadvantage that it is difficult to control the rapid charging. The disadvantages are described below.

【0012】ニッケル水素電池の1C充電時の端子間電
圧と電池表面温度の変化のグラフを図7に示す。
FIG. 7 is a graph showing changes in the inter-terminal voltage and the battery surface temperature during 1C charging of a nickel-metal hydride battery.

【0013】図7において、ニッケル水素電池の端子間
電圧は期間71の間、充電の進行と共に電池電圧が上昇
していく。この期間の動作はニッケルカドミウム電池と
同じである。
In FIG. 7, the voltage between the terminals of the nickel-metal hydride battery increases during the period 71 as the charging proceeds. The operation during this period is the same as that of the nickel cadmium battery.

【0014】期間72になると電池は満充電状態にな
り、ニッケルカドミウム電池同様、電池の表面温度が上
昇する。しかし、ニッケルカドミウム電池に比較して充
電端子電圧の「−△V電圧」が少なく、1セルあたり5
mV以下である。
In the period 72, the battery is fully charged, and the surface temperature of the battery rises as in the case of the nickel cadmium battery. However, the charge terminal voltage “−ΔV voltage” is smaller than that of the nickel cadmium battery, which is 5 to 5 per cell.
mV or less.

【0015】このため、充電の端子電圧を監視している
だけでは正確な満充電の検出が行えず、さらに充電器、
電池パック側に電池表面温度の検出手段を持たなければ
1C充電は行えなかった。
For this reason, accurate monitoring of the full charge cannot be performed simply by monitoring the charge terminal voltage.
1C charging could not be performed without a battery surface temperature detecting means on the battery pack side.

【0016】従来の1C充電が可能なニッケル水素電池
パックと充電器の1例を図8に示す。
FIG. 8 shows an example of a conventional nickel hydrogen battery pack and a charger capable of 1C charging.

【0017】ニッケル水素電池81と温度センサ82は
それぞれ電池パック83の外部へ端子を出し、充電器8
4へと接続される。温度センサ82はニッケル水素電池
81の近傍に設置されており、ニッケル水素電池81の
表面温度を検出している。充電器84ではニッケル水素
電池の充電端子電圧とニッケル水素電池の表面温度の変
化を検出して、満充電の検出を行う。
The nickel-metal hydride battery 81 and the temperature sensor 82 output terminals to the outside of the battery pack 83, respectively.
4 is connected. The temperature sensor 82 is installed near the nickel-metal hydride battery 81 and detects the surface temperature of the nickel-metal hydride battery 81. The charger 84 detects a change in the charging terminal voltage of the nickel-metal hydride battery and a change in the surface temperature of the nickel-metal hydride battery to detect full charge.

【0018】[0018]

【発明が解決しようとする課題】しかし、以上の様にニ
ッケル水素電池独自の電池パック構成にしたり、専用の
充電器を使用すれば、ニッケル水素電池の特徴であるニ
ッケルカドミウム電池との互換性を捨てることになり、
ニッケルカドミウム電池パックの充電器は使用できなく
なる。
However, as described above, the compatibility with the nickel cadmium battery, which is a feature of the nickel hydride battery, can be achieved by using a unique battery pack configuration of the nickel hydride battery or using a dedicated charger. Will be thrown away,
Nickel cadmium battery pack chargers will no longer be usable.

【0019】また、ニッケル水素電池パックと専用充電
器を接続する線が3本以上必要となり、電池パックを製
作する際の制約事項になるといった課題があった。
Further, there is a problem that three or more wires for connecting the nickel-metal hydride battery pack and the dedicated charger are required, which is a restriction when manufacturing the battery pack.

【0020】本発明の目的は、ニッケル水素電池パック
の充電電圧特性をニッケルカドミウム電池の充電電圧特
性に類似させ、「−△V」による満充電検出を確実に行
える様にすることにある。
An object of the present invention is to make the charge voltage characteristic of a nickel-metal hydride battery pack similar to the charge voltage characteristic of a nickel cadmium battery, so that full charge detection by "-ΔV" can be reliably performed.

【0021】[0021]

【課題を解決するための手段】本発明の電池パックは、
二次電池と、該二次電池の温度を抵抗値に変換する手段
であって、当該抵抗値が負の温度勾配を有する温度抵抗
変換手段と、前記二次電池に充電するための一組の端子
とを有し、前記二次電池と前記温度抵抗変換手段とは前
記一組の端子の間に直列に接続されてなることを特徴と
する。また、本発明の充電装置は、二次電池に充電を行
う充電装置において、前記二次電池の温度を抵抗値に変
換する手段であって、当該抵抗値が負の温度勾配を有す
る温度抵抗変換手段と、前記二次電池に充電を行うため
の一組の端子であって、当該端子間に前記二次電池と前
記温度抵抗変換手段とが直列に接続される端子と、前記
端子間に充電電流を印可する手段と、前記端子間の電圧
に応じて前記二次電池の充電状態を検出する充電検出手
段とを有することを特徴とする。さらに本発明の充電方
法は、二次電池と該二次電池の温度を負の温度勾配を有
して抵抗値に変換する温度抵抗変換手段とを有し、前記
二次電池と前記温度抵抗変換手段とを直列に接続した両
端に充電電流を加えて前記二次電池を充電する充電方法
において、前記両端の電圧を測定する工程と、前記電圧
測定工程において電圧の低下が検出されたとき前記充電
電流を微少電流に切り換える工程とを有することを特徴
とする。
The battery pack of the present invention comprises:
A secondary battery, means for converting the temperature of the secondary battery into a resistance value, wherein the resistance value has a temperature resistance conversion means having a negative temperature gradient, and a set of one for charging the secondary battery; A terminal, and the secondary battery and the temperature resistance conversion means are connected in series between the pair of terminals. Further, the charging device of the present invention is a charging device for charging a secondary battery, wherein the means for converting the temperature of the secondary battery into a resistance value, wherein the resistance value has a negative temperature gradient. Means, a set of terminals for charging the secondary battery, a terminal between which the secondary battery and the temperature resistance conversion means are connected in series, and charging between the terminals. It is characterized by comprising a means for applying a current and a charge detecting means for detecting a state of charge of the secondary battery according to a voltage between the terminals. Furthermore, the charging method of the present invention includes a secondary battery and a temperature-resistance conversion unit that converts the temperature of the secondary battery into a resistance value with a negative temperature gradient, A charging method for charging the secondary battery by applying a charging current to both ends connected in series with the means; Switching the current to a very small current.

【0022】[0022]

【作用】電池表面の温度変化の勾配に対して逆特性の素
子を接続して表面温度勾配をリニアに近づける。
An element having a characteristic reverse to the gradient of the temperature change on the battery surface is connected to make the surface temperature gradient linear.

【0023】[0023]

【実施例】本発明の電池パックの1例を図1に示す。ニ
ッケル水素電池11に直列に等価抵抗回路12が接続さ
れ、外部に端子として出ている。等価抵抗回路12はニ
ッケル水素電池の表面温度に対して負の温度勾配を持つ
といった特徴を有する。
FIG. 1 shows an example of a battery pack according to the present invention. An equivalent resistance circuit 12 is connected in series to the nickel-metal hydride battery 11 and is provided as a terminal to the outside. The equivalent resistance circuit 12 has a feature that it has a negative temperature gradient with respect to the surface temperature of the nickel-metal hydride battery.

【0024】等価抵抗回路12の1例を図2に示す。熱
的に安定な炭素皮膜抵抗器21とサーミスタ22を並列
に接続する。サーミスタ22はニッケル水素電池11の
表面に密着している。この等価抵抗回路12の温度−抵
抗値特性を図3に示す。この特性は使用する電池の表面
温度範囲で近似的に線形である。
FIG. 2 shows an example of the equivalent resistance circuit 12. A thermally stable carbon film resistor 21 and a thermistor 22 are connected in parallel. The thermistor 22 is in close contact with the surface of the nickel-metal hydride battery 11. FIG. 3 shows a temperature-resistance characteristic of the equivalent resistance circuit 12. This characteristic is approximately linear over the surface temperature range of the battery used.

【0025】サーミスタの温度−抵抗値特性が非線形で
あることと、サーミスタに充電電流をすべてを流すとサ
ーミスタが発熱して正確な電池表面温度の検出ができな
いため、図2に示した様な回路構成にする。
Since the temperature-resistance characteristic of the thermistor is non-linear, and if the entire charging current is supplied to the thermistor, the thermistor generates heat and cannot accurately detect the battery surface temperature. Configure.

【0026】完全放電状態のこの電池パックに1Cの定
電流充電を行った時の電池パック各部の電圧と電池表面
温度の変化のグラフを図4に示す。
FIG. 4 is a graph showing changes in the voltage of each part of the battery pack and the battery surface temperature when the battery pack in a completely discharged state is charged at a constant current of 1 C.

【0027】期間41では充電動作が進行しており、ニ
ッケル水素電池11の端子間電圧VBは上昇する。電池
表面温度は一定のままである。そのため抵抗等価回路1
2の抵抗値も一定のままで、抵抗等価回路12の両端電
圧VRも一定である。このため電池パックの端子電圧V
Pは上昇する。
In the period 41, the charging operation is in progress, and the terminal voltage VB of the nickel-metal hydride battery 11 increases. The battery surface temperature remains constant. Therefore, resistance equivalent circuit 1
2, the voltage VR across the resistance equivalent circuit 12 is also constant. Therefore, the terminal voltage V of the battery pack
P rises.

【0028】期間42に入るとニッケル水素電池11は
満充電になり、電池11の端子電圧VBは変化しなくな
る。電池表面温度は上昇を開始する。そのため抵抗等価
回路12の抵抗値は減少し、抵抗等価回路12の両端電
圧VRは減少する。このため電池パックの端子電圧VP
は減少する。これは「−△V特性」に相当する。
In the period 42, the nickel-metal hydride battery 11 is fully charged, and the terminal voltage VB of the battery 11 does not change. The battery surface temperature starts to rise. Therefore, the resistance value of the resistance equivalent circuit 12 decreases, and the voltage VR across the resistance equivalent circuit 12 decreases. Therefore, the terminal voltage VP of the battery pack
Decreases. This corresponds to the “−ΔV characteristic”.

【0029】1C定電流充電を行った時、この電池パッ
クの両端電圧VPの動きはニッケルカドミウム電池と同
等の動きをする事になる。
When 1 C constant current charging is performed, the voltage VP at both ends of the battery pack moves in the same manner as a nickel cadmium battery.

【0030】[0030]

【発明の効果】以上の様に本発明を使用すれば、ニッケ
ル水素電池パックの充電端子電圧特性がニッケルカドミ
ウム電池の充電端子電圧特性にほぼ等しくなり、1Cの
定電流充電時「−△V検出」による満充電の検出が可能
となる。
As described above, when the present invention is used, the charging terminal voltage characteristic of the nickel-metal hydride battery pack becomes substantially equal to the charging terminal voltage characteristic of the nickel cadmium battery, and the "-.DELTA. To detect full charge.

【0031】その結果、ニッケル水素電池パックと充電
器を接続する線を2本にする事ができ、さらにはニッケ
ルカドミウム電池パックの充電器がそのまま使用できる
といった効果がある。
As a result, the number of lines connecting the nickel-metal hydride battery pack and the charger can be reduced to two, and further, there is an effect that the charger of the nickel-cadmium battery pack can be used as it is.

【0032】また、確実に1C定電流充電時の満充電を
検出できるため、過充電による電池の安全弁動作、電池
の劣化が防げるといった効果もある。
Further, since the full charge at the time of 1C constant current charging can be reliably detected, there is an effect that the safety valve operation of the battery due to overcharge and the deterioration of the battery can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を使用した電池パックの回路図である。FIG. 1 is a circuit diagram of a battery pack using the present invention.

【図2】図1に使用した等価抵抗回路の回路図である。FIG. 2 is a circuit diagram of an equivalent resistance circuit used in FIG.

【図3】図2で示した等価抵抗回路の温度−抵抗値特性
を示すグラフの図である。
FIG. 3 is a graph showing a temperature-resistance value characteristic of the equivalent resistance circuit shown in FIG. 2;

【図4】完全放電状態の図1の電池パックに1Cの定電
流充電を行った時の電池パック各部の電圧と電池表面温
度の変化を示すグラフの図である。
FIG. 4 is a graph showing changes in the voltage of each part of the battery pack and the battery surface temperature when the battery pack of FIG. 1 in a completely discharged state is charged at a constant current of 1C.

【図5】従来技術によるニッケルカドミウム電池を使用
した電池パックの回路図である。
FIG. 5 is a circuit diagram of a battery pack using a conventional nickel cadmium battery.

【図6】従来技術による完全放電状態の図5の電池パッ
クに1Cの定電流充電を行った時の端子電圧と電池表面
温度の変化を示すグラフの図である。
6 is a graph showing changes in terminal voltage and battery surface temperature when a constant current charge of 1 C is performed on the battery pack of FIG. 5 in a completely discharged state according to the related art.

【図7】従来技術による完全放電状態のニッケル水素電
池に1Cの定電流充電を行った時の端子電圧と電池表面
温度の変化を示すグラフの図である。
FIG. 7 is a graph showing changes in terminal voltage and battery surface temperature when a 1 C constant current charge is performed on a nickel-metal hydride battery in a completely discharged state according to the related art.

【図8】従来技術によるニッケル水素電池を使用した1
C充電が可能な電池パックと充電器の回路図。
FIG. 8 shows a conventional battery using a nickel-metal hydride battery.
FIG. 3 is a circuit diagram of a battery pack and a charger capable of C charging.

【符号の説明】[Explanation of symbols]

11、81・・・・ニッケル水素電池 12・・・・・・・等価抵抗回路 21・・・・・・・炭素皮膜抵抗器 22・・・・・・・サーミスタ 51・・・・・・・ニッケルカドミウム電池 53、84・・・・充電器 82・・・・・・・温度センサ 11, 81: Nickel-metal hydride battery 12: Equivalent resistance circuit 21: Carbon film resistor 22: Thermistor 51: Nickel cadmium battery 53, 84 ... charger 82 ... temperature sensor

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二次電池と、 該二次電池の温度を抵抗値に変換する手段であって、当
該抵抗値が負の温度勾配を有する温度抵抗変換手段と、 前記二次電池に充電するための一組の端子とを有し、 前記二次電池と前記温度抵抗変換手段とは前記一組の端
子の間に直列に接続されてなることを特徴とする電池パ
ック。
1. A rechargeable battery, means for converting the temperature of the rechargeable battery into a resistance value, and a temperature resistance conversion means having a negative temperature gradient with the resistance value, and charging the rechargeable battery A battery pack comprising: a set of terminals for connecting the secondary battery and the temperature resistance conversion means in series between the set of terminals.
【請求項2】二次電池に充電を行う充電装置において、 前記二次電池の温度を抵抗値に変換する手段であって、
当該抵抗値が負の温度勾配を有する温度抵抗変換手段
と、 前記二次電池に充電を行うための一組の端子であって、
当該端子間に前記二次電池と前記温度抵抗変換手段とが
直列に接続される端子と、 前記端子間に充電電流を印可する手段と、 前記端子間の電圧に応じて前記二次電池の充電状態を検
出する充電検出手段とを有することを特徴とする充電装
置。
2. A charging device for charging a secondary battery, comprising: means for converting the temperature of the secondary battery into a resistance value;
The resistance value is a temperature resistance conversion means having a negative temperature gradient, and a set of terminals for charging the secondary battery,
A terminal between which the secondary battery and the temperature resistance conversion means are connected in series; a means for applying a charging current between the terminals; and a charging of the secondary battery according to a voltage between the terminals. A charging device comprising: charging detection means for detecting a state.
【請求項3】二次電池と、該二次電池の温度を負の温度
勾配を有して抵抗値に変換する温度抵抗変換手段とを有
し、前記二次電池と前記温度抵抗変換手段とを直列に接
続した両端に充電電流を加えて前記二次電池を充電する
充電方式において、 前記両端の電圧を測定する工程と、 前記電圧測定工程において電圧の低下が検出されたとき
前記充電電流を微少電流に切り換える工程とを有するこ
とを特徴とする充電方法。
3. A rechargeable battery, comprising: a rechargeable battery; and a temperature-resistance converting means for converting a temperature of the rechargeable battery into a resistance value with a negative temperature gradient. In the charging method of charging the secondary battery by adding a charging current to both ends connected in series, a step of measuring a voltage of the both ends, and a step of measuring the charging current when a voltage drop is detected in the voltage measuring step. Switching to a very small current.
JP40110790A 1990-12-10 1990-12-10 Battery pack, charging device and charging method Expired - Fee Related JP3173012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40110790A JP3173012B2 (en) 1990-12-10 1990-12-10 Battery pack, charging device and charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40110790A JP3173012B2 (en) 1990-12-10 1990-12-10 Battery pack, charging device and charging method

Publications (2)

Publication Number Publication Date
JPH04210738A JPH04210738A (en) 1992-07-31
JP3173012B2 true JP3173012B2 (en) 2001-06-04

Family

ID=18510964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40110790A Expired - Fee Related JP3173012B2 (en) 1990-12-10 1990-12-10 Battery pack, charging device and charging method

Country Status (1)

Country Link
JP (1) JP3173012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102527495B1 (en) * 2021-05-31 2023-05-03 (주)모토벨로 Personal mobility equipped with a control device for safe driving of the user

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329992A (en) * 1995-05-29 1996-12-13 Saitama Nippon Denki Kk Battery pack and charging unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102527495B1 (en) * 2021-05-31 2023-05-03 (주)모토벨로 Personal mobility equipped with a control device for safe driving of the user

Also Published As

Publication number Publication date
JPH04210738A (en) 1992-07-31

Similar Documents

Publication Publication Date Title
KR100616163B1 (en) Battery Cell Monitoring And Balancing Circuit
KR100847546B1 (en) Battery management system
EP2272148B1 (en) Apparatus and method for detecting divergence in the state-of-charge or state-of-discharge of a series string of batteries cells or capacitors cells
EP3196971A1 (en) Battery controlling apparatus and method for controlling battery
JP2006129588A (en) Power control method of secondary battery, and power unit
CN110061531B (en) Energy storage battery equalization method
KR940027251A (en) A method of monitoring the charge of sealed nickel storage cells and a charger using the method
WO2023028789A1 (en) Temperature determination method, current threshold determination method, and battery management system
CN101192758A (en) Charger
CA2038160A1 (en) Charging circuits for rechargeable batteries and cells
TW201337300A (en) Control device for secondary battery, and soc detection method
US4143212A (en) Sealed storage battery
JP4542675B2 (en) Voltage correction device for battery pack for electric vehicle
JP4129109B2 (en) Charge control apparatus and method
US5537390A (en) Device for detecting residual capacity of secondary battery
US20080174263A1 (en) Battery charger for different capacity cells
KR19990028876A (en) Control and Termination of Battery Charging Process
Gonzalez et al. Considerations to improve the practical design of universal and full-effective NiCd/NiMH battery fast-chargers
JP3173012B2 (en) Battery pack, charging device and charging method
CN116826209A (en) Method, system, storage medium and device for obtaining battery connection in battery pack
JPS6255274B2 (en)
Kordesch Charging method for batteries, using the resistance-free voltage as endpoint indication
Gonzalez et al. Accurate detection algorithm of battery full-capacity under fast-charge
Gonzalez et al. Ni-Cd and Ni-MH battery optimized fast-charge method for portable telecommunication applications
JP3132798B2 (en) Storage battery charge control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees