JPS6046458A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS6046458A
JPS6046458A JP58153307A JP15330783A JPS6046458A JP S6046458 A JPS6046458 A JP S6046458A JP 58153307 A JP58153307 A JP 58153307A JP 15330783 A JP15330783 A JP 15330783A JP S6046458 A JPS6046458 A JP S6046458A
Authority
JP
Japan
Prior art keywords
sample
deposited
film
polymer film
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58153307A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58153307A priority Critical patent/JPS6046458A/en
Publication of JPS6046458A publication Critical patent/JPS6046458A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable observation of a material of which the sample reacts, swells or dissolves with a medium by coating the sample surface with an org. high polymer film deposited by evaporation so that the medium does not contact directly the material to be observed. CONSTITUTION:An org. high polymer film (polyparaxylene) deposited by evaporation is a thermoplastic resin and can form a film on a sample surface when deposited by vacuum evaporation. Said film can be formed as thin as 0.2mu and the thickness thereof is freely controllable. The film can be deposited uniformly by evaporation into any concealed part without generating pinholes as far as there is a space therein. The easy observation of a material which is easily dissolved or a material which is easily swollen is made possible as the direct contact of the medium with the sample is prevented by sticking such polymer film to the sample surface.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明jt、高周波音波エネルギーを利用する顕微鏡に
用いて良好な音響レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an acoustic lens that is suitable for use in a microscope that utilizes high frequency sound wave energy.

〔発明の背景〕[Background of the invention]

近年、IGHzに及ぶ高周波の発生、検出が可能となっ
たために、水中での音波波長として約1ミクロンが得ら
れ、したがって音波エネルギーを利用した顕微鏡が検討
されるようKなりた。
In recent years, as it has become possible to generate and detect high frequencies up to IGHz, the wavelength of sound waves in water is about 1 micron, and therefore, microscopes that utilize sound wave energy have been considered.

このような超音波顕微鏡の構成を第1図に示す。The configuration of such an ultrasonic microscope is shown in FIG.

パルス発振器lから発生された高圧パルス2は球面レン
ズ3の上面に蒸着等で形成された圧電物質4に印加され
る。この圧電物質4は高圧パルス2によりて励振され超
音波を発生する。この超音波は球面レンズ3の中を伝播
し、他端面に設けられた凹面部により細く集束される。
A high voltage pulse 2 generated from a pulse oscillator 1 is applied to a piezoelectric material 4 formed on the upper surface of a spherical lens 3 by vapor deposition or the like. This piezoelectric material 4 is excited by the high voltage pulse 2 and generates ultrasonic waves. This ultrasonic wave propagates through the spherical lens 3 and is narrowly focused by a concave portion provided on the other end surface.

この超音波ビームを媒質5を介して、2次元に機械走査
されている試料6(試料台lO上に設置される)の面上
に照射する。試料6より反射されてくる音波を同じ球面
レンズ3により受信し、受信器7で電気信号に変換して
CRT8の画面上に試料台lOの走査装置9の走査と同
期させて表示することができる。
This ultrasonic beam is irradiated via the medium 5 onto the surface of a sample 6 (placed on a sample stage 10) which is being mechanically scanned in two dimensions. The sound waves reflected from the sample 6 are received by the same spherical lens 3, converted into electrical signals by the receiver 7, and can be displayed on the screen of the CRT 8 in synchronization with the scanning of the scanning device 9 of the sample stage 10. .

このような方式の超音波顕微鏡を使用すると、光学的に
不透明な物体でも音波は伝播するので、その内部構造を
知ることができる。その上物体の弾性、密度、粘性など
の物理的性質を反映した微細構造を描画できるので、他
の顕微鏡では不可能な情報を得ることができるなど、新
しい観察装置として注目をあつめている。
When using this type of ultrasound microscope, sound waves propagate even in optically opaque objects, allowing us to understand their internal structures. Moreover, it is attracting attention as a new observation device because it can depict the fine structure of an object that reflects its physical properties such as elasticity, density, and viscosity, allowing it to obtain information that is not possible with other microscopes.

上述のように構成された超音波顕微鏡を使用して試料を
観察する場合、試料が媒質5(例えば水)に対して、反
応、膨潤あるいは、溶解してしまうような物質の場合に
は観察が不可能である。
When observing a sample using the ultrasonic microscope configured as described above, observation may be difficult if the sample is a substance that reacts, swells, or dissolves in the medium 5 (for example, water). It's impossible.

〔発明の目的〕[Purpose of the invention]

かかる点に鑑み本願発明は、媒質が直接観察物質に接触
しないようにした超音波顕微鏡を提供することを目的と
する。
In view of this, an object of the present invention is to provide an ultrasonic microscope in which a medium does not come into direct contact with an observation substance.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために、本願発明は試料表面を蒸
着有機高分子膜で被覆することを特徴とする。
In order to achieve this object, the present invention is characterized in that the sample surface is coated with a vapor-deposited organic polymer film.

〔発明の実施例〕[Embodiments of the invention]

第2南は試料台lOの上面に取りつけられた試料6を示
したものである。この試料6の面上に被覆材11を塗附
することにより上述の問題を解決することができる。こ
こで使用する被覆材11には、例えば、蒸着有機高分子
膜が適していることをみいだした。この蒸着有機高分子
膜(ポリパラキンリレン)は熱可塑性樹脂であり、真空
蒸着により、試料表面に膜を生成することが出来るもの
で、0.2ミクロンの薄さから生成でき、その厚さも任
意にコントロールすることができる。またいかなる隠れ
た所でもそこに空間があるかぎり均一にピンホールなく
蒸着できると云うことである。
The second south shows the sample 6 attached to the upper surface of the sample stage IO. By applying the coating material 11 on the surface of the sample 6, the above-mentioned problem can be solved. It has been found that, for example, a vapor-deposited organic polymer film is suitable for the coating material 11 used here. This evaporated organic polymer film (polyparaquinrylene) is a thermoplastic resin that can be formed on the surface of a sample by vacuum evaporation. can be controlled. Also, as long as there is space in any hidden place, it can be deposited uniformly and without pinholes.

さらに蒸着中の温度は、室温あるいはそれ以下であるの
で、試料にはなんら熱的支障はあたえない。
Furthermore, since the temperature during vapor deposition is room temperature or lower, no thermal hindrance is caused to the sample.

このような特長をもつ高分子膜を試料表面に附着させる
ことにより、試料に直接媒質の接触することを防ぐため
に溶解されやすい物質や膨潤されやすい物質などの観察
も容易に行うことができる。
By attaching a polymer film with these features to the surface of a sample, it is possible to easily observe substances that are easily dissolved or swelled in order to prevent the sample from coming into direct contact with the medium.

また、一般に音響インピーダンスがZlおよびz2で多
る二つの物質の境界面では、波は一部分しか透過しなC
・。残りは音源の方へ(21−22)/(Z□+Z2)
に比例した量で反射される0固体と液体の境界面では固
体の音響インピーダンスZ1は〜10 X 10’ g
/am” 6 sec以上あり、液体の音響インピーダ
ンスz2の〜1.5 X I O’ g/am”・se
・Cのほぼ10倍と大きい。この場合は上記の比は1に
近ずくために音波はほとんど反射されてしまい、そのご
くわずかしか透過しないということである。
Furthermore, in general, at the interface between two materials where the acoustic impedance is large at Zl and z2, waves only partially pass through C.
・. The rest goes towards the sound source (21-22)/(Z□+Z2)
At the solid-liquid interface, the acoustic impedance Z1 of the solid is ~10 x 10' g
/am" 6 sec or more, the acoustic impedance z2 of the liquid is ~1.5 X I O'g/am"・se
・Almost 10 times larger than C. In this case, since the above ratio approaches 1, most of the sound waves are reflected, and only a small portion of them are transmitted.

この現象は、境界面に特別な層を作ってやることにより
、とり除くことができる。この層を形成する物質として
は、音響インピーダンスが21と22の間にあるものを
選択しなければならないが、上述の高分子材料の音響イ
ンピーダンスz3は、3 X l O’ g/Cm” 
a sea程度であり、両者のほぼ中間にあることから
、この物質をλ/4に等しくなるような厚さに附着して
やることにより整合層の役目をはだすことができる。
This phenomenon can be eliminated by creating a special layer at the interface. The material forming this layer must be selected to have an acoustic impedance between 21 and 22, and the acoustic impedance z3 of the above-mentioned polymeric material is 3 X l O'g/Cm"
a sea, which is approximately halfway between the two, so by depositing this material to a thickness equal to λ/4, it can serve as a matching layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、超音波顕微鏡の概略構成を説明する図、42
LQは本発明の一実施例の要部を説明する図である。 6:試料、lO:試料台、ll:蒸着有機高分子膜 凛 l @
FIG. 1 is a diagram illustrating the schematic configuration of an ultrasound microscope, 42
LQ is a diagram illustrating a main part of an embodiment of the present invention. 6: sample, lO: sample stage, l: vapor deposited organic polymer film Rin l @

Claims (1)

【特許請求の範囲】[Claims] 1、音波ビームを発生する手段と、上記音波ビームを所
定焦点に集束する音響レンズ、上記焦点近傍に配置され
る対象物でしよう乱された音波エネルギーを検出する音
波顕微鏡において、上記対象物表面に蒸着有機高分子膜
を耐着したことを特徴とする超音波顕微鏡。
1. A sonic microscope that detects sound wave energy disturbed by an object placed near the focal point; An ultrasonic microscope characterized by having a vapor-deposited organic polymer film.
JP58153307A 1983-08-24 1983-08-24 Ultrasonic microscope Pending JPS6046458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58153307A JPS6046458A (en) 1983-08-24 1983-08-24 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58153307A JPS6046458A (en) 1983-08-24 1983-08-24 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS6046458A true JPS6046458A (en) 1985-03-13

Family

ID=15559617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58153307A Pending JPS6046458A (en) 1983-08-24 1983-08-24 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS6046458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257965A (en) * 1988-08-23 1990-02-27 Ngk Spark Plug Co Ltd Method for checking ceramic molded body
JP2008209258A (en) * 2007-02-27 2008-09-11 Honda Electronic Co Ltd Sample support for acoustic parameter measuring device, and acoustic parameter measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257965A (en) * 1988-08-23 1990-02-27 Ngk Spark Plug Co Ltd Method for checking ceramic molded body
JP2008209258A (en) * 2007-02-27 2008-09-11 Honda Electronic Co Ltd Sample support for acoustic parameter measuring device, and acoustic parameter measuring device

Similar Documents

Publication Publication Date Title
Khuri-Yakub Scanning acoustic microscopy
WO2019032938A1 (en) Optically transparent micromachined ultrasonic transducer (cmut)
Wagle et al. Ultrasonic measurements of surface defects on flexible circuits using high-frequency focused polymer transducers
JPS58122456A (en) Ultrasonic microscope
JPS6035255A (en) Scanning type acoustic microscope
Hosokawa Experimental observation of piezoelectric effect in cancellous bone generated by ultrasound irradiation
JPS6046458A (en) Ultrasonic microscope
Kitsunai et al. Development of miniature needle-type hydrophone with lead zirconate titanate polycrystalline film deposited by hydrothermal method
Sherar et al. A 100 MHz PVDF ultrasound microscope with biological applications
Zou et al. Wideband high-frequency line-focus PVDF transducer for materials characterization
Hozumi et al. Sound field analysis for biological acoustic impedance microscope for its precise calibration
JPS6131961A (en) Ultrasonic microscope
Saito et al. Selective detection of second harmonic sound generated at the focal region in a finite amplitude focusing field
JPS5833299A (en) Ultrasonic microscope
GB2072459A (en) Piezoelectric type electroacoustic transducer
JPS6098353A (en) Ultrasonic microscope
Sherar et al. Ultrasound backscatter microscopy
US4062105A (en) Method for fabricating ferroelectric ultrasonic transducers
JPH0232579B2 (en)
Chubachi et al. Scanning acoustic microscope employing concave ultrasonic transducers
JPS5925737A (en) Ultrasonic probe
Ohigashi et al. Ferroelectric polymer transducers for high resolution scanning acoustic microscopy
JPS59119257A (en) Ultrasonic microscope
Liu et al. Lithium niobate-based optically transparent transducer for broadband ultrasound transceiving
Titov et al. Formation of Ultrasonic Signals in Layered Objects with Abrupt Changes in Acoustic Impedance