JPS6046242A - Cloth-like composite material - Google Patents

Cloth-like composite material

Info

Publication number
JPS6046242A
JPS6046242A JP58156058A JP15605883A JPS6046242A JP S6046242 A JPS6046242 A JP S6046242A JP 58156058 A JP58156058 A JP 58156058A JP 15605883 A JP15605883 A JP 15605883A JP S6046242 A JPS6046242 A JP S6046242A
Authority
JP
Japan
Prior art keywords
cloth
foil
composite material
melting point
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58156058A
Other languages
Japanese (ja)
Inventor
井上 猛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP58156058A priority Critical patent/JPS6046242A/en
Publication of JPS6046242A publication Critical patent/JPS6046242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、主として有機繊維からなる布はく状物と無機
物の成形物が、該布はく状物と該成形物の界面における
接合力によシ一体化している新規な布はく状複合材料に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that a cloth foil mainly made of organic fibers and an inorganic molded article are integrated by bonding force at the interface between the cloth foil and the molded article. This paper relates to a novel cloth foil-like composite material.

従来から有機繊維材料と無機物との複合材料としては多
くのものが知られている。しかし、それらの大部分は材
料界面に接着剤を有するもの、または無機物を繊維内部
に混合してなるものであって、無機物の耐熱性、耐火性
、耐候性、耐薬品性など全利用する際、接着剤層または
無機物の外側に存在する繊維物質の性質の制約を受けて
、その性能を十分に発揮していないのが現状である。
Many composite materials of organic fiber materials and inorganic materials have been known. However, most of them have adhesives at the material interface or are made by mixing inorganic substances inside the fibers. At present, it is not fully demonstrating its performance due to the limitations of the properties of the fibrous material present on the outside of the adhesive layer or the inorganic material.

一方、有機繊維材料と金属が直接的に接触している複合
材料の製法としてはメッキや蒸着が知られているが、こ
れらの方法による金属膜は一般にきわめて薄く、有機繊
維材料に対する保護作用は乏しい。またこの場合の金属
膜の強さや耐久性も大きくない。
On the other hand, plating and vapor deposition are known methods for producing composite materials in which organic fiber materials and metal are in direct contact, but the metal films produced by these methods are generally extremely thin and have little protective effect on organic fiber materials. . Furthermore, the strength and durability of the metal film in this case is not great.

本発明の複合材料の特徴は、有機繊維材料と無機物成形
物とが、有機繊維表面の接合力および主として有機繊維
からなる布はくの表面形態による無機物成形物との絡み
合いによって生じる接合力によって一体化していること
にある。このような構造は、無機物成形物にかなシの不
連続性が存在する条件でも形成可能であシ、そのような
不連続性の存在によって非常に可撓性にすぐれた耐久性
の良い布はく状複合材料を形成する。
The feature of the composite material of the present invention is that the organic fiber material and the inorganic molded product are integrated by the bonding force generated by the surface bonding force of the organic fibers and the intertwining with the inorganic molded product due to the surface morphology of the cloth fabric mainly made of organic fibers. The reason is that it is becoming more and more popular. Such a structure can be formed even under conditions where there are kana-shi discontinuities in the inorganic molded product, and the existence of such discontinuities makes it possible to create highly flexible and durable fabrics. Forms a cylindrical composite material.

本発明の布はく状複合材料は、主として有機繊維からな
る布はく状物の上に無機物を溶射して固化した成形物を
形成させて製造する。ここで、無機物は放電等によって
生じたプラズマや火焔の中で溶融または焼結可能な混成
の微粒を形成させた後、プラズマ流または高温気流に乗
せて前記布はく状物に衝突させる0そして、布はく状物
は熱による劣化が進まないうちにプラズマ流または高温
気流中から取り出して直ちに急冷する。溶射量が希望の
値になるまでこの操作をくシ返し、無機物を布はくの上
に膜状、スポンジ状あるいは鱗片状等に成形する。ここ
で、プラズマ流または高温気流に乗った無機物微粒は、
全体または粒子の表層部あるいはそのバインダー成分が
溶融され、音速に近い速度に加速されて布はく状物に衝
突する。
The cloth foil-like composite material of the present invention is produced by thermally spraying an inorganic material onto a cloth foil mainly made of organic fibers to form a solidified molded article. Here, the inorganic material is formed into hybrid fine particles that can be melted or sintered in plasma or flame generated by electric discharge, etc., and then carried on a plasma stream or high-temperature air stream and collided with the cloth foil. The cloth foil is removed from the plasma stream or high-temperature air stream and immediately cooled down before it deteriorates due to heat. This operation is repeated until the spray amount reaches the desired value, and the inorganic material is formed into a film, sponge, or scale shape on the cloth foil. Here, the inorganic particles riding on the plasma flow or high-temperature air flow are
The whole or the surface layer of the particle or its binder component is melted, accelerated to a speed close to the speed of sound, and collides with the fabric foil.

粒子はそれ自身の運動量によって繊維表面に圧着され皮
膜状になるとともに、一部は繊維の間げきから布はく状
物の内部に貫通し、後続の粒子と融着して網状構造を形
成する。有機繊維の表面に圧着された粒子は、持ってい
る熱量によって有機繊維の表面付近を軟化、溶融させる
が、これを十分な速度で冷却することによって繊維の芯
部まで軟化することなく無機物を成形することが可能で
あることを見出し、本発明に到達した。そして、−機動
粒子は溶射条件を選ぶことによって連続的な膜状物、断
続した膜状物、膜状物の累層物として成形される。また
溶射時に溶融しない粒子を含有させることによって焼結
体様の成形物やスポンジ状の成形物を得ることができる
The particles are pressed against the fiber surface by their own momentum and form a film, and some of them penetrate into the fabric through the gaps between the fibers and fuse with subsequent particles to form a network structure. . Particles pressed onto the surface of organic fibers soften and melt the surface area of the organic fibers due to their heat, but by cooling them at a sufficient rate, it is possible to mold inorganic materials without softening the core of the fibers. We have discovered that it is possible to do so, and have arrived at the present invention. - The mobile particles are formed into a continuous film, an intermittent film, or a layered film by selecting thermal spraying conditions. Furthermore, by incorporating particles that do not melt during thermal spraying, a sintered body-like molded product or a sponge-like molded product can be obtained.

従来から溶射加工は金属材料の表面処理技術として広く
知られているものであるが、有機繊維材料のような熱伝
導率の小さい材料に対しては加工時に熱移動が起きにく
いために繊維の劣化が起り、うまく接合しないと言われ
て来た。これを避けようとして、たとえば溶射流体の温
度を下げたシ、遠くから溶射するようにすると、溶射粒
子が一体化しなくなると言われて来た。そのため、繊維
材料の軟化点よシも低い融点の溶射粒子でないと加工で
きないということが定説となっている。
Thermal spray processing has been widely known as a surface treatment technology for metal materials, but for materials with low thermal conductivity such as organic fiber materials, heat transfer is difficult to occur during processing, which can lead to fiber deterioration. It has been said that this occurs and the bond does not bond properly. In an attempt to avoid this, for example, by lowering the temperature of the spray fluid or spraying from a distance, it has been said that the spray particles will no longer be integrated. Therefore, it is a well-established theory that thermal spray particles cannot be processed unless they have a melting point that is lower than the softening point of the fiber material.

有機繊維に対する溶射加工の例としては、木綿の布の上
に鉛を溶射して放射線遮蔽作業服とした例が知られてい
る。また特開昭52−66798号には、プラズマジェ
ットによる溶射によってビニロン布および綿布の上にエ
ポキシ樹脂、ポリエチレン、ポリプロピレン、ナイロン
11を溶射用粉体として溶射加工する例が開示されてい
るが、これらの例はすべて有機繊維の融点が溶射粒子の
融点より高い例であって、実質的な溶射加工温度は有機
繊維の融点または熱分解温度よシ少し低温であると考え
られて来た。本発明者は、溶射技術の研究中に偶然この
定説が誤まりであることを見出し、本発明に到達したも
のである。
As an example of thermal spraying processing for organic fibers, it is known that lead is thermally sprayed onto cotton cloth to produce radiation shielding work clothes. Furthermore, JP-A-52-66798 discloses an example in which epoxy resin, polyethylene, polypropylene, and nylon 11 are thermally sprayed as thermal spray powder onto vinylon cloth and cotton cloth by thermal spraying using a plasma jet. All of the above examples are examples in which the melting point of the organic fiber is higher than the melting point of the thermal spray particles, and it has been thought that the actual thermal spray processing temperature is slightly lower than the melting point or thermal decomposition temperature of the organic fiber. The present inventor accidentally found out that this established theory was wrong while researching thermal spraying technology, and arrived at the present invention.

すなわち1本発明者はビニロン布の上にアルミニウムを
溶射する実験を行なっていた。従来の定説に従がえば、
ビニロン布の上にアルミニウムを溶射することはできな
いとされており、不発明者はそのためビニロン布の上に
まずスズ合金(融点約200℃)を溶射し、その上にア
ルミニウムを溶射することにした。スズ合金はビニロン
繊維よりも熱伝導率がはるかに大きく、またビニロンの
融点(約220℃)よシ低温で融解熱を吸収するので、
本発明者はビニロン繊維に対する強力な保護材になると
予想した。得られたアルミニウム溶射膜のはく離強さに
バラツキの大きいサンプルが現われたのでその原因を藺
べたところ、実験のミスによってスズ合金の溶射膜が生
成していない部分があシ、その部分はビニロン布に直接
アルミニウムが溶射できて固化していることがわかり、
このことから従来からの定説が誤まシであることを知っ
た。
That is, the present inventor conducted an experiment in which aluminum was thermally sprayed onto vinylon cloth. According to the conventional theory,
It is said that aluminum cannot be thermally sprayed onto vinylon cloth, so the inventor decided to first thermally spray a tin alloy (melting point: approximately 200°C) onto vinylon cloth, and then thermally spray aluminum on top of that. . Tin alloy has a much higher thermal conductivity than vinylon fiber, and it absorbs the heat of fusion at a lower temperature than vinylon's melting point (approximately 220°C).
The present inventor predicted that it would be a strong protective material for vinylon fibers. There were samples with large variations in the peel strength of the sprayed aluminum film, so when we tried to find out the reason for this, we found that due to an error in the experiment, there were some areas where the sprayed tin alloy film was not formed, and those areas were covered with vinylon cloth. It was found that aluminum could be directly sprayed and solidified.
From this, I learned that the conventional theory is wrong.

本発明者は種々検討した結果、溶射ジェットとの1回当
りの接触時間を短かくすること、接触後にできるだけ急
冷することによシ、有機繊維の布はく上に、該有機繊維
の融点よりはるかに高融点の金属やセラミックス等の無
機物を溶射し、布はく状の複合材料が得られることがわ
かった。溶射によって生成する成形物の厚さが不足する
場合、この操作を反覆すればよい。溶射ジェットとの接
触時間を1回当91秒以下、好ましくは1/100秒前
後とし、溶射される主として有機繊維からなる布はくけ
全組等の熱伝導率の大きい材料で作った冷却装置に裏面
を密着させて冷却する。溶射ジェットから離れた直後に
冷却気流を吹きつけ表面からも冷却することが好ましい
。布はくの裏面からの冷却装置は溶射粒子が付着しない
条件に保持する必要があシ、光沢がある程度に“表面を
平滑化するとともに、表面温度を200℃以下、好まし
くは100℃以下に保持する。布はくの裏面からの冷却
装置は布はくが密着できる形であればよいが、一般には
ローラー状であることが好ましい。
As a result of various studies, the inventor of the present invention found that by shortening the contact time per thermal spray jet and cooling as rapidly as possible after contact, the present inventors could coat the organic fiber cloth with a temperature lower than the melting point of the organic fiber. It has been found that a composite material in the form of cloth can be obtained by thermal spraying inorganic materials such as metals and ceramics with much higher melting points. If the thickness of the molded product produced by thermal spraying is insufficient, this operation may be repeated. The contact time with the thermal spray jet is 91 seconds or less per time, preferably around 1/100 second, and the cooling device is made of a material with high thermal conductivity, such as a complete set of cloth strips that are mainly made of organic fibers to be thermally sprayed. Place the back sides together and cool. It is preferable to blow a cooling air stream immediately after leaving the thermal spray jet to cool the surface as well. The cooling device from the back side of the cloth foil must be maintained under conditions that do not allow thermal spray particles to adhere, and the surface must be smoothed to a certain level of gloss, and the surface temperature must be kept below 200°C, preferably below 100°C. The cooling device from the back side of the cloth foil may have any shape as long as the cloth foil can come into close contact with it, but it is generally preferable to have a roller shape.

本発明の布はく状複合材料の一成分である、主として有
機繊維からなる布はく状物とは、天然および人造の有機
繊維の織*、編物、不織布、組みもの、紙等の平面的形
状の物であシ、この中には若干の無機繊維、接着性樹脂
、フィラー、糊剤、種々の仕上加工剤を含有しているこ
とが可能である0 本発明の布はく状複合材料の一成分である、無機物の融
液を少なくとも一成分として固化成形した成形物は、溶
射加工の可能な無機物であって、他成分である有機繊維
の融点または熱分解温度よりも高い融点のものである。
Cloth foils made mainly of organic fibers, which are a component of the cloth foil composite material of the present invention, are woven fabrics*, knitted fabrics, non-woven fabrics, braided fabrics, paper, etc. made of natural and man-made organic fibers. The fabric foil-shaped composite material of the present invention can contain some inorganic fibers, adhesive resins, fillers, adhesives, and various finishing agents. A molded product made by solidifying and molding at least one component of a melt of an inorganic material is an inorganic material that can be thermally sprayed and has a melting point higher than the melting point or thermal decomposition temperature of the other component, organic fibers. It is.

ここで、無機物としては、金属、炭素、ホウ素、ケイ素
、酸化物、炭化物、窒化物、ホウ化物などいわゆるセラ
ミックスと呼ばれるもの、セラミックス粒子と金属の混
合物であって、金属がセラミックス粒子のバインダーと
して作用するものが用いられる。
Here, inorganic substances include metals, carbon, boron, silicon, oxides, carbides, nitrides, borides, and other so-called ceramics, and mixtures of ceramic particles and metals, where the metal acts as a binder for the ceramic particles. The one that does is used.

溶射方法としては、従来から知られているいずれの方法
も適用できるが、プラズマジェットの中に粉体状で溶射
材料を導入して溶射する方法と、火焔またはアーク放電
の中へ棒状の溶射材料を導入して破砕溶融して溶射する
方法および火焔の中に粉体状で溶射材料を導入して溶射
する方法が、本発明の布はく状複合材料の部端に対して
好ましい0 本発明において使用する溶射材料は1種であってもよい
が、21以上を用いることも可能である。
As for the thermal spraying method, any of the conventionally known methods can be applied, but there are two methods: introducing the thermal spraying material in powder form into a plasma jet, and spraying the thermal spraying material in the form of a rod into a flame or arc discharge. The method of introducing a thermal spray material in powder form into a flame and thermal spraying by crushing and melting is preferable for the end of the fabric foil-shaped composite material of the present invention. Although only one type of thermal spraying material may be used, it is also possible to use 21 or more.

2種以上の溶射材料を重ね合わせるように溶射して、そ
れぞれの材料の特徴を発揮させることも可能である。ま
た、それぞれの材料を模様が生じる上りに配列させて、
装飾的効果などを与えることも可能である。
It is also possible to thermally spray two or more types of thermal spraying materials in a superimposed manner to bring out the characteristics of each material. In addition, each material is arranged in the upward direction where the pattern is created,
It is also possible to provide decorative effects.

つぎに実施例によって本発明を証明する。Next, the present invention will be demonstrated by examples.

実施例1 ビニロン紡績糸の布(目付205 f/♂、平織、密度
42本/インチ×40本/インチ)に、米国メテコ社製
のプラズマ溶射システム7M装置を用いてアルミナチタ
ニア系セラミックス溶射粉体(メテコ1308F、融点
1,840℃)を約30 amの厚みに溶射した。溶射
条件は、電源50ボルト、電流・16077ペア、アル
ゴン80ノルマル立方フイート/時、布送り速度130
m/分(溶射流体に対する1回の接触時間0.014秒
)、溶射回数6回であった。
Example 1 Alumina-titania-based ceramics thermal spray powder was applied to vinylon spun yarn cloth (fabric weight 205 f/♂, plain weave, density 42 threads/inch x 40 threads/inch) using a plasma spray system 7M device manufactured by Metco, Inc. in the United States. (Meteco 1308F, melting point 1,840°C) was sprayed to a thickness of about 30 am. Thermal spraying conditions were: power supply 50 volts, current 16077 pairs, argon 80 normal cubic feet/hour, fabric feed speed 130.
m/min (one contact time with the thermal spray fluid: 0.014 seconds), and the number of thermal sprays was 6 times.

こうして得られた布の表面状態は良好であシ、柔軟性は
原料のビニロン布と大差なかった。通気性の低下も少な
く、セラミックス層の耐魔耗性、耐はく離性も良好であ
った。
The surface condition of the fabric thus obtained was good, and the flexibility was not much different from that of the vinylon fabric used as the raw material. There was little decrease in air permeability, and the wear resistance and peeling resistance of the ceramic layer were also good.

実施例2 実施例1と同様のビニロン布に、米国メテコ社製のフレ
ームスプレーガン12F4を用いて3/16インチのア
ルミニウム線を供給して溶射を行なった。溶射条件は、
酸素流量88ノルマル立方フィート/時、アセチレン流
量40ノルマル立方フイート/時、線材供給速度7.3
 Ky /時、布速シ速度130m/分、溶射回数8回
であった。
Example 2 The same vinylon cloth as in Example 1 was thermally sprayed with a 3/16 inch aluminum wire using a frame spray gun 12F4 manufactured by Metco, USA. The spraying conditions are:
Oxygen flow rate 88 normal cubic feet/hour, acetylene flow rate 40 normal cubic feet/hour, wire feed rate 7.3
The coating speed was 130 m/min, and the number of thermal sprays was 8 times.

こうして得られた布上のアルミニウム膜の平均厚さは約
40μm1表面は梨地仕上した金属材料のような外観を
示し、布は原料のビニロン布よシも若干硬くなっていた
が、かなりの柔軟性を保っていた。アルミニウム膜に粘
着テープを貼りつけてはく離を10回くシ返したが、肉
眼的にも顕微鏡的にも変化が認められなかった。
The average thickness of the aluminum film on the fabric thus obtained was approximately 40 μm.1 The surface had the appearance of a satin-finished metal material, and the fabric was made of vinylon fabric, which was the raw material, and although it was slightly stiffer, it was quite flexible. was maintained. An adhesive tape was attached to the aluminum film and peeled off and repeated 10 times, but no change was observed either macroscopically or microscopically.

実施例3 実施例1のビニロン布の代シに、はぼ同じ目付の木綿、
羊毛、ポリエステル、ナイロン、アクリルの紡績糸の布
を用いて実施例1と同様の条件で処理したところ、いず
れも溶射皮膜の形成が可能であシ、布はくとして使用可
能な範囲の柔軟性を有しておシ、通気性、耐摩耗性、耐
はく離性はいずれも良好であった。
Example 3 As a substitute for the vinylon cloth in Example 1, cotton of approximately the same weight,
When fabrics made of wool, polyester, nylon, and acrylic yarns were treated under the same conditions as in Example 1, thermal spray coatings could be formed on all of them, and the flexibility was within a range that could be used as fabric foil. It had good air permeability, abrasion resistance, and peeling resistance.

実施例4 実施例2のビニロン布のかわりに、はぼ同じ目付の木綿
、羊毛、ポリエステル、ナイロン、アクリルの紡績糸の
布を用い実施例2と同様の条件で処理したところ、いず
れも溶射皮膜の形成が可能であり、布はくとして使用可
能な範囲の柔軟性を有しており、通気性、耐摩耗性、耐
はく離性はいずれも良好であった。
Example 4 Instead of the vinylon cloth in Example 2, fabrics made of cotton, wool, polyester, nylon, and acrylic spun yarns with the same weight were used and treated under the same conditions as in Example 2, resulting in a thermal spray coating. It had a flexibility that could be used as a cloth foil, and its air permeability, abrasion resistance, and peeling resistance were all good.

実施例5 実施例1のアルミナチクニア系のセラミックス粉体の代
りに、アルミナ(メテコ105SF)、酸化クロム(メ
テコ106F)、ジルコニア(メテコ201NS)、モ
リブデン(メチコロ3)、17%コバルト−タングステ
ンカーバイト系サーメット(メチコア3F N5−1)
の溶射を行なったところ、いずれの場合にも均一良好な
溶射皮膜が形成された。
Example 5 Alumina (Meteco 105SF), chromium oxide (Meteco 106F), zirconia (Meteco 201NS), molybdenum (Methicolo 3), and 17% cobalt-tungsten caramel were used instead of the alumina-based ceramic powder of Example 1. Bite type cermet (Meticore 3F N5-1)
When thermal spraying was carried out, a uniform and good thermal sprayed coating was formed in all cases.

実施例6 実施例2のアルミニウム線の代シに、亜鉛、銅、ニッケ
ル、炭素鋼(メテコ社スプラスチール#io)、ステン
レス(SUS304.)の溶射を行なったところ、いず
れの場合にも良好な溶射皮膜が形成された。
Example 6 Zinc, copper, nickel, carbon steel (Meteco's Suprasteel #io), and stainless steel (SUS304.) were thermally sprayed on the aluminum wire of Example 2, and good results were obtained in all cases. A sprayed coating was formed.

特許出願人株式会社り ラ し 代理人弁理士本多 堅Patent applicant: Rishi Co., Ltd. Representative Patent Attorney Ken Honda

Claims (1)

【特許請求の範囲】 1)主として有機繊維からなる布はく状物と、該有機f
@維の融点または熱分解温度よシも高い融点を有する無
機物の融液固化物が一体に積層されてなることを特徴と
する布はく状複合材料。 2)前項において、無機物が1種以上の金属であること
を特徴とする布はく状複合材料。 3)第1項に2いて、無機物が、炭素、ホウ素、ケイ素
、酸化物、炭化物、窒化物、ホウ化物の群から選ばれた
ものであることを特徴とする布はく状複合材料。 4)第1項において、無機物が、金属2よび該金属より
も高融点の炭素、ホウ素、ケイ素、酸化物、炭化物、窒
化物、ホウ化物の群から選ばれたものであることを特徴
とする布はく状複合材料。
[Scope of Claims] 1) A cloth foil consisting mainly of organic fibers, and
A fabric foil-like composite material characterized by being formed by integrally laminating a melt-solidified product of an inorganic substance having a melting point higher than the melting point or thermal decomposition temperature of fiber. 2) The fabric foil-like composite material as set forth in the preceding item, wherein the inorganic substance is one or more metals. 3) A fabric foil-like composite material according to item 1, wherein the inorganic substance is selected from the group of carbon, boron, silicon, oxide, carbide, nitride, and boride. 4) Item 1, characterized in that the inorganic substance is selected from the group of metal 2 and carbon, boron, silicon, oxides, carbides, nitrides, and borides having a higher melting point than the metal. Cloth foil composite material.
JP58156058A 1983-08-25 1983-08-25 Cloth-like composite material Pending JPS6046242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156058A JPS6046242A (en) 1983-08-25 1983-08-25 Cloth-like composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156058A JPS6046242A (en) 1983-08-25 1983-08-25 Cloth-like composite material

Publications (1)

Publication Number Publication Date
JPS6046242A true JPS6046242A (en) 1985-03-13

Family

ID=15619378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156058A Pending JPS6046242A (en) 1983-08-25 1983-08-25 Cloth-like composite material

Country Status (1)

Country Link
JP (1) JPS6046242A (en)

Similar Documents

Publication Publication Date Title
US3254970A (en) Flame spray clad powder composed of a refractory material and nickel or cobalt
US5660934A (en) Clad plastic particles suitable for thermal spraying
US3436248A (en) Flame spraying exothermically reacting intermetallic compound forming composites
CN101016614A (en) Process of spraying ceramic on epoxy resin base carbon fiber composite material article surface
US20080254227A1 (en) Method for Coating a Component
EP0203299A2 (en) Method for placing electrically conductive paths on a substrate
US4595637A (en) Plasma coatings comprised of sprayed fibers
EP1171253B1 (en) Die coatings for gravity and low pressure die casting
US20090169836A1 (en) Polymer bonded web friction and anti-friction composites
US3019515A (en) Metal coated glass fibers
JP5804372B2 (en) Method of spraying metallic glass onto thin resin and composite material having metallic glass coating
JPS6046242A (en) Cloth-like composite material
EP0093779B1 (en) Plasma coatings comprised of sprayed fibers
JPH0365878B2 (en)
JPS6311983B2 (en)
KR100797827B1 (en) Method of coating on carbon fiber-epoxy composite
JPS6322638A (en) Refractory organic fiber composite material and refractory clothing using said material and refractory flexible material
JPS6328907A (en) Conductive working clothing
US3288623A (en) Method of flame spraying graphite to produce a low friction surface
JPS6341737A (en) Flexible resistance exothermic element
JPS6333000A (en) Flexible electromagnetic wave reflecting material
JPS60149451A (en) Organic fiber composite material, melting deterioration thereof due to frictional heating is reduced
JPS6322639A (en) Radiation heat-insulating material
JPS6334133A (en) Organic fiber composite material in which generation of electrostatic trouble is reduced
JPH08158030A (en) Conductor roll for electroplating line and its production