JPS6341737A - Flexible resistance exothermic element - Google Patents

Flexible resistance exothermic element

Info

Publication number
JPS6341737A
JPS6341737A JP27028384A JP27028384A JPS6341737A JP S6341737 A JPS6341737 A JP S6341737A JP 27028384 A JP27028384 A JP 27028384A JP 27028384 A JP27028384 A JP 27028384A JP S6341737 A JPS6341737 A JP S6341737A
Authority
JP
Japan
Prior art keywords
alloy
thermal
resistance
metal
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27028384A
Other languages
Japanese (ja)
Inventor
Takeshi Inoue
井上 猛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27028384A priority Critical patent/JPS6341737A/en
Publication of JPS6341737A publication Critical patent/JPS6341737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Resistance Heating (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To lengthen the life of an exothermic element and reduce the life difference between the element and an external fiber material, and improve greatly the flexibility, foiding resistance, and light resistance of the element by a method wherein the element is composed of a flame sprayed molding made of a metal, or an alloy, or a semi-conductor having a specific value of volume resistivity and a fibrous structure of which main component is an organic fiber having a lower melting point than a metal, or an alloy, or semi-conductor. CONSTITUTION:A flame sprayed molding as one component of a flexible resistance exothermic element is composed of a flame-sprayable metal, or alloy, or semi-conductor having higher melting point than an organic fiber as another component of the element or higher melting point than a thermal decomposing temp. The metal, or alloy, or semi-conductor has the value of 8X10<-7>-8X10<2>OMEGAm as a volume resistivity. A flame spraying method introducing a flame spraying material in a state of fine powder into a plasma jet, a method introducing a rod-shaped flame spraying material into fire flames or arc electric discharge to be powdered and melted, and a method introducing a flame spraying material in a state of fine powder into fire flames are desirable for manufacturing the flexible resistance exothermic element.

Description

【発明の詳細な説明】 本発明は可焼性であり、単位面積当シの発熱量が比較的
小さい面発熱体として有用な抵抗発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance heating element that is combustible and useful as a surface heating element with a relatively small calorific value per unit area.

単位面積当りの発熱量が比較的小さい面発熱体はヒータ
ー付毛布ヒーター付カーペット、床に埋めこむヒーター
、道路や飛行場の融雪、融氷用ヒーター、などに用いら
れる。従来、このような抵抗発熱体はゴムまたはプラス
チックのシートの中に細い抵抗線を埋めこんで作られて
おシ、可撓性が小さく、少し大きな変形を与えると断熱
する欠点があった。また可焼性が経時的に変化し古くな
るほど硬くなる欠点があった。
Surface heating elements with a relatively small calorific value per unit area are used in blankets with heaters, carpets with heaters, heaters embedded in the floor, and heaters for melting snow and ice on roads and airports. Conventionally, such resistance heating elements have been made by embedding thin resistance wires in a rubber or plastic sheet, and have had the disadvantage of having little flexibility and being thermally insulated when subjected to slightly large deformations. Another drawback was that the burnability changed over time, and the older it got, the harder it became.

このためとくにヒーター付毛布やヒーター付カーペット
の場合、表面の繊維材料にくらべて発熱体の寿命が著し
く短かいことが欠点であった。
For this reason, especially in the case of heater-equipped blankets and heater-equipped carpets, the lifespan of the heating element is significantly shorter than that of the surface fiber material, which is a drawback.

本発明の抵抗発熱体の場合、発熱体の材料として有機ポ
リマーの中では長寿命の繊維材料を使用するため、発熱
体の寿命が長く、表面の繊維材料との寿命差が少ないほ
か、柔軟性、耐折性などが大巾に改良される。また耐光
性が大巾に改良できるのでコンクリートやアスファルト
に埋めこんで道路、飛行場等の融雪、融氷に用いること
ができる、 本発明は体積固有抵抗が8 X 10”〜8 X 10
2Ω・mの金属、もしくは合金もしくは半導体から成る
溶射成形物と該金j萬もしくは合金もしくは半導体より
低融点の有機繊維を主成分とする繊維構造物とから成る
ことを特徴とする可視性の抵抗発熱体である。溶射成形
物の原料の体積固有抵抗が小さい場合溶射成形物の厚さ
を薄くし電圧を低くしないと発熱体として使えないが、
体積固有抵抗が8×100・m以下になると溶射成形物
の厚さを薄くする限度に達するので好ましくない。また
体積固有抵抗が大きくなると溶射成形物を厚くし、電圧
を高くする必要があるが、体積固有抵抗が8 X 10
2Ω・m以上になると溶射成形物が厚くなるため実質的
に可焼性と言えない程度になるので好ましくない。
In the case of the resistance heating element of the present invention, fiber material, which has a long life among organic polymers, is used as the heating element material, so the heating element has a long life, and there is little difference in life from the surface fiber material, and it is flexible. , folding durability etc. are greatly improved. In addition, the light resistance can be greatly improved, so it can be embedded in concrete or asphalt and used for melting snow and ice on roads, airports, etc. The present invention has a volume resistivity of 8 x 10" to 8 x 10.
A visible resistance characterized by comprising a thermally sprayed molded product made of a metal, alloy, or semiconductor with a resistance of 2 Ω·m, and a fibrous structure whose main component is an organic fiber having a lower melting point than the gold, alloy, or semiconductor. It is a heating element. If the volume resistivity of the raw material for the spray molding is small, the spray molding cannot be used as a heating element unless the thickness of the spray mold is made thinner and the voltage is lowered.
A volume resistivity of 8×100·m or less is not preferable because it reaches the limit for reducing the thickness of the thermally sprayed molded product. In addition, when the volume resistivity increases, it is necessary to thicken the thermal spray molding and increase the voltage, but the volume resistivity is 8 x 10.
If it exceeds 2 Ω·m, the thermally sprayed molded product becomes thick and cannot be considered to be substantially flammable, which is not preferable.

本発明に用いる溶射成形物の原料としてはニッケルクロ
ム合金、鉄ニツケルクロム合金、鉄ニツケル合金、鉄ク
ロムアルミニウム合金のような比較的体積固有抵抗の大
きい合金、炭化ホウ素、炭化ケイ素、ゲルマニウム、シ
リコーン炭素黒鉛などの半導体およびこれらの混合物で
ある。溶射成形物の形状は不規則であるため成形物の抵
抗は原料の体積固有抵抗から計算される値よシ若千大き
くなることが普通である。
Raw materials for the thermal spray molding used in the present invention include alloys with relatively high volume resistivity such as nickel-chromium alloy, iron-nickel-chromium alloy, iron-nickel alloy, iron-chromium-aluminum alloy, boron carbide, silicon carbide, germanium, and silicone carbon. Semiconductors such as graphite and mixtures thereof. Since the shape of the spray molded product is irregular, the resistance of the molded product is usually much larger than the value calculated from the volume resistivity of the raw material.

従来から有機繊維に導電層である金属などの被覆を行な
う方法として蒸着法メツキ法が知られている5これらの
方法は単一組成の薄い均一膜を繊維に密着する方法とし
てはすぐれているが、混合物の厚い均一膜を作ることは
難かしく、またコストも概して高くなる欠点を有する。
Vapor deposition and plating methods have traditionally been known as methods for coating organic fibers with conductive layers such as metals. However, it is difficult to make a thick uniform film of the mixture, and the cost is generally high.

従来から無機物をコートする高能率の技術として、コー
トする物質を11M着可能な高温微粒子とし、被加工材
に高温流体と共に吹きつけて成形物を作る溶射法が知ら
れており、とくに金属材料の表面加工技術として広く行
なわれている。
As a highly efficient technique for coating inorganic materials, thermal spraying is known as a high-temperature coating material that can be coated with 11M fine particles and is sprayed onto the workpiece together with a high-temperature fluid to form molded products. It is widely used as a surface processing technology.

IEではセラミックスなどの表面加工にも用いられるよ
うになって来ているが、有機繊維材料のような熱伝導率
の小さい、しかも1lllt熱性の低い材料に対しては
加工時に熱移動が起きにくいため、溶射材料の持ち込む
熱によって被溶射物の温度が上がり、繊維の劣化が生じ
てうまく接合しないと言われて来た。またこれを避けよ
うとして溶射流体の温度を下げたり、遠くから溶射する
ようにした場合、溶射粒子が一体化しなくなシ繊維材料
と接合しないと言われて来た。
IE is also being used for surface processing of ceramics, etc., but it is difficult for heat transfer to occur during processing for materials with low thermal conductivity and low thermal properties such as organic fiber materials. It has been said that the heat brought in by the thermal spray material raises the temperature of the object to be sprayed, causing deterioration of the fibers and resulting in poor bonding. Furthermore, it has been said that if the temperature of the thermal spray fluid is lowered or the thermal spray is performed from a distance in an attempt to avoid this, the thermal spray particles will not become integrated and will not bond with the fiber material.

そのため、繊維材料の軟化点あるいは熱分解温度よりも
低い融点を持つ溶射材料でないと加工できないというこ
とが定説になっている。
Therefore, it is a well-established theory that thermal spray materials cannot be processed unless they have a melting point lower than the softening point or thermal decomposition temperature of the fiber material.

有機繊維に対する溶射加工の例としては、木綿の布の上
に鉛を溶射して放射線遮蔽作業服とした例が知られてい
る。また特開昭52−66798号公報にはプラズマジ
ェットによる溶射により、ビニロン布および綿布の上に
エポキシ樹脂プレポリマー、ポリエチレン、ポリプロピ
レン、ナイロン1】を溶射用粉体として溶射加工する例
が開示されている。これらの例はすべて有機繊維の融点
が溶射材料の融点よりも高い例であってプラズマの最高
温度は+oooo ’(1’前後の高温釦なっているも
のの、実質的な溶射加工温度は有機繊維の融点または熱
分解温度より少し低温であると考えられて来た。本発明
者は溶射技術の研究中に偶然この定説、が誤まりである
ことを見出し本発明に到達したものである。また特開昭
48−52644号公報には硬質塩化ビニル板の上に直
接鋼を溶射した場合、接合力の弱い溶射皮膜が得られる
が、硬質塩化ビニル板の上に熱硬化樹脂をコートして半
硬化状態の時に銅を溶射すると接合力が強い溶射皮膜が
得られると述べられている。この方法はプラスチック板
と金属の接合に対しては有利な方法と考えられるが布は
く類と金属の接合に対しては、布はく類と金属フィルム
のラミネート加工と比較すると工程の融通性が大きいラ
ミネート加工のほうが概して有利と考えられる。しかし
熱硬化性樹脂よりも耐熱性耐薬品性のすぐれた中間層を
設ければ中間層の存在による布はく中の有機繊維に対す
る保護作用が大きいので新規なものが得られると考えら
れる。たとえば中間層として有機繊維より少し融点の低
い金属(合金)を用いた場合、高融点の金属を溶射した
時、融解の潜熱によって溶射材料の持ち込む熱を吸収し
て保護作用を示す。このような中間層を用いた溶射の検
討中に、実験操作上のミスから中間層のない部分に有機
繊維よりも高融点の金属を溶射し、その部分が、中間層
が存在する部分よりも剥離強度が大きいことがわかり、
このことから従来からの定説が誤まシであることを知っ
た。
As an example of thermal spraying processing for organic fibers, it is known that lead is thermally sprayed onto cotton cloth to produce radiation shielding work clothes. Furthermore, JP-A No. 52-66798 discloses an example of spraying epoxy resin prepolymer, polyethylene, polypropylene, and nylon 1 as powder for thermal spraying onto vinylon cloth and cotton cloth by thermal spraying using a plasma jet. There is. In all of these examples, the melting point of the organic fiber is higher than the melting point of the thermal spray material, and the maximum temperature of the plasma is around +oooo'(1'), but the actual thermal spraying temperature is It has been thought that the temperature is slightly lower than the melting point or thermal decomposition temperature.The present inventor accidentally discovered this established theory to be incorrect while researching thermal spray technology and arrived at the present invention. JP-A-48-52644 discloses that when steel is sprayed directly onto a hard vinyl chloride plate, a sprayed coating with weak bonding strength is obtained, but when a thermosetting resin is coated on a hard vinyl chloride plate and semi-cured. It is said that if copper is thermally sprayed when copper is present, a thermally sprayed coating with strong bonding strength can be obtained.This method is considered to be advantageous for joining plastic plates and metals, but it is not suitable for joining cloth foils and metals. Compared to laminating fabric sheets and metal films, laminating is generally considered to be more advantageous due to its greater process flexibility. If a layer is provided, the presence of the intermediate layer will have a strong protective effect on the organic fibers in the cloth, so it is thought that a new product can be obtained.For example, the intermediate layer may be made of a metal (alloy) whose melting point is slightly lower than that of the organic fibers. When a metal with a high melting point is thermally sprayed, the latent heat of melting absorbs the heat brought in by the sprayed material and exhibits a protective effect. We sprayed a metal with a higher melting point than the organic fibers on the part without the intermediate layer, and found that that part had greater peel strength than the part with the intermediate layer.
From this, I learned that the conventional theory is wrong.

本発明者は種々検討した結果、溶射に用いる高温流体と
の1回当シの接触時間を短かくすること、接触後にでき
るだけ急冷することKより、主として有機繊維からなる
繊維質構造物の上に、該有機繊維の―点よりもはるかに
高融点の金属やセラミックス等の無機物を溶射゛し、糸
状、綱状、布は〈状、膜状あるいは薄板状の複合材料が
得られることがわかった。溶射によって生成する成形物
の厚さが不足する場合にはこの操作を反復すればよい。
As a result of various studies, the inventor of the present invention found that it is necessary to shorten the contact time per contact with the high-temperature fluid used for thermal spraying, and to cool it as quickly as possible after contact. It was found that by thermal spraying inorganic materials such as metals and ceramics that have a much higher melting point than the point of the organic fiber, composite materials in the form of threads, ropes, cloths, membranes, or thin plates can be obtained. . If the thickness of the molded product produced by thermal spraying is insufficient, this operation may be repeated.

繊維質構造物に溶射加工するに当っては該構造物をシー
ト状に成形した状態で行なう。シート状とは織物、編物
、不織布、紙のようなものおよび繊維、糸、網、綱の類
を事寮上平行々状態でひきそろえたものおよびこれらを
圧力によυ平面的に圧縮したものである。(以後このよ
うな構造物をシート状物と称することにする)溶射加工
を終ったシート状物はその!まあるいは通常に用いられ
る繊維加工工程を通した後使用されるが、シート状物の
ひきそろえ状態を解き糸綱などを一本づつ使用すること
ができる。
When thermal spraying is applied to a fibrous structure, the structure is formed into a sheet shape. Sheet-like materials include woven materials, knitted materials, non-woven materials, paper-like materials, fibers, threads, nets, ropes, etc., arranged in parallel in nature, and those compressed in a υ plane by pressure. It is. (Hereinafter, such a structure will be referred to as a sheet-like object.) The sheet-like object that has been thermally sprayed is that! It is used after passing through a commonly used fiber processing process, but it is also possible to untwist the sheet-like material and use it one by one using a thread rope or the like.

また一本の糸、綱をローラー等に平行的にらせん状に巻
きつけて溶射加工し巻きもどすことも可能である。網の
場合には目の方向にひき伸ばして平面状にして加工する
ことができる。またシート状物に溶射加工したものをス
リットしてテープ状とし加熱もしくは製紐して綱状とす
ることもできる、シート状物は溶射加Tの前後もしくは
同時に通常の繊維質材料に実施できる種々の加工を実施
することが可能である。
It is also possible to spirally wind a single thread or rope around a roller or the like in parallel, spray it, and then unwind it. In the case of netting, it can be processed into a flat shape by stretching it in the direction of the grain. It is also possible to thermally spray a sheet material, slit it into a tape shape, heat it or string it to make it into a rope shape.Sheet materials can be produced in various ways that can be applied to ordinary fibrous materials before, during or after thermal spraying T. It is possible to perform the following processing.

溶射に用いる高温流体と主として有機繊維からなるシー
ト状物との接触時間は1回当り1秒以下、好ましくは1
/10〜1/+oooo秒とする。
The contact time between the high-temperature fluid used for thermal spraying and the sheet-like material mainly composed of organic fibers is 1 second or less, preferably 1 second per time.
/10 to 1/+oooo seconds.

具体的には溶射ガン、シート状物またはその両方を移動
させ、その相対速度すなわちシート状物の送り速度と溶
射用高温流体中心軸の相対速度を0.1m/秒以上to
om/秒以下とする。具体的な装置としては布をゆっく
り送りながら、溶射ガンをシートとほぼ直交する方向K
かなり高速で往復させて溶射する装置、シートをエンド
レスベルト状につないで環状に高速で走行させながら、
溶射ガンをゆつくシ移動させて溶射する装置、あるいは
逆転可能な巻取装置と巻出装置の間にシートを往復させ
ておきゆっくり移動する溶射ガンを用いて溶射する装置
、糸もしくは酬をローラーにらせん状に平行釦巻きつけ
たものを高速回転させ、溶射ガンを糸もしくは綱とほぼ
直交する方向にゆっくり移動させながら溶射する装置、
糸もしくは綱をネルソンローラーに掛けておきローラー
を高速回転させ一台もしくは複数台の溶射ガンを固定状
態もしくは移動させながら溶射する装置などが使用でき
る。
Specifically, the thermal spray gun, the sheet material, or both are moved, and the relative velocity thereof, that is, the relative speed of the feeding speed of the sheet material and the central axis of the high temperature fluid for thermal spraying, is adjusted to 0.1 m/sec or more.
om/sec or less. The specific device is to slowly feed the fabric while moving the thermal spray gun in a direction K that is almost perpendicular to the sheet.
This is a device that sprays by reciprocating at a fairly high speed, and the sheets are connected like an endless belt and run in a ring at high speed.
A device that performs thermal spraying by slowly moving a thermal spray gun, or a device that performs thermal spraying using a thermal spray gun that moves the sheet slowly between a reversible take-up device and an unwinding device, and a device that performs thermal spraying by slowly moving the sheet between a reversible winding device and an unwinding device. A device that sprays by rotating a parallel button spirally wound at high speed and slowly moving the spray gun in a direction almost perpendicular to the thread or rope.
It is possible to use a device that sprays by hanging a string or rope around a nelson roller, rotating the roller at high speed, and spraying one or more thermal spray guns either in a fixed state or while moving.

本発明の実施に際しては溶射されるシート状物と溶射に
用いる高温流体とが離れた後できる限シ短時間で急激に
冷却する。冷却は溶射された成形物上へ気体または気体
に種々の液体、固体を分散させたものを吹きつけて行な
うことが好ましい。好ましくは空気または不活性気体を
吹きつける。流速は1m/秒以上、好ましくは10m/
秒以上音速以下である。冷却はさらにシート状物の裏面
からも行なうことが好ましい。
In carrying out the present invention, after the sheet material to be thermally sprayed and the high-temperature fluid used for thermal spraying are separated from each other, they are rapidly cooled down in the shortest possible time. Cooling is preferably carried out by spraying a gas or a gas in which various liquids and solids are dispersed onto the thermally sprayed molding. Preferably, air or an inert gas is blown. The flow velocity is 1 m/sec or more, preferably 10 m/sec.
More than a second and less than the speed of sound. It is preferable that cooling is also performed from the back side of the sheet-like material.

裏面からの冷却は回転ローラー、種々の形の板状冷却装
置など内部に除熱機構を設けた固体の冷却装置を用いる
ことが好ましい。これは固体の冷却装置に密着させるこ
とによって、シート状物が溶射および冷却のための流体
流によって波打って溶射が不均一になることが防止でき
るためである。
For cooling from the back side, it is preferable to use a solid cooling device provided with an internal heat removal mechanism, such as a rotating roller or a plate-like cooling device of various shapes. This is because by bringing the sheet material into close contact with a solid cooling device, it is possible to prevent the sheet-like material from being undulated by the fluid flow for thermal spraying and cooling, resulting in non-uniform thermal spraying.

本発明において溶射されるシート状物は多孔性であるの
で、溶射材料が一部シート状物を通過して裏まで出てし
まうことがある。溶射されるシート状物を裏面から冷却
する装置は、溶射材料が付着しない条件に保持する必要
があり、そのためには光沢がある程度に表面を平滑化す
るとともに、表面温度を200’C”以下、好ましくF
ilooo(’以下に保持する。該冷却装置には、溶射
されるシート状物を密着させるための補助装置を付属さ
せることが好ましく、さらに溶射材料が付着した時にそ
れをかき取る装置を付属させることが好ましい。
Since the sheet material to be thermally sprayed in the present invention is porous, a portion of the thermal spray material may pass through the sheet material and come out to the back side. The equipment that cools the sheet material to be thermally sprayed from the back side must be maintained under conditions that will not allow the thermal spraying material to adhere.To do this, the surface must be smoothed to a certain level of gloss, and the surface temperature must be kept below 200'C''. Preferably F
It is preferable that the cooling device is attached with an auxiliary device for bringing the sheet material to be thermally sprayed into close contact with the cooling device, and also a device for scraping off the thermally sprayed material when it adheres. is preferred.

不発明の抵抗発熱体の特徴は、主として有機繊維からな
る繊維質構造物と金属もしくは半導体を主体とする溶射
成形物とが多層状に一体化していることであり、画成分
間の接合力は有機繊維表面の接合力および同成分の界面
における絡み合い構造によるものと見られる。
The characteristic of the uninvented resistance heating element is that a fibrous structure mainly made of organic fibers and a spray molded product mainly made of metal or semiconductor are integrated in a multilayered manner, and the bonding force between the image components is This appears to be due to the bonding force on the surface of the organic fibers and the entangled structure at the interface of the same components.

本発明の抵抗発熱体を製造する際の金属材料もしくは半
導体材料の溶射加工は、原材料を火焔や放電等によって
生じたプラズマの中で溶融もしくは焼結可能な温度の微
粒を形成させた後プラズマ流または高温気流に乗せて前
記シート状物に衝突させる。そして該シート状物と溶射
に用いる高温流体の中心軸の相対速度が0.1 m/秒
以上100mA9以下とし、該シート状物が該高温流体
から離れた直後に急冷する。これにより、前記シート状
物は熱による劣化が進まないうちに溶射に用いる高温流
体中から取出される。
Thermal spray processing of metal materials or semiconductor materials when manufacturing the resistance heating element of the present invention involves forming fine particles of raw materials at a temperature that allows them to be melted or sintered in plasma generated by flames, electric discharge, etc. Alternatively, it is carried by a high-temperature air current and made to collide with the sheet-like material. Then, the relative velocity between the central axis of the sheet-like material and the high-temperature fluid used for thermal spraying is set to 0.1 m/sec or more and 100 mA9 or less, and the sheet-like material is rapidly cooled immediately after it is separated from the high-temperature fluid. As a result, the sheet-like material can be taken out of the high-temperature fluid used for thermal spraying before deterioration due to heat progresses.

シート状物の冷却は高温流体に接触する前の段階に付加
することも可能である。この冷却により、シート状物の
熱容量が増加し劣化が抑制される。そして、溶射量が希
望の値になるまでこの操作をくり返えし、金属材料もし
くは半導体材料をシート状物の上に膜状、スポンジ状あ
るいは鱗片状等に成形する。ここで、プラズマ流または
高温気流に乗った金属微粒子は、全体または粒子の表層
部あるいはそのバインダー成分が溶融され、音速に近い
速度あるいは超音速に加速されてシート状物に衝突する
。粒子はそれ自身の運動景によって繊維表面に圧着され
て皮膜状になるとともに、一部は繊維表面に突き刺さっ
て固着する。また一部は繊維の間隙からシート状物の内
部に貫通し、後続の粒子と融着して網状構造を形成する
。有機繊維の表面に圧着された粒子は、持っている熱量
によって有機繊維の表面付近を軟化、溶融させるが、こ
れを十分な速度で冷却することによって、繊維の芯部ま
で軟化することなく溶射皮膜層を成形することが可能で
あることを見出した。粒子は溶射条件を選ぶことによっ
て、連続的な膜状物、断続した膜状物、膜状物の累層物
として成形される。
Cooling of the sheet-like material can also be added at a stage before it comes into contact with the hot fluid. This cooling increases the heat capacity of the sheet-like material and suppresses deterioration. This operation is repeated until the amount of spraying reaches a desired value, and the metal material or semiconductor material is formed into a film, sponge, or scale shape on the sheet material. Here, the metal fine particles carried by the plasma flow or the high-temperature air flow are melted in their entirety, the surface layer of the particles, or their binder component, and are accelerated to near-sonic or supersonic speeds and collide with the sheet-like object. The particles are compressed to the fiber surface by their own movement and form a film, and some of them pierce the fiber surface and become fixed. In addition, a part of the particles penetrates into the sheet-like material through the gaps between the fibers and fuses with subsequent particles to form a network structure. Particles pressed onto the surface of organic fibers soften and melt the surface area of the organic fibers due to their heat, but by cooling them at a sufficient rate, the thermal spray coating can be formed without softening the core of the fibers. It has been found that it is possible to mold layers. The particles can be formed into a continuous film, an intermittent film, or a layered film by selecting thermal spraying conditions.

また溶射時に、溶融しない粒子を含有させることにより
焼結体様の成形物やスポンジ状の成形物を得ることがで
きる。この構造は電気抵抗の調節に利用することができ
る。
Furthermore, by incorporating particles that do not melt during thermal spraying, a sintered body-like molded product or a sponge-like molded product can be obtained. This structure can be used to adjust electrical resistance.

溶射は主として有機繊維からなるシート状物に対し片面
から行なっても、また両面から行なってもよい。溶射材
料は一種類である場合がもつとも1m便でコスト的にも
有利であるが、一種類では十分な機能を得られない場合
があり、二種以上を用いることが好ましい場合がある。
Thermal spraying may be carried out on one side or both sides of a sheet material mainly made of organic fibers. Although it is advantageous in terms of cost since it is possible to use only one type of thermal spraying material since it is possible to use one type of material, there are cases where sufficient functionality cannot be obtained with one type of material, and it is sometimes preferable to use two or more types.

二種以上の材料の溶射に対しては順次多層状に溶射して
もよく、二種の材料の境界付近で混合物を溶射すること
により組成が漸次、一方から他方へ移り変わるように成
形することも可能である。
For thermal spraying of two or more types of materials, it is possible to thermally spray them sequentially in a multilayered form, or by thermally spraying a mixture near the boundary between two types of materials, the composition can be formed so that the composition gradually changes from one to the other. It is possible.

不発明における溶射方法としては、従来から知られてい
るいずれの方法も適用できるが、火焔またはプラズマジ
ェットの中に粉体状で溶射材料を導入して溶射する方法
と火焔またはアーク放電の中に棒状の溶射材料を導入し
て破砕溶融して溶射する方法が本発明の抵抗発熱体の製
造に対し好ましい。
Any conventionally known thermal spraying method can be applied, but there is a method in which the thermal spraying material is introduced in powder form into a flame or plasma jet, and a method in which the thermal spraying material is sprayed in a flame or arc discharge. A method of introducing a rod-shaped thermal spray material, crushing it, melting it, and thermal spraying is preferred for manufacturing the resistance heating element of the present invention.

本発明の抵抗発熱体を製造するに当ってはシート状物と
溶射ガンの相対速度はいずれの場合でも0.1〜100
m沙に保つ必要がある。0.1m/秒以下の場合には溶
射条件をどのように変えても冷却不足になり、有機Ra
の劣化は避けることができない。一方1o0m/秒に近
い速度では溶射ガンの移動が難かしく、シート状物をの
せた冷却ローラーを高速で回転させる方法のみが実施可
能であるが、相対速度が1oom/秒を越すと遠心力の
ために溶射粒子が固着しにくくなる。シート状物と溶射
ガンとの相対速度は0.5〜20m/秒が好ましい。相
対速度0.5 m汚以下の場合には溶射する材料および
溶射条件の限定が強く、コスト的に不利である。20m
/秒以上の場合には装置のスタートアップ時の増速過稈
でシート状物が走行する長さが著しく畏くなり、この部
分の溶射成形物の均一性を保つために、極めて複雑な溶
射量制御を行なう必要が生じ装置価格が著しく高くなる
欠点を生じる。
In manufacturing the resistance heating element of the present invention, the relative speed between the sheet material and the spray gun is 0.1 to 100 in any case.
It is necessary to keep it in good condition. If the speed is less than 0.1 m/sec, cooling will be insufficient no matter how you change the spraying conditions, and the organic Ra
deterioration is unavoidable. On the other hand, at a speed close to 100 m/s, it is difficult to move the spray gun, and the only method that can be implemented is to rotate a cooling roller with a sheet-like material on it at high speed. However, if the relative speed exceeds 100 m/s, centrifugal force This makes it difficult for thermal spray particles to stick. The relative speed between the sheet material and the thermal spray gun is preferably 0.5 to 20 m/sec. If the relative velocity is less than 0.5 m, the material to be thermally sprayed and the thermal spraying conditions are severely limited, which is disadvantageous in terms of cost. 20m
/ seconds or more, the length that the sheet-like object travels becomes extremely short due to the overspeed increase during equipment startup, and in order to maintain the uniformity of the sprayed molded product in this area, the amount of spraying is extremely complicated. The disadvantage is that it becomes necessary to carry out control, and the cost of the device increases significantly.

シート状物と溶射ガンとの相対速度はさらに好ましくは
1〜5m沙である。1m/秒以上になると、多くのタイ
プの溶射材料で溶射ガンの能力が最高になる条件で溶射
可能になり、これ以上相対速度を上げても溶射材料の重
量ペースでの生産速度は上らなくなる。5m/秒までは
溶射ガンの移動が可能であり、これ以下の速度では、非
常に多くのタイプの溶射加工装置が使用可能となシ、生
産が極めて容易となる。とくに布帛、紙類への溶射の場
合シート状物の供給の切替え時を除いて無停止で加工が
可能であるため非常に低いコストになる。
The relative speed between the sheet material and the thermal spray gun is more preferably 1 to 5 ms. When the speed exceeds 1 m/sec, many types of thermal spray materials can be sprayed under conditions where the spray gun reaches its maximum performance, and even if the relative speed is increased further, the production rate based on the weight of the thermal spray material will not increase. . The spray gun can be moved up to 5 m/sec, and below this speed many types of spray processing equipment can be used, making production extremely easy. Particularly in the case of thermal spraying on fabrics and papers, processing can be performed without stopping except when changing the supply of sheet materials, resulting in extremely low costs.

多層状に溶射する場合、順次高融点のものを溶射する方
法によってきわめて高融点の溶射材料を高能率で溶射す
ることができる。とくに金属を溶射した場合、溶射皮膜
が厚くなるにつれて急速に冷却が容易になる結果、その
後の溶射が高能率化する傾向がある。また、多層状に溶
射する場合、順次硬度の高いものを溶射することによっ
て溶射皮膜にひび割れを生じる現象を抑制することが可
能である。
In the case of thermal spraying in multiple layers, thermal spraying materials with extremely high melting points can be thermally sprayed with high efficiency by sequentially spraying materials with high melting points. In particular, when metal is thermally sprayed, as the thermal spray coating becomes thicker, it becomes easier to rapidly cool the coating, and as a result, subsequent thermal spraying tends to become more efficient. Furthermore, when thermal spraying is performed in multiple layers, it is possible to suppress the phenomenon of cracking in the thermal sprayed coating by sequentially spraying layers with higher hardness.

本発明の、可焼性の抵抗発熱体の一成分である、主とし
て有機繊維からなるシート状物とは、天然および人造の
有機繊維の織物、編物、不織布、組みもの、紙などの平
面的形状の物であり、起毛、植毛、フロック加工、樹脂
コーティング等を行なっているものを含んでいる。この
中には若干の無機繊維、接着性樹脂、フィラー、糊剤、
種々の仕上加工剤を含有していることが可能である。
The sheet material mainly made of organic fibers, which is a component of the combustible resistance heating element of the present invention, is a two-dimensional material such as a woven fabric, knitted fabric, nonwoven fabric, braided fabric, or paper made of natural or artificial organic fibers. This includes those that have been brushed, flocked, flocked, resin coated, etc. This includes some inorganic fibers, adhesive resins, fillers, glue,
It is possible to contain various finishing agents.

本発明の、可焼性の抵抗発熱体の一成分である、金属も
しくは合金もしくは半導体の溶射成形物は、他成分であ
る有機繊維の融点または熱分解温度よシ高い融点の溶射
可能な金属もしくは合金もしくは半導体の溶射成形物で
ある。ここで、金属もしくは合金もしくは半導体は体積
固有抵抗8 X 10””〜8 X 102Ω・mのも
のである。
The thermally sprayed metal, alloy, or semiconductor that is one component of the combustible resistance heating element of the present invention is a thermally sprayable metal or alloy having a melting point higher than the melting point or thermal decomposition temperature of the other component, the organic fiber. It is a thermal spray molded product of alloy or semiconductor. Here, the metal, alloy, or semiconductor has a volume resistivity of 8 x 10'' to 8 x 102 Ω·m.

本発明における溶射方法としては従来から知られている
いずれの方法も適用できるが、プラズマジェットの中に
粉体状で溶射材料を導入して溶射する方法と、火焔また
はアーク放電の中へ棒状の溶射材料を導入して破砕溶融
して溶射する方法および火焔の中に粉体状で溶射材料を
導入して溶射する方法が、本発明の可視性の抵抗発熱体
の製造に対して好ましい。
As the thermal spraying method in the present invention, any conventionally known method can be applied, but there is a method in which the thermal spraying material is introduced in powder form into a plasma jet, and a method in which the thermal spraying material is introduced in the form of a rod into a flame or arc discharge. A method in which a thermal spray material is introduced and then crushed and melted for thermal spraying and a method in which a thermal spray material is introduced in powder form into a flame and then thermal sprayed are preferred for manufacturing the visible resistance heating element of the present invention.

本発明の一成分である溶射成形物の表面は凹凸の激しい
面であり、強い光沢を持たず、いわゆる梨地状の外観を
示す。溶射成形物が展延性を持っている場合には表面の
平滑化を容易に行なうことができる。表面の平滑化は平
滑な面に強い圧力によって圧着することで達成できる。
The surface of the spray molded product, which is one of the components of the present invention, has a highly uneven surface, does not have strong luster, and exhibits a so-called satin-like appearance. When the spray molded product has malleability, the surface can be easily smoothed. Smoothening of the surface can be achieved by applying strong pressure to a smooth surface.

好ましくは平滑な表面を有する硬質材料のローラーには
さんで加圧処理する。各層の材料が展延性を持つ々らば
、多層に溶射した成形物でも平滑化処理が可能である。
Pressure treatment is preferably carried out between rollers made of a hard material having a smooth surface. As long as the material of each layer has ductility, it is possible to smoothen a molded product formed by thermal spraying in multiple layers.

展延性がない材料の場合でも、まず展延性を有する材料
を溶射して平滑化処理を行なった後に、その上に溶射し
た場合、平滑性が教養される。ただし、平滑化処理によ
って溶射可能な温度条件がせまくなシ、溶射しにくくな
る点注意を要する。
Even in the case of a material that does not have malleability, smoothness can be improved by first thermally spraying a malleable material, performing a smoothing treatment, and then thermally spraying on top of it. However, care must be taken that the smoothing treatment does not narrow the temperature conditions that allow thermal spraying, making thermal spraying difficult.

溶射成形物の表面の慮しい凹凸のため、本発明の抵抗発
熱体の耐摩耗性やlft 、lff1曲性は必らずしも
十分とは言えない。これを改良するために、表面に有機
ポリマーを薄く塗布することが有効である。有機ポリマ
ーとして種々のものが使用できるが、ポリウレタン、ア
クリルアミド、シリコーン、エポキシ系樹脂に使い易い
ものが多い。これらの樹脂は多量に使うと表面の光沢を
改養できるが、通気性が低下し耐火性が低下する欠点が
出てくる。本発明において溶射成形物層をシート状物上
の全面に設ける必要はなく、定まった間隔で縞状、格子
状またはそれ以外のパターンで設けてもよい。全面に導
電7智を設けるのに対し、特定パターンで局部的に導電
層を設けることにより発熱体の抵抗を調節することが可
能である。
Due to the undesirable irregularities on the surface of the spray molded product, the wear resistance, lft and lff1 curvature of the resistance heating element of the present invention cannot necessarily be said to be sufficient. To improve this, it is effective to apply a thin layer of organic polymer to the surface. Various organic polymers can be used, but polyurethane, acrylamide, silicone, and epoxy resins are most commonly used. When these resins are used in large quantities, they can improve the gloss of the surface, but they have the disadvantage of decreasing air permeability and fire resistance. In the present invention, it is not necessary to provide the thermal spray molding layer over the entire surface of the sheet material, but it may be provided at regular intervals in the form of stripes, grids, or other patterns. In contrast to providing a conductive layer over the entire surface, it is possible to adjust the resistance of the heating element by providing a conductive layer locally in a specific pattern.

以下実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 ビニoン紡績糸の布く目付220g/m2、平織、田度
42本/インチ×42本/インチ)に米国メテコ社製の
プラズマ溶射システム7M装置を用いてニッケル・クロ
ム合金溶射粉体(メテコ43C1溶触鋳造物の体積固有
抵抗9.8X10Ω・m)を約25μmの厚みに溶射成
形した。溶射条件は電圧50ボルト、電流160アンペ
ア、アルゴン流量2ノルマル立方メートル/時・、布送
り速度2、2 m/Pに (溶射流体炎に対する1回の
接触時間0.014秒)、溶射ガンの移動速度(布の送
り方向と直角)o、osm/秒、溶射ガンと布の間隔1
20〜140 r/an、溶射回数16回であった。溶
射流体炎から布が脱出する点へ向けて12m/秒の流速
で冷却空気を送り急冷した。
Example 1 A nickel-chromium alloy thermal spray powder was applied to vinyl-on-spun yarn (width weight: 220 g/m2, plain weave, 42 threads/inch x 42 threads/inch) using a plasma spray system 7M device manufactured by Metco, USA. A body (Meteco 43C1 melt casting, volume resistivity 9.8×10 Ω·m) was spray molded to a thickness of about 25 μm. The spraying conditions were: voltage 50 volts, current 160 amperes, argon flow rate 2 normal cubic meters/hour, fabric feed rate 2.2 m/P (one contact time with the spray fluid flame 0.014 seconds), and movement of the spray gun. Speed (perpendicular to cloth feeding direction) o, osm/sec, distance between spray gun and cloth 1
The spraying rate was 20 to 140 r/an, and the number of thermal sprays was 16 times. Cooling air was sent at a flow rate of 12 m/sec toward the point where the cloth escaped from the spray fluid flame to rapidly cool the cloth.

こうして得られた布の表面状0は良好であり、手ざわり
は原料のビニロン布よりも硬いがザラツキは示さない。
The thus obtained cloth has a good surface condition of 0, and is harder to the touch than the vinylon cloth used as the raw material, but does not exhibit any roughness.

水平に突き出した布が支持台先端から45°斜め下方に
ひいた線上まで垂れ下がる距離によって布の硬さを表現
すると、原料のビニロン布の70に対して+6(mとい
う値が得られ、溶射により少し硬くなっていることがわ
かった。しかし、この値は布の特性としてとくに問題と
するほど大きい値ではない。
If we express the hardness of the cloth by the distance that a horizontally protruding cloth hangs down from the tip of the support base to a line drawn diagonally downward at 45 degrees, we get a value of +6 (m) compared to 70 for the vinylon cloth used as the raw material. It was found that the fabric was a little stiffer. However, this value was not large enough to be a problem as a characteristic of the fabric.

この布の耐摩耗性をテーパ一式摩耗試験機によって調べ
た。摩耗の終点を布の表面の1./2がビニロン繊維に
なる点として、摩耗輪C8−17、荷重5009で摩耗
試験を行なったところ、摩耗寿命は450回であった。
The abrasion resistance of this fabric was examined using a taper set abrasion tester. The end point of wear is set at 1. on the surface of the cloth. An abrasion test was conducted with a wear wheel C8-17 and a load of 5009 at the point where /2 becomes vinylon fiber, and the abrasion life was 450 times.

合金層の附剥離性を調べた。セロテープのはり付けおよ
び剥離を20回くり返えしたが、実質的な剥離は認めら
れなかった。
The peelability of the alloy layer was investigated. Although the cellophane tape was applied and peeled off 20 times, no substantial peeling was observed.

この布の耐洗たく性を調べるため市販電気洗濯機(日立
製作所P F 2500青空)により、合成洗剤0.5
%溶液中で10分間洗たくしたが、!j!質的な変化は
なかった。
In order to investigate the wash resistance of this cloth, synthetic detergent 0.5
% solution for 10 minutes, but! j! There were no qualitative changes.

この布の電気抵抗は巾1(mのテープ状にして測定して
18Ω/mであった。この布を2 m2取り、切れ目を
入れ、切れ目に絶縁性膜をはりつけ、両端に極板を導電
性接着剤を用いて固定した。
The electrical resistance of this cloth was 18 Ω/m when measured by making it into a tape with a width of 1 m. Take 2 m2 of this cloth, make a cut, paste an insulating film on the cut, and attach a conductive plate to both ends. It was fixed using adhesive.

両極板の間の抵抗は113Ωであった。両極の間に商用
交流を通じ厚さ20fflll+のタフテッドカーペッ
ト(基布 ビニロン、房糸 アクリル)にはさんで経時
変化を調べたところ、3ケ月間の連続使用で格別の変化
を生じなかった。
The resistance between the two electrode plates was 113Ω. When we conducted commercial exchange between the two poles and sandwiched it between a 20ffllll+ thick tufted carpet (base fabric: vinylon, tufts: acrylic), we investigated the changes over time, and found that no particular changes occurred after 3 months of continuous use.

実施例2 実施例1と同様のビニロン布に、米国メテコ社製のフレ
ームスプレーガン12E型を用いて直径3.0馴の鉄・
ニッケル・クロム合金線体積固有抵抗8.8 X 10
−’Ω・mを供給して溶射を行なった。溶射条件は、酸
素流量2.2ノルマル立方メ一トIv/時、アセチレン
流量1.0ノルマ〜立方メ一ト/L//時、線材供給速
度4.skG膚、布送り速度2.2m/秒、溶射ガンの
移動速度o、tmル、溶射ガンと布の距離200朋、溶
射回数12回であった。溶射炎から布が脱出する点へ向
けて10m沙の流速で冷却空気を送り布を冷却した。
Example 2 The same vinylon cloth as in Example 1 was coated with iron with a diameter of 3.0 mm using a frame spray gun model 12E made by Metco, USA.
Nickel-chromium alloy wire volume resistivity 8.8 x 10
Thermal spraying was performed by supplying -'Ω·m. Thermal spraying conditions were: oxygen flow rate of 2.2 normal cubic meth Iv/hour, acetylene flow rate of 1.0 normal to cubic meth/L/hour, wire feed rate 4. The fabric was fed at a speed of 2.2 m/sec, the moving speed of the thermal spray gun was o, tm, the distance between the thermal spray gun and the fabric was 200 m, and the number of thermal sprays was 12 times. Cooling air was sent at a flow rate of 10 msa toward the point where the cloth escaped from the spray flame to cool the cloth.

こうして得られた布上の合金膜の平均厚さは約35μm
1表面は梨地仕上した金属材料のような外観を示した。
The average thickness of the alloy film on the fabric thus obtained was approximately 35 μm.
1 The surface had an appearance like a metal material with a satin finish.

手ざわりは原料のビニロン布より硬く少しザラツキがあ
るが、不快なほどではない。水平に突き出した布が支持
台先端から45°下方にひい丸線−ヒまで垂れ下がる距
離によって布のかたさを表現すると、原料のビニロン布
の7C++1に対し18Cmという値が得られ、溶射に
よシかなり硬くなっていることがわかった。
The texture is harder and a little rougher than the raw vinylon cloth, but it's not uncomfortable. If we express the stiffness of the cloth by the distance that the horizontally protruding cloth hangs down 45 degrees from the tip of the support base to the round line - H, we get a value of 18 Cm compared to 7 C++1 of the vinylon cloth used as the raw material, which is quite resistant to thermal spraying. I found it to be hard.

しかし、この値は毛布用の抵抗発熱体などに用いて実用
上問題になるほどに大きい値ではない。
However, this value is not large enough to cause a practical problem when used in resistance heating elements for blankets, etc.

この布の耐摩耗性をテーパ一式摩耗試験機によって調べ
た。摩耗の終点として、布の表面の1/2がビニロン繊
維になる点として、摩耗輪C8−17、荷重500ダで
摩耗試験を行なったところ、摩耗寿命は600回であっ
た。
The abrasion resistance of this fabric was examined using a taper set abrasion tester. An abrasion test was carried out using a C8-17 abrasion wheel and a load of 500 Da, with the end point of abrasion being the point at which 1/2 of the surface of the cloth became vinylon fibers, and the abrasion life was 600 times.

合金層の耐剥離性を調べるためにセロテープのはり付け
および剥離を20回くり返えしたが、実質的な剥離は認
められなかった。
In order to examine the peeling resistance of the alloy layer, the cellophane tape was applied and peeled 20 times, but no substantial peeling was observed.

この布のI耐洗濯性を調べるため市販電気洗濯機(日立
製作所PF 2500 W空)を用いて合成洗剤0.5
%溶液中で10分間洗濯したが、実質的な変化はなかっ
た。
In order to examine the washing resistance of this fabric, a commercially available electric washing machine (Hitachi PF 2500W empty) was used to wash the fabric with 0.5% synthetic detergent.
% solution for 10 minutes, but there was no substantial change.

この布の電気抵抗はIC?+1巾で測定して11Ω/m
であった。この布に通電して表面温度を1000C±3
6Cにコントロールして特性の変化を調べたが30日間
で実質的な変化は認められなかった。
Is the electrical resistance of this cloth IC? 11Ω/m measured at +1 width
Met. Apply electricity to this cloth to raise the surface temperature to 1000C±3
Changes in properties were investigated by controlling with 6C, but no substantial changes were observed over 30 days.

実施例3 実施例1のビニロン布の代りに、はぼ同じ目付の木綿、
羊毛、ポリエステル、ナイロン、アクリルの紡績糸の布
を用いて実施例1と同様の条件で処理した、溶射ガンと
布の距離を加減して処理したところ、各材料に対して好
適々距離が存在し、その距離で得られた溶射皮膜はいず
れもすぐれた耐摩耗性、耐剥離性を示した。また得られ
た布はくは衣服として使用可能な範囲の柔軟性、通気性
を示した。得られた布はくけ抵抗発熱体として使用可能
な範囲の耐熱性、附炎性および耐久性を有していた。
Example 3 Instead of the vinylon cloth in Example 1, cotton of approximately the same weight,
Fabrics made of wool, polyester, nylon, and acrylic yarn were treated under the same conditions as in Example 1, and the distance between the thermal spray gun and the fabric was adjusted, and there was a suitable distance for each material. However, all the thermal spray coatings obtained at that distance showed excellent abrasion resistance and peeling resistance. In addition, the resulting fabric exhibited flexibility and breathability within a range that allowed it to be used as clothing. The resulting fabric had heat resistance, flammability, and durability within a range that could be used as a hook-resistance heating element.

比較例1 実施例1において布送りを停止し、溶射ガンと布の距離
を加減して処理を行なったが、ビニロン繊維が溶融しな
い距離では溶射皮膜が形成されず、溶射皮膜が形成され
る条件ではビニロン繊維の溶融が起った。
Comparative Example 1 In Example 1, the cloth feed was stopped and the distance between the thermal spray gun and the cloth was adjusted to perform the treatment, but the thermal spray coating was not formed at a distance where the vinylon fibers did not melt, and the conditions under which the thermal spray coating was formed Melting of the vinylon fiber occurred.

溶射ガンの速度を0.1 m/#まで上げるとビニロン
繊維が溶融せずに溶射皮膜が形成される条件が出て来る
。この時には溶射材料の飛散する割合が大きく皮膜の成
長が遅かった。
When the speed of the spray gun is increased to 0.1 m/#, conditions are created in which the vinylon fibers do not melt and a spray coating is formed. At this time, the rate of scattering of the sprayed material was large and the growth of the film was slow.

実施例4 実施例2のビニロン布の代りKはぼ同じ日付の木綿、羊
毛、ポリエステル、ナイロン、アクリ〜の紡績糸の布を
用い実施例2と同様の条件で処理したところ、いずれも
耐摩耗性、耐剥離性のすぐれた溶射皮膜が得られた。ま
た、得られた布は衣服として使用可能な範囲の柔軟性、
通気性を示し、抵抗発熱体として使用可能な範囲の耐熱
性、1酎久性を有していた。
Example 4 Instead of the vinylon cloth in Example 2, fabrics made of cotton, wool, polyester, nylon, and acrylic spun yarns of approximately the same date were used in place of the vinylon cloth in Example 2, and treated under the same conditions as in Example 2. A thermal sprayed coating with excellent properties and peel resistance was obtained. In addition, the resulting fabric has a flexibility that allows it to be used as clothing.
It exhibited air permeability, and had heat resistance and durability within a range that could be used as a resistance heating element.

実施例5 実施例2のビニロン布の代シに目付80〜100g/m
2のポリエステル、ナイロン、ビニロン、アクリルの長
繊維の布を用い実施例2と同様の条件で処理したところ
、いずれも耐摩耗性、耐剥離性のすぐれた溶射皮膜が得
られ抵抗発熱体として使用可能な範囲の耐熱性および耐
久性を示した。
Example 5 The fabric weight of the vinylon cloth of Example 2 is 80 to 100 g/m
When the long fiber cloths of polyester, nylon, vinylon, and acrylic from No. 2 were treated under the same conditions as in Example 2, thermal sprayed coatings with excellent abrasion resistance and peeling resistance were obtained and used as resistance heating elements. Demonstrated heat resistance and durability within the possible range.

実施例6 実施例1のニッケルクロム合金粉体の代りに、グラファ
イト75%メソフェースピッチ25%の混合物粉体カー
ボンブラック75%メソフェースピッチ25%の混合物
粉体、硫化鉄85%アルミナ15%の混合物粉体、黒色
フェライト60%アルミナ40%の混合物の粉体の溶射
を行なったところ、いずれの場合にも均一良好な溶射皮
膜が形成され、抵抗発熱体として使用可能な範囲の耐熱
性および耐久性を示した。
Example 6 Instead of the nickel chromium alloy powder of Example 1, a mixture powder of 75% graphite, 25% mesoface pitch, a mixture powder of 75% carbon black, 25% mesoface pitch, 85% iron sulfide, and 15% alumina were used. When we thermally sprayed a mixture powder and a powder mixture of 60% black ferrite and 40% alumina, a uniform and good sprayed film was formed in both cases, and the heat resistance and durability were within the range that could be used as a resistance heating element. showed his sexuality.

実施例7 実施例2の鉄ニツケルクロム合金線の代すに、鉄ニツケ
ル合金鉄クロムアルミニウム合金ステンレスの溶射を行
なったところ、いずれの場合にも良好な溶射皮膜が形成
され、抵抗発熱体として使用可能な範囲の耐熱性および
耐久性を示した。
Example 7 Instead of the iron-nickel-chromium alloy wire of Example 2, an iron-nickel alloy iron-chromium-aluminum alloy stainless steel was thermally sprayed, and a good thermal sprayed coating was formed in each case, making it suitable for use as a resistance heating element. Demonstrated heat resistance and durability within the possible range.

特許出願人 株式会社 り ラ し 代 理 人 弁理士 本多 堅Patent applicant RiRashi Co., Ltd. Representative Patent Attorney Ken Honda

Claims (2)

【特許請求の範囲】[Claims] (1)体積固有抵抗が8×10^−^7〜8×10^2
Ω・mの金属もしくは合金もしくは半導体から成る溶射
成形物と該金属もしくは合金もしくは半導体より低融点
の有機繊維を主成分とする繊維質構造物とから成ること
を特徴とする可撓性の抵抗発熱体
(1) Volume resistivity is 8 x 10^-^7 ~ 8 x 10^2
A flexible resistance heating device characterized by comprising a thermally sprayed molded product made of a metal, alloy, or semiconductor of Ω·m, and a fibrous structure whose main component is an organic fiber having a lower melting point than the metal, alloy, or semiconductor. body
(2)前項において、溶射成形物の形成時の有機繊維が
シート状であることを特徴とする可焼性の抵抗発熱体
(2) In the preceding paragraph, the combustible resistance heating element is characterized in that the organic fiber at the time of forming the thermally sprayed product is in the form of a sheet.
JP27028384A 1984-12-20 1984-12-20 Flexible resistance exothermic element Pending JPS6341737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27028384A JPS6341737A (en) 1984-12-20 1984-12-20 Flexible resistance exothermic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27028384A JPS6341737A (en) 1984-12-20 1984-12-20 Flexible resistance exothermic element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17529283A Division JPS6067143A (en) 1983-09-22 1983-09-22 Composite material of organic fiber and inorganic matter and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6341737A true JPS6341737A (en) 1988-02-23

Family

ID=17484097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27028384A Pending JPS6341737A (en) 1984-12-20 1984-12-20 Flexible resistance exothermic element

Country Status (1)

Country Link
JP (1) JPS6341737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517858A (en) * 1991-06-28 1996-05-21 Nsk Ltd. Method and instrument for measuring for measuring preload of rolling bearing
JP2009530762A (en) * 2006-03-17 2009-08-27 ジーケイエヌ エアロスペース サービシイズ リミテッド Heater structure manufacturing method and heater structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019050A (en) * 1973-06-20 1975-02-28
JPS5266798A (en) * 1975-11-29 1977-06-02 Sumitomo Chemical Co Powder coating method of cloth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019050A (en) * 1973-06-20 1975-02-28
JPS5266798A (en) * 1975-11-29 1977-06-02 Sumitomo Chemical Co Powder coating method of cloth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5517858A (en) * 1991-06-28 1996-05-21 Nsk Ltd. Method and instrument for measuring for measuring preload of rolling bearing
JP2009530762A (en) * 2006-03-17 2009-08-27 ジーケイエヌ エアロスペース サービシイズ リミテッド Heater structure manufacturing method and heater structure

Similar Documents

Publication Publication Date Title
US4357387A (en) Flame resistant insulating fabric compositions prepared by plasma spraying
US4826508A (en) Flexible abrasive coated article and method of making it
JP4837346B2 (en) Seal tape and textiles using the same
WO1987002855A1 (en) Stringy heating element, its production and planar heating element obtained from said stringy heating element
AU613584B2 (en) A flexible abrasive coated article and method of making it
JPS6341737A (en) Flexible resistance exothermic element
US2474273A (en) Fabric reinforcement
JPH0365878B2 (en)
JPS60208467A (en) Composite flexible material
JPS6334133A (en) Organic fiber composite material in which generation of electrostatic trouble is reduced
JPS6311983B2 (en)
JPS6322638A (en) Refractory organic fiber composite material and refractory clothing using said material and refractory flexible material
JP2014189013A (en) Composite sheet and method for manufacturing the same
JPS6322639A (en) Radiation heat-insulating material
JPS60149451A (en) Organic fiber composite material, melting deterioration thereof due to frictional heating is reduced
JPS6328907A (en) Conductive working clothing
JPS6342339A (en) Organic fiber composite material excellent in thermal conversion efficiency of light
JPS6327249A (en) Organic fiber composite material having excellent weather resistance
JPS6333000A (en) Flexible electromagnetic wave reflecting material
JP3607307B2 (en) Adhesive interlining
US3687796A (en) Composite high-loft material for blankets
JPH03237799A (en) Conductive woven cloth and manufacture thereof
JPS61124679A (en) Organic fiber composite material reduced in fouling of aquatic organism
JPS6046242A (en) Cloth-like composite material
JP3672043B2 (en) Thermoplastic composite continuous molding and continuous molding method