JP3132798B2 - Storage battery charge control device - Google Patents

Storage battery charge control device

Info

Publication number
JP3132798B2
JP3132798B2 JP06273452A JP27345294A JP3132798B2 JP 3132798 B2 JP3132798 B2 JP 3132798B2 JP 06273452 A JP06273452 A JP 06273452A JP 27345294 A JP27345294 A JP 27345294A JP 3132798 B2 JP3132798 B2 JP 3132798B2
Authority
JP
Japan
Prior art keywords
temperature
charging
voltage
current
change rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06273452A
Other languages
Japanese (ja)
Other versions
JPH08140283A (en
Inventor
英治 門内
勇一 渡辺
恵 木下
登 伊藤
寛治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06273452A priority Critical patent/JP3132798B2/en
Publication of JPH08140283A publication Critical patent/JPH08140283A/en
Application granted granted Critical
Publication of JP3132798B2 publication Critical patent/JP3132798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、密閉型のニッケル・水
素蓄電池の集合体からなる組電池形態の、特に電気自動
車等の移動体に搭載される移動体用蓄電池について、そ
の電池の状態を制御する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery for a mobile body mounted on a mobile body such as an electric vehicle, particularly in the form of an assembled battery composed of an assembly of sealed nickel-metal hydride storage batteries. It relates to a device to be controlled.

【0002】[0002]

【従来の技術】電気自動車等に用いられる蓄電池は、密
閉型のニッケル・水素蓄電池の蓄電池セルを多数接続し
て構成した組電池である。この組電池は例えば、240
個のニッケル・水素蓄電池セルをすべて直列に接続し
て、約288Vの公称出力電圧を得るようになされてい
る。このような組電池を充電する場合には、組電池が完
全に充電された状態(以後、完全充電と称する)に達し
たことを正確に検出して充電を停止させることが重要で
ある。完全充電後さらに充電を続けると過充電となり、
ニッケル・水素蓄電池セル内に酸素や水素のガスが発生
し、内部の圧力(以後、内圧という)が上昇する。その
結果密閉型のニッケル・水素蓄電池に通常設けられてい
る安全弁からガスが放出される場合がある。放出したガ
スになんらかの着火源により引火した場合、爆発等の事
故に至る危険性を有していた。
2. Description of the Related Art A storage battery used for an electric vehicle or the like is an assembled battery formed by connecting a number of storage cells of a sealed nickel-metal hydride storage battery. This assembled battery is, for example, 240
The nickel-metal hydride storage cells are all connected in series to obtain a nominal output voltage of about 288V. When charging such an assembled battery, it is important to accurately detect that the assembled battery has reached a fully charged state (hereinafter referred to as fully charged) and stop the charging. If you continue charging after full charge, it will be overcharged,
Oxygen or hydrogen gas is generated in the nickel-hydrogen storage battery cell, and the internal pressure (hereinafter referred to as internal pressure) increases. As a result, gas may be released from a safety valve normally provided in a sealed nickel-metal hydride storage battery. If the released gas is ignited by any ignition source, there is a risk of an accident such as an explosion.

【0003】完全充電に達したことを検出する従来の方
法としては、例えば、組電池の充電時の端子電圧(以
後、単に電圧と称する)が充電過程の末期に上昇するこ
とによって検出するもの、ニッケル・水素蓄電池セル内
の温度変化に基づいて検出するもの、ニッケル・水素蓄
電池セル内の温度の時間的変化である温度変化率に基づ
いて検出するもの等がある。
[0003] Conventional methods for detecting that the battery has reached a full charge include, for example, a method in which a terminal voltage (hereinafter, simply referred to as a voltage) at the time of charging the battery pack rises at the end of the charging process. There are those that detect based on a temperature change in the nickel-metal hydride storage battery cells, those that detect based on a temperature change rate that is a temporal change in the temperature in the nickel-metal hydride storage battery cells, and the like.

【0004】組電池が例えば自動車に搭載されている場
合には、通常搭載電池を充電または放電中に送風冷却を
行なうため、組電池の温度は自動車の使用される環境に
よって大幅に変化する。その温度範囲は例えば−20℃
から+70℃にも及ぶ。ニッケル・水素蓄電池セルの温
度(以後、単に「温度」と称する)が−20℃以上+4
0℃以下の範囲(以後、低温域と称する)では完全充電
に達する以前の充電状態率90〜95%(「充電状態
率」は蓄電池の公称容量の何%まで充電されたかを示す
割合である。上記の場合、ニッケル・水素蓄電池の公称
容量の90%〜95%の電力量が蓄電されたことを表
す。完全充電された状態では充電状態率は100%とな
る)の時点から、電圧及び温度の変化率が急速に増加す
る。従ってこの電圧又は温度の変化率を検出し、あらか
じめ定めた設定値と比較することによって正確に完全充
電に達したことを検出できる。
[0004] When the battery pack is mounted on an automobile, for example, the blast cooling is usually performed during charging or discharging of the mounted battery. Therefore, the temperature of the battery pack varies greatly depending on the environment in which the automobile is used. The temperature range is, for example, -20 ° C.
To + 70 ° C. The temperature of the nickel-metal hydride storage battery cell (hereinafter simply referred to as “temperature”) is −20 ° C. or higher + 4
In a range of 0 ° C. or lower (hereinafter referred to as a low temperature range), a state of charge of 90% to 95% before reaching full charge (“state of charge” is a ratio indicating how much of the nominal capacity of the storage battery has been charged). In the above case, it indicates that the electric energy of 90% to 95% of the nominal capacity of the nickel-metal hydride storage battery has been stored. When the battery is fully charged, the state of charge is 100%. The rate of change of temperature increases rapidly. Therefore, by detecting the rate of change of the voltage or the temperature and comparing it with a predetermined set value, it is possible to accurately detect that the battery is fully charged.

【0005】[0005]

【発明が解決しようとする課題】一般にニッケル・水素
蓄電池の充電可能な電力量は温度が高くなると減少す
る。特に温度が40℃を超える場合(以後、高温域と称
する)には、温度が高くなるにつれて大幅に減少する。
例えば温度が45℃の場合、充電可能な電力量は常温の
ときの85%程度になる。その理由を以下に説明する。
Generally, the chargeable electric energy of a nickel-metal hydride storage battery decreases as the temperature increases. In particular, when the temperature exceeds 40 ° C. (hereinafter, referred to as a high temperature range), the temperature significantly decreases as the temperature increases.
For example, when the temperature is 45 ° C., the amount of power that can be charged is about 85% of that at normal temperature. The reason will be described below.

【0006】電気自動車用の標準的なニッケル・水素蓄
電池セルの最高内圧は、ポリプロピレン樹脂等の樹脂電
槽を使用する場合には3〜5kgf/cm2 である。例
えば最高内圧が3kgf/cm2 の電池セルでは、内圧
が3kgf/cm2 を超えると安全弁が働いて内部のガ
スが外部へ漏出する。従って通常の充電時には、安全を
みて内圧が2kgf/cm2 を超えないように制御を行
なう。ニッケル・水素蓄電池セルを高温域の温度におい
て充電すると、負極の活物質である水素吸蔵合金の平衡
圧が上昇し、吸蔵可能な水素の量が減少するので、ニッ
ケル・水素蓄電池セル内の水素ガスが増加する。その結
果、ニッケル・水素蓄電池セルの内圧が上昇する。従っ
てもし充電状態率100%まで充電すると、内圧が前記
の最高内圧3kgf/cm2 を超えるおそれがある。そ
こで、内圧が最高内圧より十分低い2kgf/cm2
下の安全な範囲に保たれるように、充電状態率が85な
いし90%に達した時点で充電を停止する必要がある。
すなわち完全充電に達する前に充電を打切る必要があ
る。この場合には、完全充電に達する直前に急増する温
度変化率を利用する従来の検出方法を用いることはでき
なくなる。従って、高温域において充電を停止すべき時
期を正確に判定することができず、これを解決するのが
課題であった。
The maximum internal pressure of a standard nickel-metal hydride storage battery cell for an electric vehicle is 3 to 5 kgf / cm 2 when a resin container such as a polypropylene resin is used. For example, in a battery cell having a maximum internal pressure of 3 kgf / cm 2 , if the internal pressure exceeds 3 kgf / cm 2 , a safety valve operates and gas inside leaks to the outside. Therefore, during normal charging, control is performed so that the internal pressure does not exceed 2 kgf / cm 2 for safety. When the nickel-hydrogen storage battery cell is charged at a high temperature, the equilibrium pressure of the hydrogen storage alloy, which is the active material of the negative electrode, increases, and the amount of hydrogen that can be stored decreases. Increase. As a result, the internal pressure of the nickel-metal hydride storage battery cell increases. Therefore, if the battery is charged to the state of charge of 100%, the internal pressure may exceed the above maximum internal pressure of 3 kgf / cm 2 . Therefore, it is necessary to stop charging when the state of charge reaches 85 to 90% so that the internal pressure is maintained in a safe range of 2 kgf / cm 2 or less sufficiently lower than the maximum internal pressure.
That is, it is necessary to terminate charging before reaching full charging. In this case, it is impossible to use a conventional detection method that utilizes a temperature change rate that rapidly increases just before reaching full charge. Therefore, it has not been possible to accurately determine the timing at which charging should be stopped in a high temperature range, and to solve this problem.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、複数
のニッケル・水素蓄電池セルを接続して構成した組電池
の充電中の両端子間の電圧を検出する電圧検出手段、前
記複数のニッケル・水素蓄電池セルの少なくとも1個に
設けられ、その温度を検出する温度センサ、前記組電池
の充電電流を検出する電流検出手段、前記電圧検出手段
及び電流検出手段の検出出力に基づいて、前記組電池に
供給する充電電力を制御する充電電源制御回路、前記温
度センサが設けられたニッケル・水素蓄電池の温度が、
あらかじめ設定された設定温度以下の低温域であるとき
に、充電中における前記温度センサの検出出力に基づき
温度の時間的変化を表す温度変化率を求める温度変化率
演算手段、所定の温度変化率をあらかじめ設定する手段
及び前記温度変化率演算手段によって得られた充電中の
測定による温度変化率と前記設定された設定による温度
変化率とを比較する比較手段、及び充電中の温度変化率
が前記設定による温度変化率を超えたとき充電電源制御
回路に充電電力を制御するための信号を与え、前記温度
センサが設けられたニッケル・水素蓄電池の温度が、あ
らかじめ設定された設定温度を超える高温域であるとき
に、充電中における前記電流検出手段及び温度センサの
検出出力に基づいて、温度及び電流に関して、あらかじ
め設定された電圧上限値を設定し、かつ前記電圧検出手
段により検出された電圧が前記設定された電圧上限値を
超えたとき充電電源制御回路に充電電力を制御する制御
信号を与える制御手段を備えている。
According to a first aspect of the present invention, there is provided a voltage detecting means for detecting a voltage between both terminals during charging of an assembled battery constituted by connecting a plurality of nickel-metal hydride storage battery cells. A temperature sensor provided in at least one of the nickel-metal hydride storage battery cells, for detecting the temperature thereof, current detecting means for detecting a charging current of the battery pack, based on detection outputs of the voltage detecting means and the current detecting means, A charging power supply control circuit for controlling charging power supplied to the assembled battery, the temperature of the nickel-metal hydride storage battery provided with the temperature sensor,
A temperature change rate calculating means for calculating a temperature change rate representing a temporal change in temperature based on a detection output of the temperature sensor during charging when the temperature is in a low temperature range equal to or lower than a preset temperature, and a predetermined temperature change rate; Comparing means for comparing a temperature change rate measured during charging obtained by the means for setting in advance and the temperature change rate calculating means with a temperature change rate according to the set setting; and A signal for controlling the charging power to the charging power supply control circuit when the temperature change rate by the temperature sensor is exceeded, and the temperature of the nickel-metal hydride storage battery provided with the temperature sensor is in a high temperature range exceeding a preset temperature. At one time, based on detection outputs of the current detection means and the temperature sensor during charging, a voltage set in advance for temperature and current is set. Set the limit value, and the voltage detected by said voltage detecting means and a control means for providing a control signal for controlling the charging power to the charging power supply control circuit when exceeding the set voltage limit.

【0008】請求項2の発明では、前記充電電源制御回
路は、定電力充電と定電流充電とを切換可能に構成され
ており、低温域において前記充電中の温度変化率が設定
による温度変化率以下であり、高温域において充電電圧
が電圧上限値以下のとき定電力充電とし、低温域におい
て前記充電中の測定による温度変化率が設定による温度
変化率を超え、高温域において前記充電電圧が電圧上限
値を超えたとき定電流充電とすることを特徴とする。請
求項3の発明は、前記低温域は+40℃以下かつ−20
℃以上の温度範囲であり、前記高温域は+40℃を超え
る温度から+70℃以下の温度範囲である。請求項4の
発明は、前記温度及び電流に関して設定された電圧上限
値は、複数の温度及び電流の上限値及び下限値について
定められており、となり合う前記温度の間に電池温度が
ある場合、電圧の上限値を上下2点の温度と、電流の上
限値及び下限値に基づき直線補間によって求めるように
構成されている。
According to the second aspect of the present invention, the charging power supply control circuit is configured to be capable of switching between constant power charging and constant current charging. When the charging voltage is equal to or lower than the voltage upper limit in the high temperature range, the power is set to constant power charging.In the low temperature range, the temperature change rate measured during the charging exceeds the temperature change rate according to the setting. It is characterized in that constant current charging is performed when the value exceeds the upper limit. The invention according to claim 3 is characterized in that the low temperature range is + 40 ° C. or lower and −20 ° C.
° C or higher, and the high temperature range is a temperature range from a temperature exceeding + 40 ° C to a temperature ranging from + 70 ° C or lower. The invention according to claim 4, wherein the upper voltage limit set for the temperature and the current is determined for a plurality of upper and lower limits of temperature and current, and when there is a battery temperature between the adjacent temperatures, The upper limit of the voltage is determined by linear interpolation based on the upper and lower temperatures and the upper and lower limits of the current.

【0009】[0009]

【作用】請求項1の発明では、温度が所定値以下の低温
域においては、充電過程の末期に温度変化率が急増する
ことにより充電の切換時点を検知する。また温度が前記
所定値を超える高温域では、充電電圧が、温度及び電流
に関してあらかじめ定められた電圧上限値を超えたこと
により充電の切換時点を検知し、次の充電過程、例えば
定電流による補足充電に移行する。請求項2の発明で
は、充電電源制御回路によって定電力充電と定電流充電
とを切り換えることにより、充電過程の大部分では一定
の電力で能率よく充電し、充電過程の末期では過充電を
生じないようにそれまでの定電力充電時の充電電流より
も小さな値にあらかじ選んだ一定の電流で所定の時間充
電する。請求項3の発明では、前記の低温域は+40℃
以下、−20℃以上の温度範囲とし、高温域は+40℃
より高く+70℃以下の温度範囲とすることにより、ニ
ッケル・水素蓄電池の温度特性に適合した充電制御を選
択する。請求項4の発明では、複数の温度と電流の上限
値と下限値にそれぞれ対応する電圧の上限値を使用し、
任意の温度、電流の場合の電圧上限値を直線補間方法に
より決定する。
According to the first aspect of the present invention, in a low temperature range where the temperature is equal to or lower than a predetermined value, the charge switching point is detected by a rapid increase in the temperature change rate at the end of the charging process. In a high temperature range where the temperature exceeds the predetermined value, the charging voltage exceeds a predetermined voltage upper limit value with respect to the temperature and the current, so that the charging switching point is detected, and the next charging process, for example, the supplementation by the constant current is performed. Transition to charging. According to the invention of claim 2, by switching between constant power charging and constant current charging by the charging power supply control circuit, charging is efficiently performed with constant power in most of the charging process, and overcharging does not occur at the end of the charging process. As described above, charging is performed for a predetermined time with a constant current selected in advance to a value smaller than the charging current at the time of constant power charging. According to the third aspect of the present invention, the low temperature range is + 40 ° C.
Hereinafter, the temperature range is -20 ° C or higher, and the high temperature range is + 40 ° C.
By setting the temperature range higher than + 70 ° C., a charge control suitable for the temperature characteristics of the nickel-metal hydride storage battery is selected. According to the fourth aspect of the present invention, the upper limit value of the voltage corresponding to each of the upper limit value and the lower limit value of the plurality of temperatures and currents is used,
The voltage upper limit for an arbitrary temperature and current is determined by a linear interpolation method.

【0010】[0010]

【実施例】図1は本発明の実施例のニッケル・水素蓄電
池の充電制御装置のブロック回路図である。図1におい
て、組電池1は、自動車等の移動体に搭載される蓄電池
であって、ニッケル・水素蓄電池セル(以後、単に「蓄
電池セル」と記す)を240個直列に接続して構成され
ている。組電池1における多数の電池セルの接続方法に
ついては、前記の直列接続に限定するものではなく、並
列接続と直列接続を組合せる場合もある。1個の蓄電池
セルの公称電圧は約1.2ボルトであるので、上記の組
電池1の公称端子電圧は約288ボルトとなる。組電池
1の両端の端子間の電圧は電圧測定器などの電圧を検出
する手段である電圧センサ2によって検出される。
FIG. 1 is a block circuit diagram of a charge control device for a nickel-metal hydride storage battery according to an embodiment of the present invention. In FIG. 1, a battery pack 1 is a storage battery mounted on a moving body such as an automobile, and is configured by connecting 240 nickel-metal hydride storage battery cells (hereinafter simply referred to as “battery storage cells”) in series. I have. The method of connecting a large number of battery cells in the assembled battery 1 is not limited to the above-described series connection, but may be a combination of parallel connection and series connection. Since the nominal voltage of one battery cell is about 1.2 volts, the nominal terminal voltage of the battery pack 1 is about 288 volts. The voltage between the terminals at both ends of the battery pack 1 is detected by a voltage sensor 2 which is a means for detecting a voltage of a voltage measuring device or the like.

【0011】組電池1には蓄電池セル内の温度Tを検出
するための温度センサ3が設けられている。温度センサ
3は、例えば、組電池1の中で最も放熱が少なく、従っ
て温度が高い蓄電池セルに取付けるのが望ましい。前記
の電圧センサ2の検出出力は充電制御回路5に入力さ
れ、アナログ・デジタル変換器(以後、ADCと略記す
る)6によってデジタル信号に変換される。ADC6の
デジタル信号はCPU11に入力され後で述べる処理が
行なわれる。また、温度センサ3の検出出力はADC7
に入力される。ADC7の出力は測定制御回路10及び
温度変化率演算回路12を経てCPU11に入力され
る。充電電源20はある容量の直流電源であり、その直
流出力は充電制御回路5の充電電源制御回路14を経て
組電池1に印加される。この直流電源20の出力電流
(充電電流であり以後、単に「電流」と記す)は電流セ
ンサ4によってに検出される。電流センサ4によって検
出された電流値はADC8でデジタル信号に変換されC
PU11に入力される。
The battery pack 1 is provided with a temperature sensor 3 for detecting a temperature T in the storage battery cell. It is desirable that the temperature sensor 3 is attached to, for example, a storage battery cell that emits the least heat among the battery packs 1 and thus has a high temperature. The detection output of the voltage sensor 2 is input to a charge control circuit 5 and is converted into a digital signal by an analog / digital converter (hereinafter abbreviated as ADC) 6. The digital signal of the ADC 6 is input to the CPU 11 and the processing described later is performed. The detection output of the temperature sensor 3 is ADC7.
Is input to The output of the ADC 7 is input to the CPU 11 via the measurement control circuit 10 and the temperature change rate calculation circuit 12. The charging power supply 20 is a DC power supply having a certain capacity, and its DC output is applied to the battery pack 1 via the charging power supply control circuit 14 of the charging control circuit 5. The output current of the DC power supply 20 (charging current, hereinafter simply referred to as “current”) is detected by the current sensor 4. The current value detected by the current sensor 4 is converted into a digital signal by
It is input to PU11.

【0012】次に本実施例の充電制御装置の動作につい
て説明する。温度センサ3によって検出される蓄電池セ
ルの温度(以後、単に「温度」と記す)をTとすると
き、温度Tは測定制御回路10によって、一定時間例え
ば1分間に10秒毎、6回の温度測定を行ない、その6
回分の測定結果の平均値が1分間の平均温度T1、T
2、T3・・・として1分毎に得られる。平均温度を求
めるための上記一定時間は30秒から10分位の間の適
当な値に設定することができる。こうして得た平均温度
T1、T2、T3・・・は温度変化率演算回路12に入
力される。温度変化率演算回路12においては、ある1
分間の平均温度T1と次の1分間の平均温度T2との差
dT(T2−T1=dT)を求め、差dTの単位時間d
tに対する比である温度変化率TV(TV=dT/d
t)を演算し、その出力端に出力する。こうして出力さ
れた温度変化率TVのデータはCPU11に入力され
る。
Next, the operation of the charging control device according to the present embodiment will be described. Assuming that the temperature of the storage battery cell detected by the temperature sensor 3 (hereinafter simply referred to as “temperature”) is T, the temperature T is measured by the measurement control circuit 10 for six times, for example, every 10 seconds for one minute. Take a measurement, part 6
The average value of the measurement results of the batches is the average temperature T1, T for one minute.
2, T3... Are obtained every minute. The predetermined time for obtaining the average temperature can be set to an appropriate value between 30 seconds and about 10 minutes. The average temperatures T1, T2, T3,... Thus obtained are input to the temperature change rate calculation circuit 12. In the temperature change rate calculation circuit 12, a certain 1
The difference dT between the average temperature T1 for one minute and the average temperature T2 for the next one minute (T2-T1 = dT) is obtained, and the unit time d of the difference dT is obtained.
temperature change rate TV (TV = dT / d
t) is calculated and output to its output terminal. The temperature change rate TV data thus output is input to the CPU 11.

【0013】本発明の充電制御装置では、前記の電圧セ
ンサ2と温度センサ3の検出値に基づき充電の制御をす
るが、検出された温度Tに応じて2種類の制御モードの
いずれかが選択される(図3のフローチャートのステッ
プ101、102)。第1の制御モードを選択するのは
温度Tが40℃以下の場合(以後、「低温域」と称す
る)であり、この場合には温度変化率TVに基づいて、
充電制御をする。また温度Tが40℃を超える場合(以
後、「高温域」と称する)には、第2の制御モードを選
択し、充電電圧(充電中の組電池の端子電圧であり、以
後は単に「電圧V」と称する)に基づいて充電制御をす
る。
In the charging control device of the present invention, charging is controlled based on the detection values of the voltage sensor 2 and the temperature sensor 3, and one of two control modes is selected according to the detected temperature T. (Steps 101 and 102 in the flowchart of FIG. 3). The first control mode is selected when the temperature T is equal to or lower than 40 ° C. (hereinafter, referred to as a “low temperature range”). In this case, based on the temperature change rate TV,
Control charging. If the temperature T exceeds 40 ° C. (hereinafter, referred to as “high temperature range”), the second control mode is selected, and the charging voltage (the terminal voltage of the battery pack being charged; V ").

【0014】[第1制御モード] 温度Tが40℃以下
である低温域における充電制御 第1制御モードの動作を、図2に示す充電中の電圧V及
び温度変化率TVの時間的変化を表すグラフと、図3の
フローチャートに基づいて説明する。図2において、横
軸は時間tであり、縦軸は電圧V及び温度変化率TVで
ある。横軸の時刻t1で、組電池1はその容量の約90
%程度まで充電されており、このとき電圧はV1であ
る。温度変化率はTV1である。時刻t1を過ぎると、
電圧Vと温度変化率TVが急速に上昇し、両曲線の傾斜
は急になる。CPU11においては、温度変化率TVが
設定値TV1を超えたとき定電力充電を完了と判定する
ように構成されており、その後定電流充電を時刻t2ま
で行なう。時刻t2で設定値TV2以上になると、充電
を打切るべく充電開閉器14を開いて電流を遮断する。
このときの電圧はV2である。充電開閉器14を開く
と、短時間で端子電圧はV1より若干低い値にまで降下
する。図3のフローチャートにおいて、ステップ102
で低温域と判定されるとステップ103で定電力充電を
行なう。ステップ104で求めた温度変化率TVを、ス
テップ105であらかじめ設定した設定値TV1と比較
し、設定値以上の場合はステップ106で定電流充電に
切り換える。この定電流充電は設定時間に達すると充電
を停止する(ステップ107、108)。
[First Control Mode] Charging control in a low-temperature region where the temperature T is 40 ° C. or lower. The operation of the first control mode represents the temporal change of the voltage V during charging and the temperature change rate TV shown in FIG. This will be described with reference to a graph and the flowchart of FIG. In FIG. 2, the horizontal axis represents time t, and the vertical axis represents voltage V and temperature change rate TV. At time t1 on the horizontal axis, the battery pack 1 has about 90% of its capacity.
%, And the voltage is V1 at this time. The temperature change rate is TV1. After time t1,
The voltage V and the temperature change rate TV rise rapidly, and the slopes of both curves become steep. The CPU 11 is configured to determine that the constant power charging has been completed when the temperature change rate TV exceeds the set value TV1, and then performs the constant current charging until time t2. When the current value becomes equal to or greater than the set value TV2 at time t2, the charging switch 14 is opened to stop charging, and the current is interrupted.
The voltage at this time is V2. When the charging switch 14 is opened, the terminal voltage drops to a value slightly lower than V1 in a short time. In the flowchart of FIG.
If it is determined that the temperature is in the low temperature range, constant power charging is performed in step 103. The temperature change rate TV obtained in step 104 is compared with a set value TV1 set in advance in step 105, and if it is equal to or larger than the set value, switching to constant current charging is performed in step 106. This constant current charging is stopped when the set time is reached (steps 107 and 108).

【0015】[第2制御モード] 温度Tが40℃を超
える高温域における充電制御 次に高温域の充電制御について説明する。蓄電池セルの
温度Tが40℃を超える高温域においては、電圧Vの値
によって充電制御を行なう。第2制御モードにおいて
は、充電電圧が電圧上限値に達するまでは、蓄電池に供
給される電力(電圧と電流の積)が一定であるように充
電開閉器14により電流を制御しつつ定電力充電を行な
う(図4のステップ109)。充電によって電圧Vは上
昇するが、電圧Vが後で詳細に説明する充電電圧の電圧
上限値E(以後、単に「電圧上限値」という)以上にな
ると定電力充電から、電流を一定に保って充電する定電
流充電に切り換える(図4のステップ113、11
4)。通常、定電流充電時の電流値は定電力充電時のそ
れの数分の1から10分の1とする。定電流充電はCP
U11によりあらかじめ設定された設定時間だけ行なわ
れ、設定時間を超えると定電流充電が停止され、充電を
完了する(図4のステップ115、116、117)。
[Second Control Mode] Charge control in a high temperature range where the temperature T exceeds 40 ° C. Next, charge control in a high temperature range will be described. In a high temperature region where the temperature T of the storage battery cell exceeds 40 ° C., the charge control is performed based on the value of the voltage V. In the second control mode, until the charging voltage reaches the upper voltage limit, constant power charging is performed while controlling the current by the charging switch 14 so that the power (the product of the voltage and the current) supplied to the storage battery is constant. (Step 109 in FIG. 4). The voltage V rises due to the charging, but when the voltage V exceeds a voltage upper limit value E (hereinafter, simply referred to as a “voltage upper limit value”) of the charging voltage described in detail later, the current is kept constant from the constant power charging. Switching to constant current charging for charging (steps 113 and 11 in FIG. 4)
4). Normally, the current value at the time of constant-current charging is set to be a fraction to one-tenth of that at the time of constant-power charging. Constant current charging is CP
The charging is performed for a set time set in advance by U11. When the set time is exceeded, the constant current charging is stopped, and the charging is completed (steps 115, 116, and 117 in FIG. 4).

【0016】定電力充電は定電力充電に比べて充電初期
の電流値が大きくなるので充電時間を短縮できる利点が
ある。
The constant power charging has an advantage that the charging time can be shortened since the current value at the initial stage of charging is larger than that of the constant power charging.

【0017】次に前記の電圧上限値Eについて説明す
る。蓄電池の充電中はその内圧が常に2kgf/cm2
を超えないように制御をする。そのために、高温域にお
いてあらかじめ実験を行なって、上限電流値及び下限値
でそれぞれ定電流充電し内圧が1kgf/cm2に達し
たときの電圧Vを求めておく。そのような実験によって
求められた電圧が表1に示す電圧上限値Eである。
Next, the voltage upper limit value E will be described. While charging the storage battery, its internal pressure is always 2 kgf / cm 2
Control not to exceed. For this purpose, an experiment is performed in advance in a high-temperature region, and a voltage V when the internal pressure reaches 1 kgf / cm 2 by constant current charging at the upper limit current value and the lower limit value, respectively, is obtained in advance. The voltage obtained by such an experiment is the voltage upper limit E shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1に示す実験に用いた供試蓄電池は24
0個のニッケル・水素蓄電池セルを直列接続した組電池
であり、電気容量は100Ahであった。定電力充電に
おいては例えば4.7KWの電力で充電するものとす
る。温度Tは組電池内の所定の蓄電池セルに設けられた
温度センサ3によって検出された温度であり、+40℃
から+70℃の範囲である。電圧上限値Eは、前記の各
温度Tにおいて、充電電流の上限である15Aと下限で
ある10Aのそれぞれについて電圧Vの上限を示す。電
圧上限値Eの数値は、温度Tについて+40℃から+7
0℃までの範囲で10℃毎に定められており、電流Iが
10Aの場合と15Aの場合との2個の電流値について
のみ定めている。従って検出された温度及び電流が表1
に記載された値以外の中間的な値の場合には直線補間を
行なってその中間的な値に対応する電圧上限値Eを求め
る。次に直線補間演算の例を示す。
The test storage batteries used in the experiments shown in Table 1 were 24
The assembled battery was a series connection of zero nickel-hydrogen storage battery cells, and had an electric capacity of 100 Ah. In the constant power charging, charging is performed with, for example, 4.7 KW of power. The temperature T is a temperature detected by the temperature sensor 3 provided in a predetermined storage battery cell in the battery pack, and is + 40 ° C.
To + 70 ° C. The voltage upper limit value E indicates the upper limit of the voltage V for each of the above-mentioned temperatures T for each of the upper limit 15A of the charging current and the lower limit 10A. The numerical value of the voltage upper limit value E ranges from + 40 ° C. to +7 for the temperature T.
It is determined every 10 ° C. in the range up to 0 ° C., and is defined only for two current values, that is, when the current I is 10 A and 15 A. Therefore, the detected temperature and current are shown in Table 1.
In the case of an intermediate value other than the values described in (1), linear interpolation is performed to obtain the voltage upper limit value E corresponding to the intermediate value. Next, an example of the linear interpolation calculation will be described.

【0020】[直線補間演算例]温度Tが40℃と50
℃の間の(40+ΔT)℃であり(但し0<ΔT<1
0)、充電電流Iが10Aと15Aの間の(10+Δ
I)Aの場合(但し0<ΔI<5)、まず温度(40+
ΔT)℃における電圧上限値を下記の式(1)、(2)
に示す演算によって求める。
[Example of linear interpolation calculation] Temperature T is 40 ° C. and 50 ° C.
(40 + ΔT) ° C. between 0 ° C. (where 0 <ΔT <1
0), when the charging current I is between 10 A and 15 A (10 + Δ
I) In the case of A (where 0 <ΔI <5), first, the temperature (40+
ΔT) The voltage upper limit value at ° C is calculated by the following formulas (1) and (2).
Is calculated by the following calculation.

【0021】[0021]

【数1】 (Equation 1)

【0022】[0022]

【数2】 (Equation 2)

【0023】次に式(1)及び(2)の演算結果につい
て、電流(10+ΔI)Aに対する式(3)の補間演算
をする。
Next, with respect to the calculation results of the equations (1) and (2), the interpolation calculation of the equation (3) for the current (10 + ΔI) A is performed.

【0024】[0024]

【数3】 式(3)の演算結果は温度40℃〜50℃間における任
意の温度と電流値に対して補間して得られた電圧上限値
Eである。温度50℃〜60℃間及び60℃〜70℃間
における電圧上限値Eも同様にして求めることが出来
る。上記の電圧上限値Eの補間演算とそれに基づく制御
動作はCPU11において、図4のステップ110、1
11、112、113に示すように行なわれる。
(Equation 3) The calculation result of Expression (3) is a voltage upper limit value E obtained by interpolating an arbitrary temperature and current value between 40 ° C. and 50 ° C. The voltage upper limit value E at a temperature between 50 ° C. and 60 ° C. and between 60 ° C. and 70 ° C. can be obtained in the same manner. The above-described interpolation calculation of the voltage upper limit value E and the control operation based thereon are performed by the CPU 11 in steps 110 and 1 in FIG.
This is performed as shown at 11, 112 and 113.

【0025】[0025]

【発明の効果】請求項1の発明によれば、温度が40℃
以下の低温域では、充電過程の末期で温度変化率が急速
に増加することにより、定電力充電から定電流充電への
切り換え時点を温度変化率から判定する。また温度が4
0℃を超える高温域では、温度と充電電流に関してあら
かじめ定めた電圧上限値に基づいて充電完了時点を判定
する。従ってニッケル・水素電池が使用されるすべての
温度範囲において充電完了時点を正確に判定することが
できる。請求項2の発明によれば、充電過程の大部分を
定電力で充電するので、定電流充電のみで充電する場合
に比べて充電時間が短くなる。
According to the first aspect of the present invention, the temperature is 40 ° C.
In the following low-temperature range, the temperature change rate rapidly increases at the end of the charging process, so that the switching point from constant power charging to constant current charging is determined from the temperature change rate. And the temperature is 4
In a high temperature range exceeding 0 ° C., the charging completion point is determined based on a predetermined voltage upper limit value for the temperature and the charging current. Therefore, it is possible to accurately determine the charging completion time point in all the temperature ranges in which the nickel-metal hydride battery is used. According to the second aspect of the present invention, since most of the charging process is performed with constant power, the charging time is shorter than in the case where only constant current charging is performed.

【0026】請求項3の発明によれば、低温域を+40
℃以下、高温域を+40℃より高い温度範囲とすること
により、ニッケル・水素蓄電池の温度特性に適合した充
電制御が可能となる。請求項4の発明によれば、電流と
温度の各離散値間を直線補間することにより、各離散値
間の任意の電流及び温度においても正確な電圧上限値を
求めることができる。
According to the third aspect of the present invention, the low temperature range is increased by +40.
By setting the high temperature range below + 40 ° C. and below + 40 ° C., charge control suitable for the temperature characteristics of the nickel-metal hydride storage battery can be performed. According to the invention of claim 4, by linearly interpolating between the discrete values of the current and the temperature, an accurate voltage upper limit value can be obtained even at an arbitrary current and temperature between the discrete values.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のニッケル・水素蓄電池の充電
制御装置のブロック図、
FIG. 1 is a block diagram of a nickel-hydrogen storage battery charge control device according to an embodiment of the present invention;

【図2】大型のニッケル・水素蓄電池の充電時の電圧及
び温度変化率の時間的変化を示すグラフ、
FIG. 2 is a graph showing temporal changes in voltage and temperature change rate during charging of a large nickel-metal hydride storage battery;

【図3】本実施例の低温域での充電制御の動作を示すフ
ローチャート、
FIG. 3 is a flowchart showing the operation of charge control in a low-temperature region according to the embodiment;

【図4】本実施例の高温域での充電制御の動作を示すフ
ローチャート、
FIG. 4 is a flowchart showing the operation of charge control in a high-temperature region according to the embodiment;

【符号の説明】[Explanation of symbols]

2 電圧センサ 3 温度センサ 2 Voltage sensor 3 Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 登 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 高田 寛治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/12 H02J 7/34 - 7/36 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Noboru Ito 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (58) Surveyed fields (Int.Cl. 7 , DB name) H02J 7/ 00-7/12 H02J 7 /34-7/36

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数のニッケル・水素蓄電池セルを接続
して構成した組電池の充電中の両端子間の電圧を検出す
る電圧検出手段、 前記複数のニッケル・水素蓄電池セルの少なくとも1個
に設けられ、その温度を検出する温度センサ、 前記組電池の充電電流を検出する電流検出手段、 前記電圧検出手段及び電流検出手段の検出出力に基づい
て、前記組電池に供給する充電電力を制御する充電電源
制御回路、 前記温度センサが設けられたニッケル・水素蓄電池の温
度が、あらかじめ設定された設定温度以下の低温域であ
るときに、充電中における前記温度センサの検出出力に
基づき温度の時間的変化を表す温度変化率を求める温度
変化率演算手段、所定の温度変化率をあらかじめ設定す
る手段及び前記温度変化率演算手段によって得られた充
電中の測定による温度変化率と前記設定された設定によ
る温度変化率とを比較する比較手段、及び充電中の温度
変化率が前記設定による温度変化率を超えたとき前記充
電電源制御回路に充電電力を制御するための信号を与
え、 前記温度センサが設けられたニッケル・水素蓄電池の温
度が、あらかじめ設定された設定温度を超える高温域で
あるときに、充電中における前記電流検出手段及び温度
センサの検出出力に基づいて、温度及び電流に関して、
あらかじめ設定された電圧上限値を設定し、かつ前記電
圧検出手段により検出された電圧が前記設定された電圧
上限値を超えたとき充電電源制御回路に充電電力を制御
する制御信号を与える制御手段を有するニッケル・水素
蓄電池の充電制御装置。
1. A voltage detecting means for detecting a voltage between both terminals of a battery pack formed by connecting a plurality of nickel-metal hydride storage cells during charging, provided in at least one of the plurality of nickel-metal hydride storage cells. A temperature sensor for detecting the temperature of the battery; a current detecting means for detecting a charging current of the battery pack; and a charge for controlling charging power supplied to the battery pack based on detection outputs of the voltage detecting means and the current detecting means. A power supply control circuit, when the temperature of the nickel-metal hydride storage battery provided with the temperature sensor is in a low temperature range equal to or lower than a preset temperature, a temporal change in temperature based on a detection output of the temperature sensor during charging; Temperature change rate calculating means for obtaining a temperature change rate representing the following, means for presetting a predetermined temperature change rate, and charging obtained by the temperature change rate calculating means. Comparing means for comparing the temperature change rate by the measurement with the temperature change rate by the set setting, and charging power to the charging power supply control circuit when the temperature change rate during charging exceeds the temperature change rate by the setting. When the temperature of the nickel-metal hydride storage battery provided with the temperature sensor is in a high temperature range exceeding a preset temperature, the current detection unit and the temperature sensor detect during charging. Based on the output, with respect to temperature and current,
A control means for setting a preset voltage upper limit value and providing a control signal for controlling charging power to a charging power control circuit when the voltage detected by the voltage detecting means exceeds the set voltage upper limit value. Control device for a nickel-metal hydride storage battery.
【請求項2】 前記充電電源制御回路は、前記制御手段
の制御信号により定電力充電と定電流充電とを切換可能
に構成されており、低温域において前記充電中の温度変
化率が設定による温度変化率以下であり、高温域におい
て充電電圧が電圧上限値以下のとき定電力充電とし、低
温域において前記充電中の測定による温度変化率が設定
による温度変化率を超え、高温域において前記充電電圧
が電圧上限値を超えたとき定電流充電とすることを特徴
とする請求項1のニッケル・水素蓄電池の充電制御装
置。
2. The charging power supply control circuit is configured to be able to switch between constant power charging and constant current charging in accordance with a control signal of the control means. Constant rate charging when the charging voltage is equal to or less than the voltage upper limit in the high temperature range, the temperature change rate measured during the charging exceeds the temperature change rate set by the measurement in the low temperature range, and the charging voltage in the high temperature range. 2. The charge control device for a nickel-metal hydride storage battery according to claim 1, wherein constant current charging is performed when the voltage exceeds a voltage upper limit value.
【請求項3】 前記低温域は+40℃以下かつ−20℃
以上の温度範囲であり、前記高温域は+40℃を超える
温度から+70℃以下の温度範囲である請求項1のニッ
ケル・水素蓄電池の充電制御装置。
3. The low temperature range is + 40 ° C. or lower and −20 ° C.
2. The charge control device for a nickel-metal hydride storage battery according to claim 1, wherein the temperature range is as described above, and the high temperature range is a temperature range from a temperature exceeding + 40 ° C. to a temperature not exceeding + 70 ° C. 3.
【請求項4】 前記温度及び電流に関して設定された電
圧上限値は、複数の温度及び電流の上限値及び下限値に
ついて定められており、となり合う前記温度の間に蓄電
池の温度がある場合、電圧上限値を上下2点の温度と前
記電流の上限値と下限値に基づき直線補間によって求め
ることを特徴とする請求項1のニッケル・水素蓄電池の
充電制御装置。
4. A voltage upper limit set for the temperature and current is defined for a plurality of upper and lower limits of temperature and current, and when the temperature of the storage battery is between the adjacent temperatures, the voltage 2. The charge control device for a nickel-metal hydride storage battery according to claim 1, wherein an upper limit value is determined by linear interpolation based on upper and lower temperatures and upper and lower limits of the current.
JP06273452A 1994-11-08 1994-11-08 Storage battery charge control device Expired - Lifetime JP3132798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06273452A JP3132798B2 (en) 1994-11-08 1994-11-08 Storage battery charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06273452A JP3132798B2 (en) 1994-11-08 1994-11-08 Storage battery charge control device

Publications (2)

Publication Number Publication Date
JPH08140283A JPH08140283A (en) 1996-05-31
JP3132798B2 true JP3132798B2 (en) 2001-02-05

Family

ID=17528117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06273452A Expired - Lifetime JP3132798B2 (en) 1994-11-08 1994-11-08 Storage battery charge control device

Country Status (1)

Country Link
JP (1) JP3132798B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137263A (en) * 1998-04-03 2000-10-24 Nippon Soken, Inc. Method and device for checking battery charge
CN103872709B (en) * 2012-12-10 2018-08-31 联想(北京)有限公司 A kind of method and electronic equipment of charging
CN113859829A (en) * 2013-03-13 2021-12-31 西姆伯蒂克有限责任公司 Storage and retrieval system vehicle interface
WO2015064734A1 (en) * 2013-11-01 2015-05-07 日本電気株式会社 Charging device, electricity storage system, charging method, and program
JP7060383B2 (en) * 2018-01-12 2022-04-26 Fdk株式会社 Alkaline storage battery charge control method and alkaline storage battery charger

Also Published As

Publication number Publication date
JPH08140283A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
US6495992B1 (en) Method and apparatus for charging batteries utilizing heterogeneous reaction kinetics
EP2272148B1 (en) Apparatus and method for detecting divergence in the state-of-charge or state-of-discharge of a series string of batteries cells or capacitors cells
JP3157686B2 (en) Battery charging control device
US5451880A (en) Battery-charging circuit
US6172487B1 (en) Method and apparatus for charging batteries
US6313605B1 (en) Battery charger and method of charging nickel based batteries
CA2148699C (en) Fast battery charging method and apparatus with temperature gradient detection
KR940027251A (en) A method of monitoring the charge of sealed nickel storage cells and a charger using the method
EP1132989B1 (en) Device and method for controlled charging of a secondary battery
EP0659304A1 (en) Method and circuit for charging batteries
KR0140396B1 (en) Ultra-fast charging method for sealed nickel-cadmium batteries
EP4213274A1 (en) Battery management system, battery pack, electric vehicle, and battery management method
JP3157687B2 (en) Storage battery charge control device
JP3132798B2 (en) Storage battery charge control device
Chang et al. Effects of fast charging on hybrid lead/acid battery temperature
JP3508254B2 (en) Rechargeable battery charger
JP2906862B2 (en) Battery charging method
JPH06284591A (en) Charging apparatus
JPH10248177A (en) Charging circuit
JPH08149709A (en) Charger for secondary battery
JPH1032020A (en) Charge and discharge control method for sealed type lead-acid battery
JP3173012B2 (en) Battery pack, charging device and charging method
JPH1174001A (en) Charging method for lead-acid battery
JP3144394B2 (en) Charging device and charging method
JP3101117B2 (en) Rechargeable battery charging method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 13

EXPY Cancellation because of completion of term