JPS6044965A - Stacked fuel cell - Google Patents

Stacked fuel cell

Info

Publication number
JPS6044965A
JPS6044965A JP58151905A JP15190583A JPS6044965A JP S6044965 A JPS6044965 A JP S6044965A JP 58151905 A JP58151905 A JP 58151905A JP 15190583 A JP15190583 A JP 15190583A JP S6044965 A JPS6044965 A JP S6044965A
Authority
JP
Japan
Prior art keywords
flow path
gas
unit
fuel
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58151905A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58151905A priority Critical patent/JPS6044965A/en
Publication of JPS6044965A publication Critical patent/JPS6044965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make unnecessary cooling plates and reaction gas supply and exhaust manifolds and improve efficiency of a fuel cell by arranging in juxtaposition each unit stack in which each reaction gas flow path is arranged in the first second, third, and fourth sides. CONSTITUTION:Unit cells each of which consists of a fuel cell, electrolyte matrix, and oxidizing agent electrode, and gas separating plates are mutually stacked and reaction gas flow paths 10 and 11 are formed. By this manner, a plurality of unit stacks 21 are formed. Each unit stack 21 is arranged in juxtaposition through each separating wall 19 so that the first through fourth sides of each unit stack 21 and the first though fourth sides of other unit stack 21 form the first through fourth flow paths. Fuel gas is supplied to each unit stack 21 from the first flow path a and exhausted from the second flow path b. Oxidizing gas is supplied from the third flow path c and exhausted from the fourth flow path d. By this arrangement, cooling plates and reaction gas supply and exhaust manifolds of a stacked fuel cell are eliminated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は新規な積層形燃料車池に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to a novel stacked fuel vehicle pond.

〔従来技術〕[Prior art]

従来積層形燃料電池としては二第1図に尽すものがあっ
た。第1図において、(11は燃料’1ili伶、電解
質マl−IJフックスお工び酸化剤″市極ケ有するil
l電池、(2)はガス分離板、+31 Fi冷却板であ
り、(4)乞rこれら全鉛直方向VC複故個積層した債
j−づ体である。
Conventional stacked fuel cells have been limited to those shown in Figure 2. In FIG.
1 battery, (2) is a gas separation plate, +31 Fi cooling plate, and (4) these are all vertically stacked VC bonds.

(6)に積層体(4)に取り付けらねた反応ガス(燃料
および酸化剤)のマニホールド、!61 t:r 41
1blr 14F nl yy>ら電力を取り出す集電
板であり、(l)に電気系統の配線である。また、(8
)は4つの積層体(41を収め、菌属にして連転するた
めの圧力答詣である。celは冷却空気入口、(f) 
r:を冷却空気出口、(a)け燃料人口、(b)は燃料
出口、(C1ij酸酸化八人「、でd)汀酸化剤出〔,
1である。なお、この積層形燃料電池は空気を伶却板の
流路に流すことπ工って電池σ〕C品反倉制御する方式
、すなわち空冷式を用いて」、(す、図中の矢印げ熱媒
体である空気の流れを示している。(9)は(′li却
&VC流入する以前の空気と流入した後の空気と倉避断
するための遮蔽板である。
(6) is the reactant gas (fuel and oxidizer) manifold attached to the stack (4)! 61 t:r 41
1blr 14F nl yy> is a current collector plate that takes out electric power, and (l) is the wiring for the electrical system. Also, (8
) is the pressure response for containing four stacked bodies (41) and serially rotating them as bacteria. cel is the cooling air inlet, (f)
r: the cooling air outlet, (a) the fuel population, (b) the fuel outlet, (C1ij acid oxidation eight people', and d) the slag oxidizer outlet [,
It is 1. In addition, this stacked fuel cell uses a method to control the cell temperature by flowing air through the flow path of the cooling plate, that is, an air cooling type. It shows the flow of air, which is a heat medium. (9) is a shielding plate for separating the air before it flows into the tank and the air after it flows into the tank.

なお、第1図には、4つのAj(層内I41を1つの圧
力容器f811/(’収納した場合を示したが、この他
に1つの積層・体を1つの圧力容器に収納する場合もあ
る。&yc、第1図f(げ、冷却方式として空冷式分用
い1こ場合を示したが、この他に冷却板に冷却管なと4
屈み込み、水、油なとの熱媒体でt上動する液冷式ケ用
いる場合もある。
Although Fig. 1 shows the case where four Aj (layer I41) are housed in one pressure vessel f811/(', there is also a case where one laminated body is housed in one pressure vessel. &yc, Fig. 1f(g) Although this case is shown in which an air-cooled type is used as the cooling method, there are also 4 types of cooling pipes on the cooling plate.
In some cases, a liquid-cooled type is used, which moves upward using a heat medium such as water or oil.

次にvJf′トについて説’J4−’る。反応ガスのマ
ニホールドL51 ’(y 3qして反応ガスの供給を
行なうと、単’1)ij池flfπ電力が生じる。積層
体(4)では単電池f++は、4電性分有するガスδ)
離板(2)および冷却板(3)によって直列に接続され
ており、単電池(Ijに生じた電流げ集電板+61に集
められる。′電気系統σ)配線げ、Fl−力容器(8)
K収められた4個の積層体f+)Th電気的vc n>
、:列あるいは並列に接続したり、積層体(4)に生じ
lで+6力全日−力芥圏(8)の外へ収り出−v7こめ
にF目いている。単電池(1)灯その動作時に熱を発生
し、高温によって単電池(りが損なわI″Lる恐れがあ
るので冷却板(3)(l!−用いて′重油の温度全制御
する。これは単電池の面積が2500cm2〜1m2と
大きく、特に単電池の中央付近において商温部分が存在
する/ζめで、単゛重油の面積が2500crn2以下
てあtlは反り:\ガスによるC6却によって代用する
ことができる。一般に冷却板(3)?用いる場合には、
lit ’融成(1)数個ことに冷却板(3)を挿入し
、冷却板(31f/(形成した波路捷7こは冷却板[,
4み込んだ冷却管などに、空気。
Next, we will discuss vJf'. When the reactant gas is supplied to the reactant gas manifold L51' (y 3q), electric power is generated. In the laminate (4), the single cell f++ is a gas δ) having four charges.
They are connected in series by a separation plate (2) and a cooling plate (3), and the current generated in the single cell (Ij) is collected on the current collector plate +61. )
K contained four stacked bodies f+) Th electrical vc n>
, : Connected in a row or in parallel, or generated in the stacked body (4), the +6 force is transferred to the outside of the force area (8), and -v7 is finally F. The cell battery (1) lamp generates heat when it operates, and the cell battery may be damaged due to high temperatures, so the cooling plate (3) is used to fully control the temperature of the heavy oil. The cell area is large, 2500 cm2 to 1 m2, and there is a commercial temperature part especially near the center of the cell. Generally, when using a cooling plate (3),
lit 'Insert the cooling plate (3) into several pieces of melting (1), and cool the cooling plate (31f/(formed wave path 7).
4. Air in the cooling pipe etc.

水、油などの熱媒体をθif、−J−ことによって行な
わねる。第1図V(尽した積層形燃料J池は空気2ベタ
却板(3)の流路に流すことによって単゛電池(1)を
冷却してい/、。−tなわち、熱媒体である空気は外部
から圧力容器(8)の底部を;Efl シて圧力容器内
VC流入し、4つの積層体14)の周辺から冷却板(3
)の流路に図中矢印のようVC流入−する。次に単14
コ[池tliを冷却して高温になつ1こ柴気に、4つの
槓Iζ;体(4)の中心部分全通って圧力容器(8)の
低B1≦に達し外MBへ流出すA0従米の接層形燃料電
池は以上のように4V4成さねでいるので、冷却板(3
)や冷却管など、電力の発生に直接関係しない部品を数
多く用いる必要があり、丑だ、空気、水、油などの熱媒
体を流すために、かなり多くの電力全消費し、このため
積層形燃料電池の効率が低くなるなどの欠点があった。
This is done by using a heat medium such as water or oil. FIG. Air flows from the outside through the bottom of the pressure vessel (8) and flows into the pressure vessel (VC) from around the four laminates (14) to the cooling plate (3).
) VC flows into the flow path as shown by the arrow in the figure. Next, AA
When the pond is cooled and becomes high temperature, four rams Iζ pass through the entire center of the body (4) and reach the low B1 of the pressure vessel (8) and flow out to the outside MB. Since the layered fuel cell has a 4V4 structure as described above, the cooling plate (3
), cooling pipes, and other parts that are not directly related to power generation, and to flow heat media such as air, water, and oil, a considerable amount of power is consumed, and for this reason, laminated type There were drawbacks such as lower fuel cell efficiency.

これらの欠点げ゛電極の面積が比較的大きく、このため
反応ガスによる冷却だけでf′i醒池の温度全制御する
ことが難しいことに起因する。捷だ、この他にマニホー
ルド(5)を個々K11xり付ける必要があるなどの欠
点もある。
These drawbacks are due to the fact that the area of the electrode is relatively large, making it difficult to control the entire temperature of the f'i regeneration basin only by cooling with the reactant gas. In addition to this, there are also drawbacks such as the need to attach the manifold (5) to each K11x.

〔発1月の概要〕 この発明は上記のような従来のものの欠点を除去するた
めVcなさねたもので、燃料電極、電解質マドIJツク
ス、および酸化剤電極を有する単電池とガス分離板と全
交互に複数個積層し、燃料ガス流路の入口、出口がそれ
ぞれ第1.第2面に、酸化剤ガス流路の入口、出口がそ
れぞれ第3.第4面に配置されている単位積層体全複数
個備え、各単位積層体の第1〜第4面と他の単位積層体
のそねそれ第1〜第4面同志で囲まれたそれぞれ第1〜
第4流路を形成するように上記各単位積層体ゲ並設し、
上記各単位積層体に対して、第1流路から燃料ガス全供
給し、その燃料ガス流路を通って第2流路から排出し、
第3流路から酸化剤ガスを供給し、その酸化剤ガス流@
倉通って第4流路から排出するように構成することにエ
リ、上記単位積層体に積層されていた冷却板を省略する
と共に、燃料および酸化剤ガスの供給、排出用マニホー
ルドを省いた積層形燃料電池全提供すること分目的とし
ている。
[Summary published in January] This invention eliminates the drawbacks of the conventional ones as described above, and uses a unit cell having a fuel electrode, an electrolyte IJ, and an oxidizer electrode, and a gas separation plate. A plurality of them are stacked alternately, and the inlet and outlet of the fuel gas flow path are respectively the first one. On the second surface, an inlet and an outlet of the oxidizing gas flow path are provided on the third side. A plurality of unit laminates are arranged on the fourth surface, and each unit laminate is surrounded by the first to fourth surfaces of each unit laminate and the first to fourth surfaces of the other unit laminates. 1~
Each of the unit laminates is arranged in parallel to form a fourth flow path,
All of the fuel gas is supplied to each of the unit laminates from the first flow path, and the fuel gas is discharged from the second flow path through the fuel gas flow path,
Oxidant gas is supplied from the third flow path, and the oxidant gas flow @
It is advantageous to configure the structure so that it passes through the warehouse and discharges from the fourth flow path, and the stacked type eliminates the cooling plates stacked on the unit stack, as well as the manifold for supplying and discharging fuel and oxidizing gas. The aim is to provide a full range of fuel cells.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例ヶ図分もとに説明する。第2
図、第3図はこの発明の一実施例に係わる円形のガス分
離板のそれぞれ表と裏をホす平面図であり、第2図は燃
料電極側、第3図は酸化剤電極側である。図において、
(io)は反応ガス流路凹部、(11)は反応ガス流路
凸部、(I2fj外部リザーバ、(13)は隔壁の1撲
り付は部分である。なお、(11〜U)の符号は、ガス
分離板と単電池とを積層して構成する単位積層体のそれ
ぞt′1第1−第4面ケ示している。
Hereinafter, one embodiment of the present invention will be explained based on the drawings. Second
3 are plan views showing the front and back sides of a circular gas separation plate according to an embodiment of the present invention, FIG. 2 shows the fuel electrode side, and FIG. 3 shows the oxidizer electrode side. . In the figure,
(io) is the recessed part of the reaction gas flow path, (11) is the convex part of the reaction gas flow path, (I2fj external reservoir), (13) is the part of the partition wall marked with 1. Note that the numbers (11 to U) are 1A and 1B respectively show the first to fourth surfaces t'1 of a unit laminate formed by stacking gas separation plates and unit cells.

第4図にこの発明の一実施例に係わる単位積層体を示す
側116図であり、隔壁を中心にして見た単位積層体の
2つの面(第1面と第4面)が衣示さハている。図にお
いて、(14)は円形の押え板、(15)げ円形の絶縁
板、(16)は円形の来電板、Oηは第2図。
FIG. 4 is a side 116 view showing a unit laminate according to an embodiment of the present invention, and the two faces (first and fourth faces) of the unit laminate seen from the partition wall are shown in the halves. ing. In the figure, (14) is a circular holding plate, (15) is a circular insulating plate, (16) is a circular power supply plate, and Oη is shown in FIG.

;P、3図に示す円形のガス分離板、θ81は円形の単
電池、(19)は隔壁、(4)はリフト用の金具である
。交互に複数個積層されたガス分離板(+71と単電池
(+8)の上下にそれぞれ集電板(161、絶縁板05
1、および押え板(+4)’(H重ね、これら積層体の
側面[4本の隔壁−を収すイリけ、リフト用金具(イ)
を有するボルトで固定することにより円柱状の単位積層
体を形成している。なお、この単位積層体の第1〜第4
の4つの側面にばそtlぞれ燃料ガス流路の入口と出口
、お工び酸化剤ガス流路の入口と出口が配置されている
P, a circular gas separation plate shown in Fig. 3, θ81 a circular cell, (19) a partition wall, and (4) a lift fitting. Current collector plates (161, insulating plates 05
1, and the holding plate (+4)' (H stacked, the sides of these laminates [to accommodate the 4 partition walls], the lift fittings (A)
A cylindrical unit laminate is formed by fixing with bolts having . Note that the first to fourth units of this unit laminate
The inlet and outlet of the fuel gas flow path and the inlet and outlet of the oxidizing gas flow path are arranged on each of the four sides.

第5図は第4図に示す単位積層体に対して供給。FIG. 5 is supplied to the unit laminate shown in FIG. 4.

排出される反応ガスの流れと隔壁の収り付けを示す説明
図であり、図において、?υは単位積層体である。また
、矢印は反応ガスの流れを示しており、酸化剤ガスの供
給、(d、)は酸化剤ガスの排出ケ示す。
It is an explanatory diagram showing the flow of the discharged reaction gas and the storage of the partition wall, and in the diagram, ? υ is a unit laminate. Further, arrows indicate the flow of the reaction gas, and (d) indicates the supply of the oxidant gas, and (d) indicates the discharge of the oxidant gas.

なお、ステンレスなどよりなる隔壁(19)はそねぞハ
絶縁性パツキンなど全介在させて単位積層体c21)の
側面に装着され、隔壁(19)同志にすり合せなどによ
り気密に接合されている。
The partition wall (19) made of stainless steel or the like is attached to the side surface of the unit laminate c21) with all insulation gaskets interposed therebetween, and is airtightly joined to the partition wall (19) by rubbing or the like. .

第6図i−を第5図に示す反応ガスの流7′1紫流路を
中心にして示す説明図であり、この図では酸化剤ガス供
給用の流路、すなわち第3流路ケ示している。図におい
ては、4つの単位積層体シDの第3而ml)同志と、こ
ねら単位積層体@Il1間に介在する隔壁(19)によ
り第3流路が構成されており、@げこの第3流路の底部
に開口する酸化剤ガスの供給口であり、矢印は第3流路
を囲む4つの単位積層体(2υに対して供給される酸化
剤ガスの流ねる方向?示す。
FIG. 6 i- is an explanatory diagram mainly showing the reaction gas flow 7'1 purple channel shown in FIG. ing. In the figure, the third flow path is constituted by the partition (19) interposed between the four unit laminates D and the partition wall (19). This is the supply port for the oxidizing gas that opens at the bottom of the third flow path, and the arrows indicate the direction in which the oxidizing gas supplied to the four unit laminates (2υ) surrounding the third flow path flows.

なお、この図では第3流路についてのみ丞したが、第1
.第2、および第4流路についても同様である。
Note that in this figure, only the third flow path is shown, but the first
.. The same applies to the second and fourth channels.

第7図は複数個の単位積層体の配置を各構成装索全符調
化して模式的に不す配置図であり、21個の各単位積層
体(211はそねそt′L第4図に示すものと同等のも
のである。図において、(ハ)は円筒状の圧力容器、(
ハ)は支柱、(ハ)はガス隔離板、(至)ぼ円筒容f?
+4 vc収めらね−た反応ガス供給、排出用の本管、
曽Vr円筒谷耐f収められた電気系配線であり、翰にこ
の例でげ予備の円筒容器となっている。また、4つの積
層体C刀と隔壁(19)とによって囲まf′また空間匠
げ(a) 、 (−b) 、 (cl 、 (d)の記
号全記入しであるが、こhは第5図で説明し7?:、よ
うに反応ガスの種類と供給、排出の別會示すものであり
、(a)は燃料ガスの供給、(b) U燃料ガスの排出
、(C)d酸化剤ガスの供給、(d) !d酸化剤ガス
の排出を示す。なお、圧力容器IA壁面に近い側では4
つの積層体Cυと隔壁(19)とによって囲まれた空間
ではなく、1・〜3つの積層体(21)と支柱(2)、
ガス隔離板(ハ)、および反応ガス本管−や電気系統本
線@全収めた円筒容器などによって囲まネタ空間を利用
して反応ガスの供給、排出に用いている。この場合、こ
れら支柱@やガス隔離板に)などは隔壁の一釉と考えら
れる。なお、反応ガスの供給口および排出口は圧力容器
(ハ)内部空間の上下どちらか一方に収り付けると、【
い。
FIG. 7 is a schematic layout diagram showing the arrangement of a plurality of unit laminates by converting each component into a full code. This is equivalent to the one shown in the figure. In the figure, (c) is a cylindrical pressure vessel, (
C) is the column, (C) is the gas separator, and (to) the cylindrical volume f?
+4 Main pipe for supplying and discharging reactant gas containing VC,
Electrical wiring is housed in a cylindrical container, and in this case it is a spare cylindrical container. In addition, the space f' surrounded by the four laminated C swords and the partition wall (19) is also filled in with the symbols (a), (-b), (cl, and (d)). This is explained in Figure 5 and shows the different types of reaction gases, supply, and discharge, as shown in Figure 7. (a) Supply of fuel gas, (b) Discharge of fuel gas, and (C) Oxidation. Supply of oxidant gas, (d) !d Indicates discharge of oxidant gas. Note that 4 on the side near the pressure vessel IA wall.
Instead of a space surrounded by one laminate Cυ and a partition wall (19), one to three laminates (21) and a support column (2),
The space surrounded by the gas separator (c) and the cylindrical container containing the reactant gas main line and electrical system main line is used for supplying and discharging the reactant gas. In this case, these struts and gas separator plates are considered to be part of the partition wall. In addition, if the reactant gas supply port and discharge port are placed either above or below the internal space of the pressure vessel (c), [
stomach.

第8図は反応ガスの供給口および排出0を圧力各船内部
空間の下面に取り付けた場合の燃料ガスの供給、排出の
経路を示す配管図である。図において、点線は燃料ガス
の供給用支管、実線は排出用支管を示す。なお、この図
では煩雑さ全避けるため燃料ガスの供給および排出用支
管のみを示したが、酸化剤ガスについても同様である。
FIG. 8 is a piping diagram showing the fuel gas supply and discharge routes when the reactant gas supply port and discharge port are attached to the lower surface of each pressure vessel interior space. In the figure, dotted lines indicate fuel gas supply branch pipes, and solid lines indicate discharge branch pipes. In this figure, only the fuel gas supply and discharge branch pipes are shown to avoid complexity, but the same applies to the oxidizing gas.

寸だ5圧力容器(ハ)内部空間の1面に収り付ける場合
も1ilJ様である。
1ilJ is also applicable when the pressure vessel (C) is housed on one side of the internal space.

第9図げ第7図および第8図の側面図であり、円筒状圧
力容器全一部切欠いて内部を示している。
FIG. 9 is a side view of FIGS. 7 and 8, with the entire cylindrical pressure vessel partially cut away to show the inside.

図において、(4)は第8図に示す反応ガス支管の収納
部分、−は円筒容器に収めらねた電気系本線〃)と各単
位積層体I2υとの間の電気系支線や各単位積層体@I
)間の電気系支線の収納部分である。なお、第9図に示
す積層体群が1つの群゛型理となる。
In the figure, (4) is the housing part of the reactant gas branch pipe shown in Figure 8, and - is the electrical system main line housed in a cylindrical container. Body @I
) This is the storage area for the electrical system branch lines between. Incidentally, the stacked body group shown in FIG. 9 constitutes one group structure.

第10図は第9図に示す群電池全3つ連結したこの発り
1の一実施例による積層形燃料軍池を示す側面図であり
、図において、g31)は群電池、■に底)((ものJ
+(礎同定部分、(ハ)は天井部の圧力容器である。
Fig. 10 is a side view showing a stacked fuel tank according to an embodiment of this starter 1 in which all three group batteries shown in Fig. 9 are connected; in the figure, g31) is a group battery; ((Things J
+ (foundation identification part, (c) is the pressure vessel on the ceiling.

反応カス系の配管げ底部り脅で外部と連結され、各群電
池C31)間は反応ガス本管(イ)で連結さねていZl
The bottom of the reaction waste system piping is connected to the outside, and each group of batteries C31) is connected with the reaction gas main pipe (A).
.

−手tこ、同様に、電気系配線も底部G33で外部と連
結さね、各群砺゛池り31)間は電気系本線(イ)で連
結さねている。
-Similarly, the electrical system wiring is also connected to the outside at the bottom G33, and the electrical system main line (A) is used to connect each group of cables 31).

なお、第2図、第3図で示したガス分離板(171の1
19径を、例えば仮りに30cmとすると唯電池(18
)の有効面i*ニ約500cm2となるが、1cm2当
たりの出力會仮り[0,15wとすると単電池(18)
当たり75wの出力となる。したがって、単電池(18
) ? 100セル積層して単位、41層体(21)を
構成した場合にけ単位積層体C21)当たり’7.5k
Wの出力、また21個の単位積層体12’llよりなる
群電池(1111でげ157.5kwの出力、さらに第
1O図π示すように3つの群′電池c311連結した場
合VCは4701(Wの出力となる。また、このとき第
10図に示f]上方芥器(ハ)の直径は2.5m、高さ
げ約4.5mとなる。
In addition, the gas separation plate (171-1) shown in FIGS. 2 and 3
For example, if the diameter of 19 is 30 cm, only the battery (18
) is approximately 500 cm2, but the output per cm2 is [0.15W, a cell (18)
The output is 75W per unit. Therefore, a cell (18
)? When 100 cells are stacked to form a unit of 41 layers (21), 7.5k per unit layer C21)
In addition, when the output of the group battery (1111) consisting of 21 unit laminates 12'll is 157.5 kW, and when three group batteries (c311) are connected as shown in Figure 1O, the VC is 4701 (W At this time, the diameter of the upper waste bin (c) shown in FIG. 10 will be 2.5 m and the height will be approximately 4.5 m.

捷7こ、第2図、第3図に示すようにガス分離板(17
1円形にしたのにr′市電池有効面積を大きく取るのに
有利なためである。捷だ、その直径は50cmを超える
と反応ガスたけによるガス冷却では電池の温度制御が困
難VCなり、10cm未満πなると単位積層体(2η当
たりの出力が低下するため圧力容器@に収める単位積層
体C2])の数全多くする必要がある。このため部品点
数が増加し、コストも高いものとなる。したがって、冷
却効果、i#電池(18)の作成や組立て、単位積層体
C21)の収り付け、コスト、および発電規模など全総
合]〜て判断すると、ガス分離板(171の直径は3O
CmrIiJ後が最も好ましいものと思われる。なお、
nt簿する単電池(18)のaけ任怠であるが、100
セル程度が収り扱い上好ましい。
7. As shown in Figures 2 and 3, the gas separation plate (17
This is because it is advantageous to increase the effective area of the r' city battery even though it is made into a single circle. However, if the diameter exceeds 50 cm, it will be difficult to control the temperature of the battery with gas cooling using only the reactant gas, and if the diameter is less than 10 cm, the unit laminate (the output per 2η will decrease, so the unit laminate will be placed in a pressure vessel). C2]) must be completely increased. This increases the number of parts and increases costs. Therefore, judging from the overall consideration of cooling effect, preparation and assembly of i# battery (18), storage of unit laminate C21), cost, and power generation scale, the diameter of gas separation plate (171) is 3O
After CmrIiJ appears to be the most preferred. In addition,
Although it is neglect of the cell battery (18) that counts 100
A cell size is preferable for handling purposes.

次に組立方法について説明する。単電池(18)および
カス分離板0nTl−1交互に積みdfね、その上下に
それぞれ集電板(161、絶縁板(15)を取り付け、
第4図に示すように2枚の押え板(14(の間に入ね、
金員π工って上下間を固定する。さらに、4ケ所に隔壁
(19)ケ装置し、円柱形の単位積層体Ge1)が完成
する。このようにして完成しtc21個の単位積層体3
υ17t、リフト用金具−を用いて第11図、第32図
に示すように群電池6Bに組み込まねる。第11図およ
び第12図げ第4図に示す単位積層体のそれぞれ据付完
了時の状態お工び据付中間状態を示す説明図である。図
vcおいて、(ロ)は反応ガスの供給口および排出口で
あり、この図では燃料ガスの供給口お工び(非出〔1全
示している。(至)げ′電気系配線部分、G119 u
押え板(14)のテーノ(部分である。この押え板(1
4)のテーパ部分□□□全に、しってガスのシール性が
保たれる。電気系配線部分cf9は単位4*Wr休c2
刀の集電板(1φと連結されており、をらに電気系支線
、電気系本線(ロ)ケ経て外部へ′醒カケ収り出すよう
匠なっている。
Next, the assembly method will be explained. Single cells (18) and waste separation plates 0nTl-1 are stacked alternately df, and a current collector plate (161) and an insulating plate (15) are attached above and below, respectively.
As shown in Figure 4, insert the two presser plates (14)
Fix the top and bottom using metal piping. Furthermore, partition walls (19) are installed at four locations, and a cylindrical unit laminate Ge1) is completed. In this way, tc21 unit laminates 3 are completed.
υ17t and lift fittings are used to assemble it into the battery group 6B as shown in FIGS. 11 and 32. 11 and 12 are explanatory diagrams showing the unit laminate shown in FIG. 4 in a state at the time of completion of installation, and in an intermediate state during installation. In Figure VC, (B) is the supply port and discharge port for the reactant gas, and in this figure, the fuel gas supply port (not shown) is fully shown. , G119 u
This is the teno (part) of the presser plate (14).
4) Gas sealing properties are maintained throughout the tapered portion □□□. Electrical wiring part cf9 is unit 4*Wr rest c2
It is connected to the sword's current collector plate (1φ), and is designed to collect the current to the outside via the electrical branch line and main electrical line.

以上のように構成さねたものにおいて汀、単電池(1□
□□の面積が・小さく、反応ガスによる冷却だけで各I
t−L位頃層体c層内)の温度制御が可能なため冷却板
(3)が不要となり、1だ、単位積層体Qυと隔壁(1
9)とで囲まれた空間、すなわち第1−第4流路が反応
ガスのマニホールドとしての役割を果たすため、従来の
ように各1i位積層体e刀へのマニホールド(5)の収
り付けば不要である。さらに、群電池6])単位での増
減が可能であり、必要な発電規模に応じて群電池01)
全増減して調節することが可能である。
In the structure similar to the above, the battery cell (1□
The area of □□ is small, and each I
It is possible to control the temperature of the unit laminate Qυ and the partition wall (1
9), that is, the first to fourth channels serve as a manifold for the reactant gas, so the manifold (5) must be placed in each laminated body as in the past. It is not necessary. Furthermore, it is possible to increase or decrease the number of battery packs (6)), depending on the required power generation scale.
It is possible to adjust the total amount by increasing or decreasing it.

なお、上記実施例でげ電池の有効面積の観点から単電池
(181やガス分離板(171を円形に形成した場合に
ついて示したが、だ円形や多角形であっても上記実施例
と同様の効果が得らねる。また、圧力容器−へ収める単
位積層体tZUの数も、単重油州の有効面積や発電規模
に応じて決めれは工く、L記実施例のように必ずしも2
1個である必要はない。
In addition, from the viewpoint of the effective area of the battery in the above example, the case where the unit cell (181) and the gas separation plate (171) were formed in a circular shape was shown, but even if they are oval or polygonal, the same effect as in the above example will be applied. In addition, the number of unit laminates tZU to be housed in the pressure vessel is determined depending on the effective area of the single-layer oil tank and the scale of power generation.
It doesn't have to be just one.

さらに、各単位積層体t2N)間に設けた隔壁(+9)
Kついても必ずしも必要で灯なく、単r1(池(181
やガス分離板θ′71の形状を工夫して、単位積層体e
υ同志を面接気密に接合することも可能である。
Furthermore, a partition wall (+9) provided between each unit laminate (t2N)
Even if K is attached, it is not necessary and there is no light, single r1 (ike (181
By devising the shape of the gas separation plate θ'71, the unit laminate e
It is also possible to join υ comrades in an airtight manner.

また、上記実施例では反応ガス流路(lit) 、 (
Illをカス分離板(171に設けた場合πついて示し
たが、単電池(i81に設けた場合についても上記実施
例と同様の効果7f奏する。
In addition, in the above embodiment, the reaction gas flow path (lit), (
When Ill is provided on the waste separation plate (171), π is shown, but when it is provided on the unit cell (i81), the same effect 7f as in the above embodiment is obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれは、燃料電極。 As described above, the present invention provides a fuel electrode.

電解質マトリックス、および酸化剤゛小極を有する1i
1−電池とガス分離板とを交互VC複数個積層し、燃料
ガスθ1を路の入口、出口がそれそハ第1.第2面に、
酸化剤ガス流路の人口、出口がそねそれ第3゜第41i
Ji Iて配置i’、/さノ1ている141位積屠体を
複数個備え、各11重積層体の第1〜弔4而と他の11
重積層体のぞ1それ第]〜第4面同志で囲まねたそねぞ
n第1〜第4流路全形成するように上記各単位積層体4
・並設(−1上記各fJL位積層体に対して、第]流路
から燃料ガスケ供給し、その燃料ガス流路を通って;P
、に流路から[jト出し、第3流路から酸化剤ガースを
供給し、その酸化剤ガス流路全曲って第4流路から排出
−4−るように構成し1こので、上記m屠体層内に積層
さねている冷却板を省略すると共に、燃料および酸化剤
ガスの供給、排出用マニホールドを雀いた+7を層形・
燃料電池が得らねる効果がある。
1i with an electrolyte matrix and an oxidant micropole
1- A plurality of batteries and gas separation plates are stacked alternately in VC, and the entrance and exit of the passage for fuel gas θ1 are the first and second. On the second page,
The population and outlet of the oxidizing gas flow path are 3rd and 41i.
It is equipped with a plurality of 141 stacked carcasses arranged in a row i', / 1, and the 1st to 4th bodies of each 11-layer stack and the other 11
Each of the unit laminates 4 is surrounded by the first to fourth surfaces of the stacked laminate so that the first to fourth channels are all formed.
・Supply fuel gas from the parallel (-1) flow path to each of the above fJL stacked bodies, and pass through the fuel gas flow path; P
, the oxidant gas is supplied from the third flow path, and the oxidant gas flow path is completely bent and discharged from the fourth flow path. In addition to omitting the cooling plate stacked in the carcass layer, +7 is a layered structure with a manifold for supplying and discharging fuel and oxidant gas.
It has an effect that fuel cells cannot provide.

4、 図面の(資)単な説明 へ11図は従来の積層形燃料重油の一部切欠し1て内部
を小す胴祝図、第2図、第3図げこの発り4の−実施例
vr係わるガス分離板のそねぞれ表、裏をボ丁平向図、
第4図ぼこの発明の−゛実施例に係わる単位積層体の隔
壁を中心にして見た2つの而が衣示さねている側面図、
第5図は第4図VC示す(11重積層体に対して供給、
排出される反応ガスの流ねと隔壁の収り付は全示1−説
川図、第6図は、145図に示す反応ガスの流f′1全
1ケを中心πして示す税目11図、第7図は俵数個の単
位積層体の配置ケ各構成要素を管制化して模式的匠示す
配置図、第8図は反応ガスの供給口および排出11全圧
力容d÷内部空間の下回に収り付番プだ場合の燃料ガス
の供給。
4. For a simple explanation of the drawings, Figure 11 is a partially cutaway diagram of a conventional stacked fuel oil to reduce the internal dimensions, Figures 2 and 3 illustrate the implementation of Part 4. Example: Bottom view of the front and back of the gas separation plate related to VR,
FIG. 4 is a side view of the unit laminate according to the embodiment of the present invention, viewed from the center of the partition wall, with two objects not shown;
Figure 5 shows Figure 4 VC (supplied for 11 stacks,
The flow of the discharged reaction gas and the storage of the partition wall are shown in Figure 1-1. Figure 7 is a layout diagram schematically showing the arrangement of a unit stack of several bales with each component controlled, and Figure 8 is a layout diagram of the reactant gas supply port and discharge 11 total pressure volume d ÷ internal space. Supply of fuel gas when the number is below.

排出の経1俗を示す配管図、第9図げ第7図24しび第
8図に示す群電池び)一部明欠いて内H1り9−小すこ
の発明の一実施例πなる側a丁1図、第10Na第9図
に承す群電池な・3つ連結し1ここの発、11(の−実
施例による積層形燃料′重油を示”仁側面図、@11図
A piping diagram showing the general flow of discharge, Fig. 9, Fig. 7, 24, and a group battery shown in Fig. 8). Fig. 1, Fig. 10, Fig. 9. A side view showing a stacked type fuel 'heavy oil' according to an embodiment of the stacked type fuel 'heavy oil', in which three connected batteries are connected.

第12図り、第4図に示す単位積層体のそねそね据付児
了時の状態および据付中間状態を承す説1Jlj図であ
る。
Fig. 12 is a diagram 1Jlj showing the state of the unit laminate shown in Fig. 12 and Fig. 4 at the time of completion of installation and in the intermediate state of installation.

因において、ill 、 Qs+灯単軍池、+21 、
 illにガス分離板、(3)は冷却板、+41.12
υげ単位積層体、(6)げ反応ガスのマニホールド、(
8)、(ハ)灯13−1力容圏、(101。
In this case, ill, Qs + light single gun pond, +21,
ill has a gas separation plate, (3) has a cooling plate, +41.12
υ unit laminate, (6) reaction gas manifold, (
8), (c) light 13-1 power sphere, (101.

(11)は反応ガス流路、(19)は隔壁、C(υは群
電池、(I)〜(IV) rt E11位4’+¥層体
シυのそれそね第1−第4面、(a) U、浴料ガスの
供給、(b) ij燃料ガスの排出、(c)は酸化剤ガ
スの供給、((1)げ酸化剤ガスの排出を示す。ま7乙
、矢印は反厖ガスおよび冷却用空気の流れる方向をボー
J−。
(11) is the reaction gas flow path, (19) is the partition wall, C (υ is the group battery, (I) to (IV) rt E11 position 4' + \ Layer body SH υ's 1st to 4th surfaces. , (a) U, supply of bath gas, (b) discharge of fuel gas, (c) supply of oxidant gas, ((1) discharge of oxidant gas. Determine the flow direction of the reflux gas and cooling air.

なお、図中、同−符吋は同一または相当部分會示すもの
とする。
In addition, in the figures, the same numbers indicate the same or corresponding parts.

代理人 ノ(岩 増 雄 第1図 第2図 1■ 第73図 e(: 、1図 第す図 第6図 第7図 第と3図 第1)図 第10図 第11図 3614 第12図 冨ZA EZるAgent No (Masuo Iwa) Figure 1 Figure 2 1■ Figure 73 e(:, Figure 1 Figure Figure 6 Figure 7 Figures 3 and 3 1st) Figure Figure 10 Figure 11 3614 Figure 12 Tomi ZA EZru

Claims (1)

【特許請求の範囲】 flf 燃料゛市極、電解質マトリックス、および竣化
削′市極分有する単゛磁池とガス分離板とを交互に複数
個積層し、燃料ガス流路の入口、出口がそれぞれ第1.
第2面に、酸化剤ガス流路の入口、出口が−4:ねそれ
第3.第4面に配置されている単位積層体(Il−複数
個備え、各単位積層体の第1〜m4而と他のN!位M層
体のそねぞれ第1〜第4面同志で四重t′したそねぞね
第1〜第4流路を形成するようVcL記各単位積層体を
並役し、上記各単位積層体に対して、第1流路から燃料
ガスを供給し、その燃料ガス流路を通って第2流路η・
ら排出し、第3流路から酸化剤ガスケ供給し、その酸化
剤ガス流路を通って第4流路から排出するように構成し
1こ積層形燃料電池。 (2) 特許請求の範囲第1項記載のものにおいて、第
1−第4流路げ各単位積層体の面と隔壁により構成さn
5ていることを特徴とする積層形燃料車池。
[Claims] flf A plurality of single magnetic ponds and gas separation plates each having a fuel city pole, an electrolyte matrix, and a final cut city pole are alternately stacked, and the inlet and outlet of the fuel gas flow path are 1st each.
The inlet and outlet of the oxidant gas flow path are located on the second surface. The unit laminates arranged on the 4th surface (Il - multiple pieces, the 1st to m4 of each unit laminate and the other N! M laminates are arranged on the 1st to 4th surfaces, respectively) The VcL unit laminates are arranged side by side to form quadruple t'-shaped first to fourth channels, and fuel gas is supplied to each of the unit laminates from the first channel. , through the fuel gas flow path to the second flow path η・
The fuel cell is configured such that the oxidizing gas is discharged from the oxidizing gas, the oxidizing gas is supplied from the third flow path, and the oxidizing gas is discharged from the fourth flow path through the oxidizing gas flow path. (2) In the thing described in claim 1, the first to fourth flow paths are formed by the surfaces of each unit laminate and the partition wall.
5. A stacked fuel vehicle pond characterized by:
JP58151905A 1983-08-18 1983-08-18 Stacked fuel cell Pending JPS6044965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58151905A JPS6044965A (en) 1983-08-18 1983-08-18 Stacked fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151905A JPS6044965A (en) 1983-08-18 1983-08-18 Stacked fuel cell

Publications (1)

Publication Number Publication Date
JPS6044965A true JPS6044965A (en) 1985-03-11

Family

ID=15528752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151905A Pending JPS6044965A (en) 1983-08-18 1983-08-18 Stacked fuel cell

Country Status (1)

Country Link
JP (1) JPS6044965A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161667A (en) * 1985-01-11 1986-07-22 Hitachi Ltd Fuel cell
JPS61216268A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Fuel cell
JPS62115673A (en) * 1985-11-13 1987-05-27 Toshiba Corp Fuel cell
JPS62165874A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Fuel cell stack
JP2014041751A (en) * 2012-08-22 2014-03-06 Mitsubishi Heavy Ind Ltd Fuel battery module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161667A (en) * 1985-01-11 1986-07-22 Hitachi Ltd Fuel cell
JPH0550823B2 (en) * 1985-01-11 1993-07-30 Hitachi Ltd
JPS61216268A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Fuel cell
JPH0550824B2 (en) * 1985-03-22 1993-07-30 Hitachi Ltd
JPS62115673A (en) * 1985-11-13 1987-05-27 Toshiba Corp Fuel cell
JPS62165874A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Fuel cell stack
JP2014041751A (en) * 2012-08-22 2014-03-06 Mitsubishi Heavy Ind Ltd Fuel battery module

Similar Documents

Publication Publication Date Title
TW456062B (en) Cooling structure of battery
US4336122A (en) Electrolysis apparatus
AU2011306433B2 (en) Lithium accumulator
US20040121205A1 (en) Fuel cell end unit with integrated heat exchanger
JPH0158629B2 (en)
JPH0479477B2 (en)
JP2002367637A (en) Piping structure of fuel cell
JPS60235365A (en) Structure of plural cell-stack fuel cell
US7537849B2 (en) Solid-oxide fuel cell assembly having a convectively vented structural enclosure
JPS6044965A (en) Stacked fuel cell
JPS58161272A (en) Stacked fuel cell
CN216648466U (en) Lithium battery system
EP0045583B1 (en) Electrolysis apparatus
JPS62108465A (en) Electrolyte circulation type secondary cell associated with leak current preventer
JPS6093764A (en) Fuel cell power generating system
CN218242067U (en) Battery module
JPH0548363Y2 (en)
CN216054847U (en) Battery pack and vehicle
CN220138354U (en) Heat recovery device and system for hydrogen fuel cell system
JPS63236273A (en) Fused carbonate type fuel cell stack
JPS6266574A (en) Air cooling type fuel cell
JPH1154140A (en) Fuel cell power generating device
JPS61185871A (en) Air-cooled type fuel cell
JPH06333591A (en) High voltage fuel cell system
JPH05166550A (en) Electrolyte circulation type layered secondary battery