JPS6045691B2 - Method for producing thin steel sheets with good drawability - Google Patents

Method for producing thin steel sheets with good drawability

Info

Publication number
JPS6045691B2
JPS6045691B2 JP57152761A JP15276182A JPS6045691B2 JP S6045691 B2 JPS6045691 B2 JP S6045691B2 JP 57152761 A JP57152761 A JP 57152761A JP 15276182 A JP15276182 A JP 15276182A JP S6045691 B2 JPS6045691 B2 JP S6045691B2
Authority
JP
Japan
Prior art keywords
weight
rolling
temperature
thin
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57152761A
Other languages
Japanese (ja)
Other versions
JPS5943823A (en
Inventor
正道 永野
修 橋本
日出夫 鈴木
稔 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57152761A priority Critical patent/JPS6045691B2/en
Publication of JPS5943823A publication Critical patent/JPS5943823A/en
Publication of JPS6045691B2 publication Critical patent/JPS6045691B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 この発明は、絞り性の良好な薄鋼板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin steel sheet with good drawability.

近年、省力、省エネルギーを達成するため、鋼板製造プ
ロセスの連続化あるいは工程省略化が盛んに進められつ
つある。
In recent years, in order to achieve labor and energy savings, continuous development or process abbreviation of steel plate manufacturing processes has been actively promoted.

この発明は、従来のスラブ連鋳法に代わるストリップキ
ャスターで連続鋳造した薄肉の鋳鋼帯を、直接再結晶温
度以下て圧延する低温直接圧延法により有利に絞り性の
良好な薄鋼板を製造する方法についての開発成果を開示
するものである。
This invention provides a method for manufacturing thin steel sheets with advantageous drawability by a low-temperature direct rolling method in which a thin cast steel strip continuously cast using a strip caster is directly rolled at a temperature below the recrystallization temperature, instead of the conventional continuous slab casting method. The purpose is to disclose the development results for.

) 従来、軟質かつ加工性の良好な冷延薄鋼板は、専ら
、スラブ−熱間圧延一冷間圧延一再結晶焼鈍の各工程を
経て製造されて来た。
Conventionally, cold-rolled thin steel sheets that are soft and have good workability have been produced exclusively through the following steps: slab-hot rolling, cold rolling, and recrystallization annealing.

一方これらの工程を極力省略し、溶鋼から圧延丁工程を
経す薄鋼帯成品を直接連続鋳造する方法が考えられてい
るが、この方法で得られた薄鋼帯は表面形状が悪くかつ
加工法に劣るため、そのままでは従来並の加工性を必要
とするような用途には使用できない。
On the other hand, a method has been considered in which these steps are omitted as much as possible and thin steel strip products are directly continuously cast from molten steel through a rolling process, but the thin steel strips obtained by this method have a poor surface shape and are difficult to process. Because it is inferior to conventional methods, it cannot be used as is for applications that require processability comparable to conventional methods.

したがつてかような連続鋳造薄鋼帯につき、絞り加工性
を向上させるには、圧延と再結晶工程が必要となる。
Therefore, rolling and recrystallization steps are required to improve the drawability of such continuously cast thin steel strips.

ただ、ここで熱間圧延と冷間圧延の2回の圧延を施すの
はエネルギーロスが大きいので、1回の圧延でなおかつ
良好な絞り性を付与できることが、工業的に大きなメリ
ットを生むことは明らかである。
However, applying two rolling steps (hot rolling and cold rolling) results in a large energy loss, so being able to provide good drawability with just one rolling process is not a great industrial advantage. it is obvious.

そこで溶鋼から連続鋳造された薄肉の鋳鋼帯を圧延加工
組織が残る条件で圧延し、続いて再結晶焼鈍することに
より、絞り性の良好な薄鋼板を製造する方法を研究、開
発した。
Therefore, we researched and developed a method for producing thin steel sheets with good drawability by rolling thin-walled cast steel strips continuously cast from molten steel under conditions where the rolled structure remains, and then recrystallizing and annealing them.

すなわちこの発明の目的は、従来の スラブー熱延一冷延一再結晶焼鈍過程 を経て製造されていた絞り性の良好な薄鋼板を、連続鋳
造→冷延→再結晶焼鈍 過程により、再結一晶温度以上
での圧延工程を省略して製造できる方法を提案すること
にある。
In other words, the purpose of the present invention is to convert thin steel sheets with good drawability, which were manufactured through the conventional slab hot rolling, cold rolling, and recrystallization annealing process, to recrystallization monocrystallization through the continuous casting → cold rolling → recrystallization annealing process. The object of the present invention is to propose a manufacturing method that can omit the rolling process at a temperature higher than that temperature.

従来の熱間圧延を経て冷間圧延に至る製造工程では、熱
延工程における条件を適切に選ぶことにより冷延・焼鈍
後の鋼板の絞り性を高めることが!できた。
In the conventional manufacturing process from hot rolling to cold rolling, it is possible to improve the drawability of the steel sheet after cold rolling and annealing by appropriately selecting the conditions in the hot rolling process! did it.

これに反し、この発明が対象としているような凝固後の
鋳鋼帯を直接冷間圧延する場合については、熱延に代わ
る他の方法を考えなくてはならない。
On the other hand, in the case where the cast steel strip after solidification is directly cold rolled, as is the object of the present invention, other methods must be considered in place of hot rolling.

そこで発明者らは、上記の点につき鋭意研究を重ねた結
果、連続鋳造での凝固後における鋳鋼帯の冷却速度を制
御することが、成品の絞り性向上のためにまず有好であ
ることを見出した。
As a result of extensive research into the above points, the inventors have found that controlling the cooling rate of the cast steel strip after solidification in continuous casting is first of all advantageous for improving the drawability of the finished product. I found it.

一方省エネルギー、省工程を推し進めるために3は、冷
却途中で圧延することが圧延荷重の減少および圧延前の
コイル巻取、巻房し工程の省略が可能となることからの
ぞましく、その場合圧延温度が高すぎると圧延中に再結
晶が進行し、かような鋼板を焼鈍しても、もはや絞り性
の向上は図れな4い。
On the other hand, in order to promote energy saving and process saving, it is desirable to roll during cooling because it reduces the rolling load and makes it possible to omit the coil winding and tasseling processes before rolling. If the rolling temperature is too high, recrystallization will proceed during rolling, and even if such a steel sheet is annealed, it will no longer be possible to improve drawability4.

発明者らは、この点についても研究を重ねた結果、後に
述べるように圧延温度を再結晶温度以下として鋳鋼板の
冷却速度との組合せで決まる一定の圧下率以上て圧延す
れは絞り性を向上できることを見出した。
As a result of repeated research on this point, the inventors found that, as described later, rolling at a rolling temperature lower than the recrystallization temperature and above a certain reduction rate determined by the combination of the cooling rate of the cast steel sheet improves drawability. I found out what I can do.

この発明は、上記知見に由来するものである。This invention is derived from the above knowledge.

すなわちこの発明は、薄肉の鋳鋼帯を連続鋳造し、その
冷却途中あるいは室温まで冷却した後、その再結晶温度
以下ての圧延を経て再結晶焼鈍するに際し、該鋳鋼帯の
900℃から700℃までにおける平均冷却速度VCC
/Mln)と、圧延開始温度TCC)および圧延圧下率
R(%)につき、次“式、R≧(56−210g(10
×■)) ×10g(95/(8.5−T/100))を満たす
圧延を施すことによつて、従来課題の解決を図つたもの
である。
In other words, the present invention provides continuous casting of a thin cast steel strip, during cooling or after cooling to room temperature, rolling at a temperature below the recrystallization temperature, and recrystallization annealing. Average cooling rate VCC at
/Mln), rolling start temperature TCC) and rolling reduction ratio R (%), the following formula, R≧(56-210g(10
×■)) ×10g (95/(8.5-T/100)) The conventional problem was solved by performing rolling.

ここにこの発明の適用鋼種としては、次に掲げるものが
とりわけ有利に適合する。
The following steel types are particularly advantageously applicable to the present invention.

(1)C:0.0030重量%(以下単に%で示す)以
下、Mn:0.15〜0.25%、SOl.Al:0.
02〜0.06%およびNb:0.008〜0.03%
を含有する組成になるもの。
(1) C: 0.0030% by weight (hereinafter simply expressed as %) or less, Mn: 0.15-0.25%, SOI. Al: 0.
02-0.06% and Nb: 0.008-0.03%
A composition containing

(2)C:0.0035%、Si:0.02〜0.60
%、Mn:0.2〜0.4%、P:0.060〜0.1
10%、SOl.Al:0.02〜0.06%およびN
b:0.008〜0.03%を含有する組成になるもの
(2) C: 0.0035%, Si: 0.02-0.60
%, Mn: 0.2-0.4%, P: 0.060-0.1
10%, SOL. Al: 0.02-0.06% and N
b: A composition containing 0.008 to 0.03%.

(3)C:0.02〜0.06%、Mn:0.2〜0.
4%およびSOl.AI:0.02〜0.07%を含有
する組成になるもの。
(3) C: 0.02-0.06%, Mn: 0.2-0.
4% and SOL. A composition containing 0.02 to 0.07% of AI.

(4)C:0.05〜0.09%およびMn:0.2〜
0.4%を含有する組成になるもの。
(4) C: 0.05~0.09% and Mn: 0.2~
A composition containing 0.4%.

(5)C:0.04〜0.09%、Mn:0.2〜0.
9%、P:0.08〜0泪%およびGsOl.Al:0
.02〜0.06%を含有する組成になるもの。
(5) C: 0.04-0.09%, Mn: 0.2-0.
9%, P:0.08-0% and GsOl. Al: 0
.. 02 to 0.06%.

(6)C:0.06〜0.10%、Mn:0.2〜0.
9%およびSOl.Al:0.02〜0.06%を含有
する組成になるもの。
(6) C: 0.06-0.10%, Mn: 0.2-0.
9% and SOL. A composition containing Al: 0.02 to 0.06%.

以下にこの発明の基礎となつた実験の経緯を説明する。The background of the experiment that formed the basis of this invention will be explained below.

まずC:0.001〜0.10%、AI:0.001〜
0.07%、Mn:0.15〜0.90%、Si:0.
02〜0.6%、P:0.008〜O泪%およびNb:
0.03%以下の範囲で含有する組成で、板厚3〜30
TEnの鋳鋼帯を鋳造し、この鋳鋼帯は900℃から7
00℃までの平均冷却速度■を、毎時60℃から毎秒2
0℃にわたる範囲で制御した。この冷却途中、再結晶温
度以下の温度Tて圧延を施した後、850゜Cで1分間
の再結晶焼鈍を施し、得られた成品の絞り性について調
べた。なお絞り性は、塑性異方比(以下γ値と呼ぶ)に
よつて評価した。ここて鋳造後の鋳鋼帯の冷却速度■を
900′Cから700′Cの温度域で規制するのは、9
00℃をこえるかまたは700℃に満たぬ温度域での冷
却速度は成品の絞り性に影響せず、900℃から700
℃までの冷却速度■が成品の絞り性を決定するからであ
る。
First, C: 0.001~0.10%, AI: 0.001~
0.07%, Mn: 0.15-0.90%, Si: 0.
02-0.6%, P:0.008-0% and Nb:
The composition contains 0.03% or less, and the plate thickness is 3 to 30%.
A cast steel strip of TEn is cast, and this cast steel strip is heated from 900℃ to 7
Average cooling rate from 60°C to 00°C per hour to 2 per second
The temperature was controlled over a range of 0°C. During this cooling, after rolling at a temperature T below the recrystallization temperature, recrystallization annealing was performed at 850° C. for 1 minute, and the drawability of the obtained product was examined. Note that the drawability was evaluated by the plastic anisotropy ratio (hereinafter referred to as γ value). Here, the cooling rate (■) of the cast steel strip after casting is regulated in the temperature range from 900'C to 700'C.
The cooling rate in the temperature range exceeding 00℃ or less than 700℃ does not affect the drawability of the product, and
This is because the cooling rate (2) to °C determines the drawability of the product.

この理由についてはいまのところ定かではないが、0.
1%以下のCを含む鋼では、900′Cから700℃の
冷却過程がA3変態点を通過する温度範囲であり、ここ
での冷却速度が大きいほど変態速度が大きくなつて結晶
粒が微細化し、かような微細な結晶組織を有する銅板を
圧延し、焼鈍すると、圧延中に歪エネルギーが蓄積され
易く、焼鈍過程で絞り性に有利な集合組織が形成される
ことによると推察され、このような理由により、製品薄
板の絞り性を向上させるための冷却速度の制御は、90
0′Cから700′Cの範囲で行うことにしたのである
。つぎに実験結果を示す。鋳鋼板の温度が■=10′C
/Mjnの上記冷却過程を経て室温まで下がつたのち圧
延した場合に、T=20′Cの条件で圧延を行つたとき
の実験結果を、第1図に圧下率Rとr値との関係で示す
The reason for this is not certain at this time, but 0.
For steel containing 1% or less C, the cooling process from 900'C to 700°C is the temperature range that passes through the A3 transformation point, and the faster the cooling rate here, the faster the transformation rate becomes and the grains become finer. It is presumed that this is because when a copper plate with such a fine crystal structure is rolled and annealed, strain energy is likely to be accumulated during rolling, and a texture favorable to drawability is formed during the annealing process. For these reasons, it is difficult to control the cooling rate to improve the drawability of thin product sheets.
It was decided to carry out the experiment in the range of 0'C to 700'C. Next, the experimental results are shown. The temperature of the cast steel plate is ■=10'C
Figure 1 shows the experimental results when rolling was carried out under the condition of T = 20'C, and the relationship between the rolling reduction ratio R and the r value, when the temperature was lowered to room temperature through the above cooling process of /Mjn and then rolled. Indicated by

第1図より圧下率が高いほどr値が上昇することがわか
る。
It can be seen from FIG. 1 that the higher the rolling reduction rate, the higher the r value.

以後このように高いr値が得られる下限圧下率を限界圧
下率ROと呼び、たとえば第1図に示した場合はRO=
55(%)である。つぎに鋳造後の鋼板の冷却途中、種
々の温度で圧延を行つた結果について述べる。第2図に
、900′Cから7000Cまてのの冷却速度■を5゜
C/Mlnとしたときの圧延開始温度TCC)と限界圧
下率RO(%)との関係を示す。
Hereinafter, the lower limit reduction rate at which such a high r value can be obtained will be referred to as the limit reduction rate RO. For example, in the case shown in Fig. 1, RO=
It is 55 (%). Next, we will discuss the results of rolling at various temperatures during cooling of the steel plate after casting. FIG. 2 shows the relationship between the rolling start temperature (TCC) and the critical reduction rate RO (%) when the cooling rate (2) from 900'C to 7000C is 5°C/Mln.

同図より高温て圧延する場合には、より高い圧下率を必
要とすることがわかる。
It can be seen from the figure that a higher rolling reduction ratio is required when rolling at a high temperature.

さらに冷却速度Vおよび圧延開始温度Tを種々変化さて
圧延を行つた場合のRO(5Vとの関係についても調査
を行い、一例として圧延開始温度Tが300゜Cのとき
のR。
Furthermore, we also investigated the relationship with RO (5V) when rolling was performed with various cooling rates V and rolling start temperatures T, and as an example, R when the rolling start temperature T was 300°C.

.l5Vとの関係を第3図に示す。同図から明らかなよ
うに、■を大きくすることによつて低圧下率でも高いr
値が得られることがわかつた。
.. The relationship with l5V is shown in Figure 3. As is clear from the figure, by increasing ■, a high r
It turns out that the value can be obtained.

一般に圧下能力の小さいミルでは、強圧下圧延を行うこ
とは実質的に不可能であるが、かようなミルを用いる場
合であつても、■を大きくすることにより低圧下率でも
絞り性の良好な鋼板を製造することができる点もこの発
明の大きなメリットである。
In general, it is virtually impossible to perform strong reduction rolling with a mill that has a small rolling capacity, but even when such a mill is used, good drawability can be achieved even at a low reduction rate by increasing ■. Another major advantage of this invention is that it allows the production of steel plates.

以上の実験結果をまとめて、RO,■およびTの関係に
つき整理したところ、3者の関係は次式、で表わされる
ことが判明した。
When the above experimental results were summarized and the relationships among RO, ■, and T were organized, it was found that the relationship between the three was expressed by the following equation.

従つてこの限界圧下率RO以上の圧下率で圧延を行うこ
とにより、絞り性に優れた薄鋼板が得られるわけである
。次にこの発明の実施例について説明する。表1に示し
た種々の成分組成になる溶鋼を、温度制御により種々の
板厚に調整できる鋳型内に注入して3TWL〜30TW
L厚の薄肉鋳鋼帯を製造し、続いて900℃から700
℃に至るまでの冷却速度を0.2〜900℃/Minの
範囲で変化させて冷却し、その冷フ却途中から室温に至
る間の種々の温度ならびに種々の圧下率で圧延を行い、
その後850℃、1分間または700℃、1叫間の焼鈍
を施して薄鋼板とした。
Therefore, a thin steel sheet with excellent drawability can be obtained by rolling at a reduction rate equal to or higher than this critical reduction rate RO. Next, embodiments of this invention will be described. Molten steel with various compositions shown in Table 1 is poured into molds that can be adjusted to various thicknesses by temperature control to produce 3TWL to 30TW.
A thin-walled cast steel strip with a thickness of
℃ by changing the cooling rate in the range of 0.2 to 900℃/Min, rolling at various temperatures and various rolling reductions from the middle of cooling to room temperature,
Thereafter, it was annealed at 850°C for 1 minute or at 700°C for 1 minute to obtain a thin steel plate.

得られた各薄鋼板の絞り性について調べた結果をr値で
表1に併せ示す。C 表1から明らかなように、この発明の方法に従つて得ら
れた薄鋼板はいずれも高いr値を示したのに対し、比較
例のように冷却条件ならびに圧延開始温度から必要とさ
れる限界圧下率よりも低い圧下率で圧延を行つた場合は
、低いr値しか得らクれなかつた。
The results of examining the drawability of each of the obtained thin steel sheets are also shown in Table 1 in terms of r values. C As is clear from Table 1, all the thin steel sheets obtained according to the method of the present invention showed a high r value, whereas as in the comparative example, the r value was When rolling was performed at a reduction rate lower than the critical reduction rate, only a low r value could be obtained.

次に表1中、鋼3で示したこの発明法に従つて得られた
薄鋼板の機械的性質について調べた結果を、同一組成で
従来法によつて製造した冷延鋼板のそれを比較した表2
に示す。
Next, the mechanical properties of the thin steel sheet obtained according to this invention method, indicated by Steel 3 in Table 1, were investigated and the results were compared with those of a cold-rolled steel sheet of the same composition manufactured by the conventional method. Table 2
Shown below.

この発明法に従い得られた薄鋼板の機械的性質は、従来
法に従う冷延銅板に比べ優るとも劣らなかつた。
The mechanical properties of the thin steel sheet obtained according to the method of this invention were not inferior to those of the cold-rolled copper sheet according to the conventional method.

以上述べたようにこの発明法によれば、ストリップキャ
スターで鋳造した薄肉の鋳鋼帯からでも、熱延工程の省
略の下で従来の冷延鋼板と比肩し得る絞り性に優れた薄
鋼板を製造することができ、省エネルギー、省工程化に
偉効を奏する。
As described above, according to the method of this invention, even from a thin cast steel strip cast with a strip caster, a thin steel sheet with excellent drawability comparable to conventional cold-rolled steel sheet can be produced without the hot rolling process. It is highly effective in saving energy and process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はV=10 ・延を行つた場合の圧下率Rとr値との関係を示したグ
ラフ、第2図は■=5℃/Minのときにおける圧延開
始温度Tと限界圧下率R。
Figure 1 is a graph showing the relationship between rolling reduction R and r value when rolling is performed at V=10, and Figure 2 is a graph showing the relationship between rolling start temperature T and critical rolling reduction R when ■ = 5°C/Min. .

Claims (1)

【特許請求の範囲】 1 薄肉の鋳鋼帯を連続鋳造し、その冷却途中あるいは
室温まで冷却した後、その再結晶温度以下での圧延を経
て再結晶焼鈍するに際し、該鋳鋼帯の900℃から70
0℃までにおける平均冷却速度V(℃/min)と、圧
延開始温度T(℃)および圧延圧下率R(%)につき、
次式R≧{56−2log(10×V)} ×log{95/(8.5−T/100))を満たす圧
延を施すことより成る、絞り性の良好な薄鋼板の製造方
法。 2 薄肉の板状鋼片が、C:0.0030重量%以下、
Mn:0.15〜0.25重量%、Sol.Al:0.
02〜0.06重量%およびNb:0.008〜0.0
3重量%を含有する組成である1記載の方法。 3 薄肉の板状鋼片が、C:0.0035重量%以下、
Si:0.02〜0.60重量%、Mn:0.2〜0.
4重通%、P:0.060〜0.110重量%、Sol
.Al:0.02〜0.06重量%、およびNb:0.
008〜0.03重量%を含有する組成である1記載の
方法。 4 薄肉の板状鋼片が、C:0.02〜0.06重量%
、Mn:0.2〜0.4重量%およびSol.Al:0
.02〜0.07重量%を含有する組成である1記載の
方法。 5 薄肉の板状鋼片が、C:0.05〜0.09重量%
、およびMn:0.2〜0.4重量%を含有する組成で
ある1記載の方法。 6 薄肉の板状鋼片が、C:0.04〜0.09重量%
、Mn:0.2〜0.9重量%、P:0.08〜0.1
1重量%およびSol.Al:0.02〜0.06重量
%を含有する組成である1記載の方法。 7 薄肉の板状鋼片が、C:0.06〜0.10重量%
、Mn:0.2〜0.9重量%およびSol.Al:0
.02〜0.08重量%を含有する組成である1記載の
方法。
[Claims] 1. When a thin cast steel strip is continuously cast, and during cooling or after cooling to room temperature, the cast steel strip is rolled at a temperature below the recrystallization temperature and then recrystallized annealed.
For the average cooling rate V (°C/min) to 0°C, rolling start temperature T (°C) and rolling reduction rate R (%),
A method for manufacturing a thin steel sheet with good drawability, which comprises rolling that satisfies the following formula: R≧{56-2log(10×V)}×log{95/(8.5-T/100)). 2. The thin plate-shaped steel piece contains C: 0.0030% by weight or less,
Mn: 0.15-0.25% by weight, Sol. Al: 0.
02-0.06% by weight and Nb: 0.008-0.0
The method according to 1, wherein the composition contains 3% by weight. 3. The thin plate-shaped steel piece contains C: 0.0035% by weight or less,
Si: 0.02-0.60% by weight, Mn: 0.2-0.
4-fold %, P: 0.060-0.110% by weight, Sol
.. Al: 0.02 to 0.06% by weight, and Nb: 0.
2. The method according to claim 1, wherein the composition contains from 0.008 to 0.03% by weight. 4 Thin plate-shaped steel piece contains C: 0.02 to 0.06% by weight
, Mn: 0.2 to 0.4% by weight and Sol. Al: 0
.. 2. The method according to claim 1, wherein the composition contains 02 to 0.07% by weight. 5 Thin plate-shaped steel piece contains C: 0.05 to 0.09% by weight
, and Mn: 0.2 to 0.4% by weight. 6 Thin plate-shaped steel piece contains C: 0.04 to 0.09% by weight
, Mn: 0.2-0.9% by weight, P: 0.08-0.1
1% by weight and Sol. 1. The method according to 1, wherein the composition contains Al: 0.02 to 0.06% by weight. 7 Thin plate-shaped steel piece contains C: 0.06 to 0.10% by weight
, Mn: 0.2 to 0.9% by weight and Sol. Al: 0
.. 2. The method according to claim 1, wherein the composition contains 0.02 to 0.08% by weight.
JP57152761A 1982-09-03 1982-09-03 Method for producing thin steel sheets with good drawability Expired JPS6045691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152761A JPS6045691B2 (en) 1982-09-03 1982-09-03 Method for producing thin steel sheets with good drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152761A JPS6045691B2 (en) 1982-09-03 1982-09-03 Method for producing thin steel sheets with good drawability

Publications (2)

Publication Number Publication Date
JPS5943823A JPS5943823A (en) 1984-03-12
JPS6045691B2 true JPS6045691B2 (en) 1985-10-11

Family

ID=15547568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152761A Expired JPS6045691B2 (en) 1982-09-03 1982-09-03 Method for producing thin steel sheets with good drawability

Country Status (1)

Country Link
JP (1) JPS6045691B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185729A (en) * 1983-04-05 1984-10-22 Kawasaki Steel Corp Production of thin steel sheet having excellent deep drawability
JP2937132B2 (en) * 1996-09-02 1999-08-23 日本電気株式会社 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028056A (en) * 1973-06-20 1975-03-22
JPS57101616A (en) * 1980-12-12 1982-06-24 Kawasaki Steel Corp Manufacture of body-centered cubic metal thin plate for machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028056A (en) * 1973-06-20 1975-03-22
JPS57101616A (en) * 1980-12-12 1982-06-24 Kawasaki Steel Corp Manufacture of body-centered cubic metal thin plate for machining

Also Published As

Publication number Publication date
JPS5943823A (en) 1984-03-12

Similar Documents

Publication Publication Date Title
JPS62240714A (en) Production of electrical steel sheet having excellent magnetic characteristic
US4116729A (en) Method for treating continuously cast steel slabs
JPS6045691B2 (en) Method for producing thin steel sheets with good drawability
JPH03229820A (en) Production of nonoriented silicon steel sheet
US3413165A (en) Hot rolling process for making grain oriented silicon iron sheet
JPS6316445B2 (en)
JPS6237094B2 (en)
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JPS6261646B2 (en)
JPS5974222A (en) Production of non-directional electrical steel sheet having excellent electromagnetic characteristic
JPH027374B2 (en)
JPS6283426A (en) Manufacture of cold rolled steel sheet for deep drawing
JPS61157668A (en) Manufacture of titanium hot rolled plate
JPH02258149A (en) Production of unidirectional high magnetic flux density magnetic steel sheet
JPH0257125B2 (en)
JPS6346130B2 (en)
JPH02194123A (en) Manufacture of nonoriented silicon steel sheet excellent in magnetic property
JPH03285018A (en) Manufacture of grain-oriented high magnetic flux density magnetic steel sheet
JPH02258922A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPS6179723A (en) Manufacture of high silicon steel strip having superior magnetic characteristic
JPS6352089B2 (en)
JPH0321610B2 (en)
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing
JPS62287014A (en) Hot rolling method for high silicon iron plate
JPH06306458A (en) Production of steel material by hot charging rolling in austenite region