JPS6044724B2 - Method for manufacturing cantilevers in record playback cartridges - Google Patents

Method for manufacturing cantilevers in record playback cartridges

Info

Publication number
JPS6044724B2
JPS6044724B2 JP2989778A JP2989778A JPS6044724B2 JP S6044724 B2 JPS6044724 B2 JP S6044724B2 JP 2989778 A JP2989778 A JP 2989778A JP 2989778 A JP2989778 A JP 2989778A JP S6044724 B2 JPS6044724 B2 JP S6044724B2
Authority
JP
Japan
Prior art keywords
cantilever
lignin
manufacturing
powder
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2989778A
Other languages
Japanese (ja)
Other versions
JPS54123005A (en
Inventor
庸弘 塚越
照夫 当摩
伸一 横関
俊和 吉野
康之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2989778A priority Critical patent/JPS6044724B2/en
Publication of JPS54123005A publication Critical patent/JPS54123005A/en
Publication of JPS6044724B2 publication Critical patent/JPS6044724B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、セルロースとともに木材の主要成分で自然
界にもつとも豊富に存在する物質であるリグリンとセラ
ミックス粉末、ガラス粉末、炭素粉末(カーボンブラッ
ク、黒鉛粉末)等の無機粉末とを混合し、これをカンチ
レバーとなるべき、棒状、パイプ形状等の所望な状に成
形し、加熱して炭化したレコード再生用カートリッジに
おけるカンチレバーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention combines ligrin, which is a major component of wood along with cellulose and is abundantly present in nature, and inorganic powders such as ceramic powder, glass powder, and carbon powder (carbon black, graphite powder). The present invention relates to a method for manufacturing a cantilever in a record reproducing cartridge, in which the mixture is mixed, formed into a desired shape such as a rod or pipe to become a cantilever, and heated and carbonized.

レコード再生用カートリッジのカンチレバーとして望
まれることは、再生周波数帯域を高音域まで広げるため
にヤング率Eが大きく分割振動が生じないこと、針先等
価質量を小さくするために材加工も容易で製品として均
一且つ構造堅牢に仕上がることが要求される。
What is desired for a cantilever for a record playback cartridge is that the Young's modulus E is large enough to prevent splitting vibrations in order to extend the playback frequency band to high frequencies, and that the material can be easily processed to reduce the equivalent mass of the needle tip. A uniform and structurally robust finish is required.

ところで従来斯種カンチレバーとして用いられてきた
材料としてはアルミニウムやチタン等が用いられてきた
が、これらの材料は加工性に優れ、しかも密度ρがアル
ミニウムは2.69(yld)、チタンは4.54(y
Id)と比較的小さいがヤング率Eが小さく高性能なり
ンチレバーを製作することは難しかつた。
By the way, aluminum, titanium, etc. have been used as materials for this type of cantilever in the past, but these materials have excellent workability and have a density ρ of 2.69 (yld) for aluminum and 4.69 (yld) for titanium. 54(y
Id) is relatively small, but the Young's modulus E is small, making it difficult to produce a high-performance cantilever.

他面ヤング率Eが大きく、密度ρの小さな材料としては
ベリリウムがその代表的なものだが、ベリリウムはその
加工性において機械的にもろく、従つて細管への加工が
非常に難しいと共に毒性を発揮するので製造段階での予
防対策に費用がかかり、製品コストが高くなる欠点があ
つた。 そこで、本発明者は、軽量で剛性が大きく、か
つヤング率Eと密度ρとの比E/ρが大きい材料として
炭素に注目し、先に合成樹脂を炭化又は黒鉛化したカン
チレバーを提案したが、合成樹脂の炭化工程及び黒鉛化
工程において素材の収縮変形が甚だしく、亀裂などを生
じる不都合が確認された。
On the other hand, beryllium is a typical material with a large Young's modulus E and a small density ρ, but beryllium is mechanically brittle and therefore extremely difficult to process into thin tubes and is toxic. Therefore, preventive measures at the manufacturing stage are expensive, resulting in high product costs. Therefore, the present inventor focused on carbon as a material that is lightweight, has high rigidity, and has a large ratio E/ρ between Young's modulus E and density ρ, and previously proposed a cantilever made of carbonized or graphitized synthetic resin. It has been confirmed that in the carbonization and graphitization processes of synthetic resins, the material undergoes severe shrinkage and deformation, causing cracks and other problems.

すなわち、リグニンと無機粉末とを混合し、カンチレバ
一となるべき所望の形状に成形した後、この成形物を炭
化することにより上記の特性を有したカンチレバ一を得
るものである。
That is, lignin and inorganic powder are mixed, molded into a desired shape to form a cantilever, and then this molded product is carbonized to obtain a cantilever having the above characteristics.

リグニンはセルロースともに木材の主要成分で自然界に
もつとも豊富に存在する物質の一つである。
Lignin, along with cellulose, is a major component of wood and is one of the substances that exist abundantly in nature.

リグニンの化学構造は明らかでないが、その構造単位は
芳香環に水酸基、メトキシル基などの置換基を有するプ
ロピルベンゼン誘導体である。リグニンを植物体から分
離するには種々の方法が知られているが、木材をパルプ
化する際に木材チツプを高温高圧で蒸煮する時、木材を
力性ソーダと硫化ソーダで170′Cに加熱するクラフ
ト法(KP法)と重亜硫酸塩(カルシウムまたはナトリ
ウム塩)を用いるサルフアイド法(SP法)との二つに
大別される。本発明に供せられるリグニンは、その製造
方法に関係なく、KP法、SP法などいかなる方法で得
られるものであつてもよい。
Although the chemical structure of lignin is not clear, its structural unit is a propylbenzene derivative having a substituent such as a hydroxyl group or a methoxyl group on an aromatic ring. Various methods are known for separating lignin from plants, but when wood chips are steamed at high temperature and pressure when pulping wood, wood is heated to 170'C with sodium hydroxide and sodium sulfide. The Kraft method (KP method) uses bisulfite (calcium or sodium salt), and the sulfide method (SP method) uses bisulfite (calcium or sodium salt). The lignin used in the present invention may be obtained by any method such as the KP method or the SP method, regardless of the method for producing it.

また炭素質含有物を炭化する際、一般に大きな変形がと
もない、炭化した後に得られる成形物が構造上、均一性
を必要とする場合、また複雑な形状をなしている場合に
は、不都合な点が多い。
Additionally, when carbonizing a carbonaceous material, large deformations are generally involved, which is a disadvantage if the molded product obtained after carbonization requires structural uniformity or has a complicated shape. There are many.

そこで、リグニンも単体で使用した場合、カンチレバ一
の形状に成形して炭化する際に変形を生じやくなるので
、発明者は固体粉末を添加することを考えた。ところで
リグニンを炭化するに際し、1000′C以上の温度を
経験するので、その温度でも容易に変形、溶融しないこ
とが必要であり、セラミツクス粉末、ガラス粉末、炭素
粉末などの無機粉末が導き出された。そしてこれら無機
粉末で最も好ましいものは黒鉛粉末(鱗片状黒鉛)であ
り、黒鉛粉末を添加することによつて、(1)予備焼成
および炭化時に生する収縮や変形を防止することができ
ること、(2)リグニンと黒鉛粉末の混練物をカンチレ
バ一の形状に成形するに際し、黒鉛粉末が配向し、弾性
率、機械的強度を改善することができること、(3)炭
化の際に黒鉛粉末が結晶核となり、結晶性の良い炭素が
得られ、炭化後の弾性率、機械的強度を大巾に向上でき
ること、(4)黒鉛化(2000℃以上)までの処理が
できること、等の効果が期待できる。本発明のカンチレ
バ一製造工程を図に示すが、以下、図に示した工程を説
明する。
Therefore, when lignin is used alone, it tends to be deformed when it is formed into the shape of a cantilever and carbonized, so the inventor considered adding solid powder. By the way, when carbonizing lignin, temperatures of 1000'C or more are experienced, so it is necessary that the process does not easily deform or melt even at that temperature, and inorganic powders such as ceramic powder, glass powder, and carbon powder have been derived. The most preferred of these inorganic powders is graphite powder (scaly graphite), and by adding graphite powder, (1) shrinkage and deformation that occur during pre-firing and carbonization can be prevented; 2) When forming a mixture of lignin and graphite powder into the shape of a cantilever, the graphite powder is oriented, improving the elastic modulus and mechanical strength; (3) During carbonization, the graphite powder forms crystal nuclei. Therefore, effects such as the ability to obtain carbon with good crystallinity, the ability to greatly improve the elastic modulus and mechanical strength after carbonization, and (4) the ability to process up to graphitization (at 2000° C. or higher) can be expected. The cantilever manufacturing process of the present invention is shown in the figure, and the process shown in the figure will be explained below.

混練工程 リグニンに粒径0.1〜10μmの無機粉末を加え、混
合して二ーダ一またはローラで混練する。
Kneading process Inorganic powder with a particle size of 0.1 to 10 μm is added to lignin, mixed and kneaded using a roller or roller.

この際、リグニンと無機粉末との混合されたものに、カ
ルボキメチルセルロース、カルボキメチルセルロースナ
トリウム(以下、両者共にCMCとする)、ポリビニー
ルアルコール(以下、PVAとする)のうち一種類以上
を添加することが望ましい。なお、添加物として、10
Wt%以下の塩化アルミを同時に混練すると、炭化の際
によい結晶性の炭化物が得られる。リグニンには水に溶
解するものと、アルカリ溶液に溶解するものとがあり、
どちらでも使用できるが、水溶性のものを使用する場合
は、混練の際に水を加え、アルカリ溶液に解けるものを
使用する場合には、水に水酸化ナトリウムを添加したも
のを加え、十分に混練する。リグニンと無機粉末との混
合物は、無機粉末10〜90Wt%の範囲になるが、3
0〜冗M%で良い結果が得られ、また無機粉末の粒径は
カンチレバ一の形状、大きさによつて異るが一般には小
さい程よく、0.1〜数μm以下が望ましい。なお、無
機粉末の添加量が10%以下の場合には、先に説明した
効果がほとんどなくなり、また90%以上では炭化後の
機械的強度が低下する。またCMCおよびPVAを添加
する時は、リグニンとの重量比で、5〜60%程度が適
当であり、CMCおよびPVAを添加することにより、
混練物゜を次の工程でカンチレバ一に成形する際に成形
が容易となり、しかも成形された成形物の機械的強度が
高くなる利点を有する。
At this time, one or more of carboxymethylcellulose, sodium carboxymethylcellulose (hereinafter both referred to as CMC), and polyvinyl alcohol (hereinafter referred to as PVA) is added to the mixture of lignin and inorganic powder. is desirable. In addition, as an additive, 10
If aluminum chloride is kneaded at the same time in an amount of Wt% or less, good crystalline carbide can be obtained during carbonization. Some lignins are soluble in water and others are soluble in alkaline solutions.
Either can be used, but if you are using a water-soluble product, add water during kneading, and if you are using a product that is soluble in an alkaline solution, add sodium hydroxide to water and mix thoroughly. Knead. The mixture of lignin and inorganic powder ranges from 10 to 90 wt% inorganic powder, but 3
Good results can be obtained with 0 to M%, and the particle size of the inorganic powder varies depending on the shape and size of the cantilever, but in general, the smaller the better, and preferably 0.1 to several μm or less. It should be noted that if the amount of inorganic powder added is less than 10%, the effect described above is almost lost, and if it is more than 90%, the mechanical strength after carbonization decreases. Also, when adding CMC and PVA, the appropriate weight ratio to lignin is about 5 to 60%, and by adding CMC and PVA,
This has the advantage that the kneaded material can be easily formed into a cantilever in the next step, and the mechanical strength of the formed product is increased.

さらに水およびアルカリ溶液の添加量は、成形後の乾燥
工程で収縮が大きくなるので、振動板の成形が可能な範
囲で少なくすることが望ましい。成形工程リグニンと無
機粉末とが混合され混練されたものは次に成形工程に入
る。
Furthermore, since shrinkage increases in the drying process after molding, it is desirable to reduce the amount of water and alkaline solution to the extent that the diaphragm can be molded. Molding process The mixed and kneaded lignin and inorganic powder then enters the molding process.

この成形工程は、前記した混練工程を経たものを、カン
チレバ一の所望”形状、たとえば棒状、パイプ形状等に
成形するものである。この成形工程は、前工程で得られ
た混練物をカンチレバ一形状になされたプレス型に挟持
して加圧成形することが望ましい。
In this forming step, the kneaded material obtained in the previous step is formed into the desired shape of the cantilever, such as a rod shape or a pipe shape. It is desirable to press and mold the material by holding it in a shaped press die.

なお、成形工程において、成形をプレス型によつておこ
なう以外に、押出成形を用いる方法でもよい。
In addition, in the molding process, instead of molding using a press mold, extrusion molding may be used.

またスタイラス取付用穴を成形時に考慮しておくことが
好ましい。乾燥工程 この工程は、カンチレバ一形状に成形された成形物を乾
燥させる工程であり、この際、カンチレバ一の形状を保
つため、金網またはパンチングメタル等をカンチレバ一
の形状に成形した治具に乗せて乾燥させる。
It is also preferable to take into consideration the stylus attachment hole when forming the stylus attachment hole. Drying process This process is the process of drying the molded product formed into the shape of the cantilever. At this time, in order to maintain the shape of the cantilever, a wire mesh or punching metal is placed on a jig formed into the shape of the cantilever. and dry.

乾燥には90゜Cの熱風を用いるのが良いが、オーブン
等ても乾燥可能であり、乾燥時間は2(自)間以上行う
必要があり、好ましくは100時間位乾燥させる。
It is preferable to use hot air at 90°C for drying, but it is also possible to dry using an oven or the like, and the drying time must be at least 2 hours, preferably about 100 hours.

炭化工程 乾燥工程を経た成形物は、窒素またはアルゴンガス等の
非酸化性雰囲気中て1000〜1500′Cまで加熱し
て炭化を行う。
Carbonization Step The molded product that has undergone the drying step is carbonized by heating to 1000 to 1500'C in a non-oxidizing atmosphere such as nitrogen or argon gas.

この炭化工程は初期の昇温速度を遅くすることが必要で
ある。すなわち、400℃まては1〜20′C/時間の
昇温速度て、また400゜C以上は10〜100′C/
時間の昇温速度で行うのが好ましい。このことは、初期
の昇温速度を速くすると、組織の荒い炭素材料となりヤ
ング率、機械的強度ともに低下するからであり、また4
00′C以上では経済性を考慮し適当に速い速度で行う
。炭化の際に成形物が変形を生ずるので、炭素または高
融点金属等から成り、カンチレバ一の形状に成形した治
具に乗せるかまたは挟持して、炭化を行うことが望まし
い。なお、炭化工程に入る前に、乾燥工程で得られた成
形物を空気中などの酸化性雰囲気中で300゜Cまで5
〜40℃/時間の昇温速度て加熱し、300℃て5〜(
至)時間保持することにより、炭化後の特性が改善され
る。
In this carbonization step, it is necessary to slow down the initial temperature increase rate. That is, the heating rate is 1 to 20'C/hour up to 400°C, and 10 to 100'C/hour above 400°C.
It is preferable to carry out the heating at a heating rate of 1 hour. This is because if the initial heating rate is increased, the carbon material will have a rough structure and both Young's modulus and mechanical strength will decrease.
When the temperature is 00'C or higher, it is carried out at a suitably fast speed in consideration of economic efficiency. Since the molded product is deformed during carbonization, it is preferable to carry out carbonization by placing or holding the molded product on a jig formed into the shape of a cantilever and made of carbon or a high-melting point metal. In addition, before starting the carbonization process, the molded product obtained in the drying process is heated to 300°C in an oxidizing atmosphere such as air.
Heating at a heating rate of ~40°C/hour, heating at 300°C for 5~(
) The properties after carbonization are improved by holding it for a long time.

以上本発明の工程を詳細に説明したが、以下本発明の一
実施例を説明する。黒鉛粉末45Wt.%、塩化アルミ
5Wt%、CMc2OWt%、リグニン30wt%の配
合比を有する混合物を二ーダ一にて混練し、棒状に成形
し、該成形物を空気中にて100℃の温度で20時間乾
燥し、かかる後に窒素ガス中で1250℃まで加熱し、
炭化する。
The steps of the present invention have been described in detail above, and one embodiment of the present invention will be described below. Graphite powder 45Wt. %, aluminum chloride 5wt%, CMc2OWt%, and lignin 30wt% were kneaded in a kneader, molded into a rod shape, and dried in air at a temperature of 100°C for 20 hours. and then heated to 1250°C in nitrogen gas,
Carbonize.

このようにして得られたカンチレバ一は、ヤング率18
000k91?2、密度1.6q1c!lの物性を有す
るものとなつた。
The cantilever thus obtained has a Young's modulus of 18
000k91?2, density 1.6q1c! It has physical properties of l.

この実施例による本発明のカンチレバ一と従来用いられ
てきた材料(アルミニウム、ベリリウム)によるカンチ
レバ一との物性値を下表に示す。
The physical properties of the cantilever of the present invention according to this example and the cantilever made of conventionally used materials (aluminum, beryllium) are shown in the table below.

表に示されるごとく、リグニンを使用したものは、アル
ミニウムの約4倍の比弾性率E/ρを有“し、ベリリウ
ムより多少劣る程度であるが、ベリリウムに比べ内部損
失が約1皓も大きいため、高音域の共振(高音域共振周
波数FH)のQが低く、平坦な特性となり、総合的には
ベリリウムを凌ぐ特性を得ることができる。
As shown in the table, those using lignin have a specific elastic modulus E/ρ that is about four times that of aluminum, which is slightly inferior to beryllium, but the internal loss is about 100% higher than that of beryllium. Therefore, the Q of resonance in the high frequency range (high frequency resonance frequency FH) is low, resulting in flat characteristics, and overall it is possible to obtain characteristics superior to beryllium.

以上説明したように、リグニンと無機粉末を混合し、こ
の成形物を炭化することにより比弾性率が大きく、内部
損失も大きなりンチレバ一を簡単な工程で安価に製造す
ることができる。
As explained above, by mixing lignin and inorganic powder and carbonizing the molded product, a lint lever with a large specific elastic modulus and a large internal loss can be manufactured at low cost through a simple process.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の製造方法を説明する工程図てある。 The figures are process diagrams for explaining the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 リグニンと無機粉末を混合し混練してカンチレバー
になるべき形状に成形し、該成形物を乾燥させたのち非
酸化性雰囲気中で加熱して炭化せしめたことを特徴とす
るレコード再生用カートリッジにおけるカンチレバーの
製造方法。
1. A record reproducing cartridge characterized in that lignin and inorganic powder are mixed and kneaded, molded into a shape to become a cantilever, dried, and then heated in a non-oxidizing atmosphere to carbonize it. How to make a cantilever.
JP2989778A 1978-03-17 1978-03-17 Method for manufacturing cantilevers in record playback cartridges Expired JPS6044724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2989778A JPS6044724B2 (en) 1978-03-17 1978-03-17 Method for manufacturing cantilevers in record playback cartridges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2989778A JPS6044724B2 (en) 1978-03-17 1978-03-17 Method for manufacturing cantilevers in record playback cartridges

Publications (2)

Publication Number Publication Date
JPS54123005A JPS54123005A (en) 1979-09-25
JPS6044724B2 true JPS6044724B2 (en) 1985-10-05

Family

ID=12288757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2989778A Expired JPS6044724B2 (en) 1978-03-17 1978-03-17 Method for manufacturing cantilevers in record playback cartridges

Country Status (1)

Country Link
JP (1) JPS6044724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050210A (en) * 2018-11-01 2020-05-11 현대자동차주식회사 Roof panel for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050210A (en) * 2018-11-01 2020-05-11 현대자동차주식회사 Roof panel for vehicle

Also Published As

Publication number Publication date
JPS54123005A (en) 1979-09-25

Similar Documents

Publication Publication Date Title
US4221773A (en) Method of producing a carbon diaphragm for an acoustic instrument
US20020011683A1 (en) Silicon carbide body honeycomb bodies and method of producing the same
JPS5934147B2 (en) Silicon carbide sintered ceramic body and its manufacturing method
US3671385A (en) Fibrous carbonaceous composites and method for manufacturing same
JPH09173828A (en) Production of activated carbon article and use thereof
JPS5832070A (en) Manufacture of high density silicon carbide sintered body
JPS6044724B2 (en) Method for manufacturing cantilevers in record playback cartridges
JP4273195B2 (en) Method for producing silicon carbide heat-resistant lightweight porous structure
CN103289034A (en) Transition metal compound composite lignin modified phenolic resin and preparation method thereof
US5152938A (en) Process for preparation of a wholly carbonaceous diaphragm for acoustic equipment use
JPH11147707A (en) Activated carbon honeycomb structure and its production
JPS6031003B2 (en) Manufacturing method of tone arm for record playback
JPH02271919A (en) Production of fine powder of titanium carbide
JPS6044722B2 (en) Method for manufacturing cantilevers in record playback cartridges
JPS59174510A (en) Manufacture of carbon molded body
JPS63138900A (en) Manufacture of diaphragm for carbon acoustic equipment subject to boron doping
JPS6057280B2 (en) Manufacturing method of diaphragm for audio equipment
JPS6021658B2 (en) molding material
JPS61117159A (en) Silicon carbide sintered body and manufacture
JPS6031004B2 (en) arm pipe
JPH07108035B2 (en) Manufacturing method of diaphragm for all carbonaceous audio equipment
SU794041A1 (en) Binder for carbon materials
JPS63123867A (en) Manufacture of silicon carbide formed body for sintering
JPS6044723B2 (en) Method for manufacturing cantilevers in record playback cartridges
JPS62270464A (en) Manufacture of carbon fiber reinforced carbon composite material