JPS6021658B2 - molding material - Google Patents

molding material

Info

Publication number
JPS6021658B2
JPS6021658B2 JP6395579A JP6395579A JPS6021658B2 JP S6021658 B2 JPS6021658 B2 JP S6021658B2 JP 6395579 A JP6395579 A JP 6395579A JP 6395579 A JP6395579 A JP 6395579A JP S6021658 B2 JPS6021658 B2 JP S6021658B2
Authority
JP
Japan
Prior art keywords
diaphragm
molding material
carbon
pitch
pvc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6395579A
Other languages
Japanese (ja)
Other versions
JPS5540759A (en
Inventor
庸弘 塚越
照夫 当摩
伸一 横関
俊和 吉野
康之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP6395579A priority Critical patent/JPS6021658B2/en
Publication of JPS5540759A publication Critical patent/JPS5540759A/en
Publication of JPS6021658B2 publication Critical patent/JPS6021658B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】 本発明は、ポリ塩化ビニール(以下PVCと称する)ピ
ッチと黒鉛粉末(鱗片状黒鉛)とを混合してよく混練し
て得られる成形材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molding material obtained by mixing and thoroughly kneading polyvinyl chloride (hereinafter referred to as PVC) pitch and graphite powder (scaly graphite).

一般に音響機器用振動板、特にスピーカの振動板の形成
に用いられる材料は、振動板用の薄板に形成したときに
能率良く、広い周波数帯域に亘つて忠実に再生するため
に、軽量で剛性が大きく、かつヤング両Eと密度pとの
比E/pが大きいことが必要とされる。従来、これらの
点から、木材パルプ、合成樹脂、アルミニウム、チタン
などが用いられてきたが、そのいずれもが、充分な特性
を有しているとは言い難かった。
In general, the materials used to form diaphragms for audio equipment, especially speaker diaphragms, are lightweight and rigid so that when formed into a thin diaphragm plate, they reproduce efficiently and faithfully over a wide frequency range. It is required that the ratio E/p of Young's double E and the density p be large. Conventionally, wood pulp, synthetic resin, aluminum, titanium, etc. have been used from these points of view, but it is difficult to say that any of them has sufficient properties.

また、炭素系の材料を用いた例としては、炭素繊維と合
成樹樹脂との複合材料があるが、炭素繊維自身の持つ表
面の潤滑性のため、合成樹脂による炭素繊維の結合が充
分でなく、また炭素繊維の大きな異方性のため、振動板
のように面として大きな剛性を得られていない。そこで
、発明者は、軽量で剛性が大きく、かつヤングB率と密
度pとの比E/pが大きい材料として炭素に注目し、先
に合成樹脂材料を炭化または黒鉛化して得られる振動板
を提案したが、合成樹脂の炭化工程または黒鉛工程にお
いて素材の収縮変形が甚だしく、亀裂などを生じる不都
合が確認された。本発明はこのような点に鑑み、その目
的は、炭化または黒鉛化して音響機器用振動板を製造す
るにあって、軽量で剛性が大きく、かつヤング率と密度
との比E/pが大きい音響機器用振動板が得られ、しか
も炭化または黒鉛化する工程に生ずる素材の変形が生じ
ることのない成形材料を提供するにある。
In addition, an example of using carbon-based materials is a composite material of carbon fiber and synthetic resin, but due to the lubricity of the surface of the carbon fiber itself, the bonding of the carbon fibers by the synthetic resin is insufficient. Also, due to the large anisotropy of carbon fiber, it is not possible to obtain large rigidity as a surface like a diaphragm. Therefore, the inventor focused on carbon as a material that is lightweight, has high rigidity, and has a large ratio E/p of Young's B modulus to density p, and developed a diaphragm obtained by first carbonizing or graphitizing a synthetic resin material. However, it was confirmed that the material shrinks and deforms significantly during the carbonization or graphite process of synthetic resins, causing cracks and other problems. In view of these points, an object of the present invention is to manufacture a diaphragm for audio equipment by carbonizing or graphitizing it, which is lightweight, has high rigidity, and has a large Young's modulus to density ratio E/p. It is an object of the present invention to provide a molding material from which a diaphragm for an audio device can be obtained, and which does not cause deformation of the material that occurs during the carbonization or graphitization process.

すなわち、本発明はPVCをピッチ状にし、黒鉛粉末と
混練して得られる成形材料を提供するものである。
That is, the present invention provides a molding material obtained by making PVC into a pitch shape and kneading it with graphite powder.

ヤング率が大きく、機械的強度も高い炭素材料を得るに
は、炭素収率の高い原材料を用いて炭化する必要がある
In order to obtain a carbon material with a large Young's modulus and high mechanical strength, it is necessary to carbonize the material using a raw material with a high carbon yield.

ポリ塩化ビニールをそのまま炭化したのでは炭素収率は
20〜30%程度で、炭化後の特性はヤング率3000
〜4000k9/柵で機械的強度も低い。ポリ塩化ビニ
ールをピッチ状にすることにより、炭素収率は80%前
後に向上する。しかし、PVCピッチを単体で振動板の
形状に成形し、炭化した場合、振動板の形状を保って炭
化することが困難である。また、炭化中に緊張力を加え
ないと、配向性が高くならず、高弾性な炭素材料にはな
らない。そこで、PVCピッチを単体で使用した場合、
振動板の形状に成形して炭化する際に変形を生じやすく
なるので、固体粉末を添加することが必要である。
If polyvinyl chloride is carbonized as is, the carbon yield is about 20-30%, and the properties after carbonization are Young's modulus of 3000.
Mechanical strength is low at ~4000k9/fence. By forming polyvinyl chloride into pitch, the carbon yield increases to around 80%. However, when PVC pitch is molded singly into the shape of a diaphragm and then carbonized, it is difficult to carbonize while maintaining the shape of the diaphragm. Furthermore, unless tension is applied during carbonization, the orientation will not be high and a highly elastic carbon material will not be obtained. Therefore, when using PVC pitch alone,
It is necessary to add solid powder because deformation tends to occur when forming into the shape of a diaphragm and carbonizing it.

そして固体粉末で最も好ましいものは黒鉛粉末である。
こうしてPVCピッチに黒鉛粉末を添加した成形材料で
は黒鉛粉末を添加することにより、‘1}予備焼成およ
び炭化時に生ずる収縮や変形を防止することができるこ
と、■PVCピッチと黒鉛粉末の混線物を振動板の形状
に成形する際に、黒鉛粉末が配向し、弾性率、機械的強
度を改善することができること、糊炭化の際に黒鉛粉末
が結晶核となり、結晶性の良い炭素が得られ、炭化後の
弾性率、機械的強度を大中に向上できること等の効果が
期待できる。一般に炭化の際に添加される材料としては
、カーボンブラック、炭素繊維等の炭素素材があるが、
カーボンブラックは結晶性が悪いので、良い結晶核には
なり得ない欠点があり、また炭素繊維は、黒鉛化された
ものが望まれ、数〃m以下の長さに切断できれば良い結
晶核となる可能性があるが、数仏m以下の切断は困難が
上に、もしできたとしても非常に高価なものとなり、実
用性に乏しい。本発明成形材料を以下、説明する。
The most preferred solid powder is graphite powder.
In this way, by adding graphite powder to a molding material made by adding graphite powder to PVC pitch, it is possible to prevent shrinkage and deformation that occur during pre-firing and carbonization; When forming into a plate shape, the graphite powder is oriented, which improves the elastic modulus and mechanical strength.When the paste is carbonized, the graphite powder becomes a crystal nucleus, resulting in carbon with good crystallinity. Effects such as improved elastic modulus and mechanical strength can be expected. Generally, materials added during carbonization include carbon materials such as carbon black and carbon fiber.
Carbon black has poor crystallinity, so it cannot be used as a good crystal nucleus.Also, graphitized carbon fiber is preferable, and if it can be cut into lengths of several meters or less, it will become a good crystal nucleus. Although it is possible, it is difficult to cut a size of less than a few French meters, and even if it were possible, it would be extremely expensive and impractical. The molding material of the present invention will be explained below.

本発明成形材料は、まずPVCを窒素又はアルゴンガス
などの非酸化性雰囲気中で400つ0程度に加熱するこ
とによりPVCピッチを得、次に、このPVCピッチに
粒径0.1〜50山mの黒鉛粉末(鱗平状黒鉛)を添加
混合し、200〜300℃に加熱しながらニーダまたは
ローラで混練することにより得るものである。
The molding material of the present invention first obtains a PVC pitch by heating PVC in a non-oxidizing atmosphere such as nitrogen or argon gas to about 400 particles, and then adds 0.1 to 50 particles of particle size to the PVC pitch. It is obtained by adding and mixing graphite powder (scaly graphite) of m and kneading with a kneader or roller while heating to 200 to 300°C.

PVCは単に加熱するだけで、ピッチを得ることができ
る。またピッチ状のPVCを得る他の方法としては、P
VCに可塑剤、溶剤を用いて行なうことも可能である。
黒鉛粉末の混線を容易にするには、溶剤を用いて、PV
Cピッチを常温で適当な粘性を持つ液体状にし、加熱せ
ずに練り合せる。ただしこの方法は溶剤が揮発する際に
収縮するのでその分を留意する必要がある。なお、黒鉛
粉末の添加量は10〜9肌t%位の範囲になるが、40
〜7肌t%で良い結果が得られる。
PVC can be pitched by simply heating it. Another method for obtaining pitch-like PVC is PVC.
It is also possible to use VC with a plasticizer or a solvent.
To facilitate cross-contamination of graphite powder, use a solvent to
C. Pitch is made into a liquid with appropriate viscosity at room temperature and kneaded without heating. However, in this method, the solvent shrinks when it evaporates, so care must be taken to avoid this. The amount of graphite powder added is in the range of 10 to 9 t%, but 40 t%
Good results are obtained with ~7 skin t%.

また黒鉛粉末の粒径は、形成すべき振動板の大きさ、形
状によって異なるが、一般に小さい程よく、0.1〜5
0仏m程度が望ましい(平均粒径では5〃m以下が望ま
しい)。こうして得られる成形材料を用いて、振動板を
製造する方法を以下に説明する。成形工程 成形材料をまず振動板の所望形状、たとえばドーム形状
、コーン形状等に成形する。
The particle size of the graphite powder varies depending on the size and shape of the diaphragm to be formed, but in general, the smaller the particle size, the better.
It is desirable that the particle size is about 0 French m (the average particle diameter is preferably 5 m or less). A method for manufacturing a diaphragm using the molding material obtained in this way will be described below. Molding process The molding material is first molded into the desired shape of the diaphragm, such as a dome shape or a cone shape.

成形される振動板になるべき成形物の厚さは、振動板の
大きさ、形状によって異なる。成形材料が加熱しながら
混合(混練)して得られたものであるときには、振動板
になるべき所望の形状、大きさに形成されているプレス
型を200〜300oo程度に加熱しておき、プレス成
型する。
The thickness of the molded product to be molded into a diaphragm varies depending on the size and shape of the diaphragm. When the molding material is obtained by mixing (kneading) while heating, a press mold formed into the desired shape and size of the diaphragm is heated to about 200 to 300 oo, and the press Mold.

成形材料が溶剤を用いて混合(混練)して得られたもの
であるときには、常温でプレス成型し、十分に乾燥させ
て溶剤を取除く。予備焼成工程 前工程である成形工程で得られた成形物を空気中(酸化
性雰囲気中)で250〜30ぴ0に加熱し、少なくとも
成形物の表面酸化を行い、次の工程である炭化中に変形
を生じないよう不融化する。
When the molding material is obtained by mixing (kneading) a solvent, it is press-molded at room temperature and thoroughly dried to remove the solvent. The molded product obtained in the molding step, which is the pre-baking step, is heated in air (in an oxidizing atmosphere) to 250 to 30 psi to oxidize at least the surface of the molded product, and then during the next step, carbonization. It is made infusible to prevent deformation.

なお、この不融化は、オゾン中で50〜8000程度の
温度で4〜8時間で酸化させた後さらに空気中で上記し
た温度で行ってもよい。また不融化工程で、加熱により
成形物が変形を起こすことがあるので、金網またはパン
チングされた金属薄板を振動板の形状に成形した治具に
のせるか、または挟持して処理してもよい。
Note that this infusibility may be oxidized in ozone at a temperature of about 50 to 8,000 ℃ for 4 to 8 hours, and then further carried out in air at the above-mentioned temperature. In addition, in the infusibility process, heating may cause the molded product to deform, so a wire mesh or punched thin metal plate may be placed on a jig formed into the shape of a diaphragm, or it may be clamped. .

さらに加熱時間はlq時間以上とするとよい結果が得ら
れる。
Further, good results can be obtained by setting the heating time to 1q hours or more.

炭化工程 予備焼成工程を経た成形物は、窒素またはアルゴンガス
等の非酸化性雰囲気中で1000〜150ぴ0まで加熱
して炭化を行う。
Carbonization Step The molded product that has undergone the preliminary firing step is carbonized by heating to 1000 to 150 psi in a non-oxidizing atmosphere such as nitrogen or argon gas.

この炭化工程は初期の昇溢速度を遅くすることが必要で
ある。すなわち、40000までは1〜20℃/時間の
昇温速度で、また40ぴ○以上は10〜10び○/時間
の昇温速度で行うのが好ましい。昇温速度を小さくした
方が特性のよい炭化物が得られる。このことは、初期の
昇温速度を遠くすると、組織の荒い炭素材料となりヤン
グ率、機械的強度ともに低下するからであり、また40
0o○以上では経済性を考慮し適当に速い速度で行う。
なお、炭化の際に成形物が変形を生ずるので、炭素また
は高融点金属等から成り、振動板の形状に成形した治具
に乗せるかまたは挟持して、炭化を行うことが望ましい
This carbonization process requires a slow initial overflow rate. That is, it is preferable to increase the temperature up to 40,000 at a heating rate of 1 to 20° C./hour, and to increase the temperature to 40,000 or higher, at a heating rate of 10 to 10 degrees C/hour. A carbide with better properties can be obtained by decreasing the heating rate. This is because if the initial heating rate is increased, the carbon material will have a rough structure and both Young's modulus and mechanical strength will decrease.
When the temperature is 0o○ or more, it is performed at an appropriately fast speed in consideration of economical efficiency.
Since the molded product is deformed during carbonization, it is preferable to carry out carbonization by placing or holding the molded product on a jig made of carbon or high-melting point metal, etc., and formed into the shape of a diaphragm.

炭化された成形物は、そのまま振動板として使用するか
、または、さらに、所望の加工(バリ取り、穴あげ等)
が施こされて、振動板として完成する。以下本発明の実
施例を説明する。
The carbonized molded product can be used as a diaphragm as is, or it can be further processed as desired (deburring, drilling, etc.)
is applied to complete the diaphragm. Examples of the present invention will be described below.

実施例 粒径〆mの黒鉛を50%添加し、PVCピッチを250
qoに加熱しながら混線して成形材料を得た。
Example: Added 50% graphite with particle size 〆m, and made PVC pitch 250.
A molding material was obtained by cross-wiring while heating to qo.

この材料を用いて振動板を形成するに、まずドーム型状
に250こ○でプレス成形し、該成形物を300℃で2
M寺間空気中で酸化し、その後、窒素ガス雰囲気中で3
0000から500午0の間を3℃/時間の昇温速度で
加熱し、500qoから1250o○の間を20qo/
時間の昇温速度で加熱して炭化したスピーカ用振動板を
得た。このようにして得られた振動板のヤング率は16
000k9/柵、密度は1.6夕/めであった。
To form a diaphragm using this material, first press mold it into a dome shape with 250 mm, and then press the molded product at 300°C for 2 hours.
M Terama Oxidize in air, then 3 in nitrogen gas atmosphere
Heating at a temperature increase rate of 3°C/hour between 0000 and 500 o 0, and 20 qo/hour between 500 qo and 1250 o ○.
A speaker diaphragm was obtained which was carbonized by heating at a temperature increase rate of 1 hour. The Young's modulus of the diaphragm thus obtained was 16
000k9/fence, density was 1.6/m.

本発明成形材料で形成した振動板と他の材料による振動
板との比較を下表に示す。表に示されるごとく、本発明
のPVCピッチ黒鉛粉末との混合による成形材料を使用
した振動板は、アルミニュームの約5倍の比弾性率E/
pを有し、ベリリウムよりわずかに劣る程度である。
The table below shows a comparison between a diaphragm made of the molding material of the present invention and a diaphragm made of other materials. As shown in the table, the diaphragm using the molding material mixed with the PVC pitch graphite powder of the present invention has a specific elastic modulus E/about 5 times that of aluminum.
p, which is slightly inferior to beryllium.

また本発明の材料によって得られた振動板は内部損失が
ベリリウムより約1q音大きく、その周波数特性は第2
図に示すようになり、点線で示した同形状のベリリウム
振動板と〈らべ高城共振周波数はほぼ同一で、特性は平
坦になっており、高音域の周波数特性が良好になり、非
常に優れたものとなる。以上説明したように、PVCピ
ッチと平均粒径0.1〜50仏mの鱗片状、黒鉛を混合
して得られる成形材料にあっては、それを成形した後炭
化して振動板を形成すると、比弾性率が大きく、内部損
失も大きく、さらに安価な振動板を製造することができ
る。
Furthermore, the internal loss of the diaphragm obtained using the material of the present invention is about 1q louder than that of beryllium, and its frequency characteristics are second to none.
As shown in the figure, the resonant frequency of the same-shaped beryllium diaphragm indicated by the dotted line is almost the same as that of the Rabe Takagi diaphragm, and the characteristics are flat, and the frequency characteristics in the high frequency range are good, making it extremely excellent. It becomes something. As explained above, a molding material obtained by mixing PVC pitch and flaky graphite with an average particle size of 0.1 to 50 fm is molded and then carbonized to form a diaphragm. , it is possible to manufacture a diaphragm that has a large specific modulus of elasticity, a large internal loss, and is also inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明成形材料で振動板を製造する方法を説明
する工程図、第2図は本発明材料による振動板とベリリ
ウム振動板との周波数特性を示した比較図である。 l図 第2図
FIG. 1 is a process diagram illustrating a method for manufacturing a diaphragm using the molding material of the present invention, and FIG. 2 is a comparison diagram showing the frequency characteristics of a diaphragm made of the material of the present invention and a beryllium diaphragm. Figure lFigure 2

Claims (1)

【特許請求の範囲】[Claims] 1 ポリ塩化ビニールをピツチ状になし、これに平均粒
径0.1〜50μmの鱗片状黒鉛を混合して混練して得
られる成形材料。
1. A molding material obtained by forming polyvinyl chloride into a pitch, mixing and kneading flaky graphite with an average particle size of 0.1 to 50 μm.
JP6395579A 1979-05-25 1979-05-25 molding material Expired JPS6021658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6395579A JPS6021658B2 (en) 1979-05-25 1979-05-25 molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6395579A JPS6021658B2 (en) 1979-05-25 1979-05-25 molding material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2548578A Division JPS54118819A (en) 1978-03-08 1978-03-08 Method of fabricating acoustic vibrating plate

Publications (2)

Publication Number Publication Date
JPS5540759A JPS5540759A (en) 1980-03-22
JPS6021658B2 true JPS6021658B2 (en) 1985-05-29

Family

ID=13244243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6395579A Expired JPS6021658B2 (en) 1979-05-25 1979-05-25 molding material

Country Status (1)

Country Link
JP (1) JPS6021658B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157891U (en) * 1980-04-24 1981-11-25

Also Published As

Publication number Publication date
JPS5540759A (en) 1980-03-22

Similar Documents

Publication Publication Date Title
US4221773A (en) Method of producing a carbon diaphragm for an acoustic instrument
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
GB2240006A (en) A process for preparing a substantially wholly carbonaceous diaphragm for use in acoustic equipment
JPS6021658B2 (en) molding material
JP3652061B2 (en) Electric double layer capacitor
JPH06100367A (en) Anisotropic carbon-carbon composite material and its production
CN113903916A (en) Application of coupling agent in granulation process of lithium battery negative electrode material and granulation process of lithium battery negative electrode material
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
JPS6057280B2 (en) Manufacturing method of diaphragm for audio equipment
GB2026816A (en) Diaphragms for acoustic instruments and method of producing the same
JPS6020471A (en) Manufacture of members for fuel cell
JPS6044722B2 (en) Method for manufacturing cantilevers in record playback cartridges
KR20040076427A (en) Process for manufacturing an article of graphite and an article of graphite manufactured by the same
JPS63138900A (en) Manufacture of diaphragm for carbon acoustic equipment subject to boron doping
JPS6031004B2 (en) arm pipe
JPH06190962A (en) Molded heat insulating material
JPS6056360B2 (en) Diaphragm for audio equipment
JPS6122369B2 (en)
JPS6053364B2 (en) Head shell and its manufacturing method
JPS6044723B2 (en) Method for manufacturing cantilevers in record playback cartridges
JPH027697A (en) Manufacture of diaphragm for all carbon acoustic equipment
JP2808807B2 (en) Production method of raw material powder for carbon material
JPH06116033A (en) Low carburizing graphite material and its production
JPH05103392A (en) Manufacture of acoustic diaphragm
JPS6051161B2 (en) Tone arm for record playback and its manufacturing method