JPS6044686B2 - Line heater control method - Google Patents

Line heater control method

Info

Publication number
JPS6044686B2
JPS6044686B2 JP5974678A JP5974678A JPS6044686B2 JP S6044686 B2 JPS6044686 B2 JP S6044686B2 JP 5974678 A JP5974678 A JP 5974678A JP 5974678 A JP5974678 A JP 5974678A JP S6044686 B2 JPS6044686 B2 JP S6044686B2
Authority
JP
Japan
Prior art keywords
line
temperature
set value
circuit
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5974678A
Other languages
Japanese (ja)
Other versions
JPS54151786A (en
Inventor
亜夫 熊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5974678A priority Critical patent/JPS6044686B2/en
Publication of JPS54151786A publication Critical patent/JPS54151786A/en
Publication of JPS6044686B2 publication Critical patent/JPS6044686B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明はラインヒータ制御方式の改良に関する。[Detailed description of the invention] The present invention relates to improvements in line heater control methods.

従来、冷却すると固化するガス流体等を配管系。 Conventionally, piping systems have been used to store gas fluids that solidify when cooled.

(以下、ラインと指称する)で流通するプロセスでは、
そのラインにヒータを巻装しこれを電源の入切制御を行
なうことて流体の円滑な流通を確保している。 而して
、従来以上のようなプロセスのラインヒ。
(hereinafter referred to as "line"), the process of distributing
A heater is wound around the line and the power is turned on and off to ensure smooth fluid flow. Therefore, the line of the process is more than conventional.

一タ制御方式は、上限温度設定値、下限温度設定値と実
際のライン温度とを比較する比較回路と、この回路の出
力側に接続され流体の温度特性等を考慮して温度上昇過
程の順ヒステリシス又は温度下降過程の逆ヒステリシス
で電源オフ信号を出力する電源制御回路とを備え、この
電源制御回路のオン・オフ信号でヒータ電源の入切制御
を行なつている。 これについて第1図を参照して説明
すると、順ヒステリシスを利用した電源制御は、ライン
の温度が上限温度設定値THに達すると(同図a参照)
、電源制御回路からオフ信号がでてヒータ電源がしや断
され、これによつてライン温度が下がって下限温度設定
値Tlに達したとき電源制御回路からオン信号がでて同
図をのようにヒータ電源を入制御している。
The one-step control system uses a comparison circuit that compares the upper limit temperature set value and lower limit temperature set value with the actual line temperature, and a comparison circuit that is connected to the output side of this circuit to order the temperature rise process in consideration of the temperature characteristics of the fluid. The heater is equipped with a power control circuit that outputs a power off signal with hysteresis or reverse hysteresis of the temperature decreasing process, and the heater power is turned on and off using the on/off signal of this power control circuit. To explain this with reference to Figure 1, power supply control using forward hysteresis is performed when the line temperature reaches the upper limit temperature set value TH (see Figure 1).
, the power supply control circuit outputs an OFF signal and the heater power is cut off, and when the line temperature drops and reaches the lower limit temperature set value Tl, the power supply control circuit outputs an ON signal and the heater power is cut off, as shown in the figure. The heater power is turned on and controlled.

逆ヒステリシスによる電源制御は同図cに示すように下
限温度設定値Tlでヒータ電源の切制御、上限温度設定
値THで入制御を行なつている。 しかし、以上のライ
ンヒータ制御方式では、順又は逆ヒステリシスを利用し
、かつ上限温度設定値、下降温度設定値で電源の入切制
御を行なつているので、温度の追従性が悪く、さらにプ
ロセスの熱伝達の遅れが明確でなかつたり、周囲温度に
よる熱伝達の影響を直接受けて順逆何れのヒステリシス
で制御すべきか決定困難な場合がある。
As shown in FIG. 3c, the power supply control based on reverse hysteresis is such that the heater power is turned off at the lower temperature set value Tl and turned on at the upper temperature set value TH. However, the line heater control method described above uses forward or reverse hysteresis and controls the power on and off using the upper temperature set value and lower temperature set value, so temperature followability is poor and the process In some cases, the delay in heat transfer is not clear, or it is difficult to determine whether to use forward or reverse hysteresis to control the heat transfer because the heat transfer is directly affected by the ambient temperature.

本発明は上記実情にかんがみてなされたものであつて
、上限および下限温度設定値のほかに温度勾配をも考慮
してヒータ電源の入切制御を行なうことにより、順ヒス
テリシス及び逆ヒステリシスの電源制御回路を組むこと
なく、環境変化等の外乱に対する追随性に優れ、プロセ
ス対象の特性に見合つた円滑な制御が実現できるライン
ヒータの制御方式を提供するものである。 以下、本発
明の一実施例について第2図を参照して説明する。
The present invention has been made in view of the above-mentioned circumstances, and is capable of controlling the power supply of forward hysteresis and reverse hysteresis by controlling the heater power supply on/off by taking into account the temperature gradient as well as the upper and lower limit temperature set values. The purpose of the present invention is to provide a line heater control method that has excellent ability to follow disturbances such as environmental changes and can realize smooth control that matches the characteristics of the process target without constructing a circuit. An embodiment of the present invention will be described below with reference to FIG.

同図において10及び11はライン自体及び保温材の熱
容量設定器であつてそれぞれの熱容量設定値をA(ca
1rC−rrL.)、B(ca11℃・rri.)とす
る。また、12及び13はヒータ及びラインから外部に
放出する熱容量設定器であつてそれぞれの熱容量設定値
をC(ca1rC−m)、D(Ca1rC−TTI,)
とする。14はラインと保温材の熱容量設定値A..B
を加算する加算回路、15はヒータの熱容量設定値Cか
ら外部放出熱容量設定値Dを減算する減算回路である。
In the same figure, 10 and 11 are heat capacity setting devices for the line itself and the heat insulating material, and the respective heat capacity setting values are set to A (ca
1rC-rrL. ), B (ca11℃・rri.). In addition, 12 and 13 are heat capacity setting devices that emit heat from the heater and line to the outside, and set the respective heat capacity settings as C (ca1rC-m) and D (Ca1rC-TTI,).
shall be. 14 is the heat capacity setting value A. of the line and insulation material. .. B
15 is a subtraction circuit that subtracts the external release heat capacity set value D from the heat capacity set value C of the heater.

このC.,Dが熱収
C−D支を定める熱容量設定値となる。16は?の
A+B演算を行
なつてライン加熱時の設定値温度勾配Mを求める割算回
路、17は1ゝの演算を行なつ
A+Bてライン非加熱時の設定値温度勾配Nを求める
割算回蕗である。
This C. , D is the heat loss
This is the heat capacity setting value that determines the C-D support. What about 16? of
A division circuit that calculates the set value temperature gradient M during line heating by performing A + B calculation, 17 performs the calculation of 1゜
A + B is a division calculation to find the set value temperature gradient N when the line is not heated.

18は実際のライン測定温度勾配Sから加熱時温度勾配
Mを減算する減算回路、19は実際のライン測定温度勾
配Sから非加熱時温度勾配Nを減算する減算回路である
18 is a subtraction circuit that subtracts the heating temperature gradient M from the actual line-measured temperature gradient S, and 19 is a subtraction circuit that subtracts the non-heating temperature gradient N from the actual line-measured temperature gradient S.

20, 21は対外乱性、プロセス特性等に応じて上限
温度設定値TH、下限温度設定値TLを設定する上限温
度設定器、下降温度設定器であり、これらの設定値20
, 21の設定値TH,,TLはそれぞれ比較回路22
, 23にてライン測定温度Tと比較するようになつて
いる。
Reference numerals 20 and 21 indicate an upper temperature setter and a lower temperature setter for setting an upper limit temperature set value TH and a lower limit temperature set value TL in accordance with disturbance resistance, process characteristics, etc., and these set values 20
, 21 set values TH, , TL are set by the comparator circuit 22, respectively.
, 23, the temperature is compared with the line-measured temperature T.

24, 25はOR回路、26はホールド回路である。24 and 25 are OR circuits, and 26 is a hold circuit.

次に、以上のように構成したラインヒータ制御方式の
作用を説明する。第3図に示すように、スータート時点
の温度aが下限温度設定値TLより低い場合、その測定
温度aと下限、上限温度設定器20, 21の下限温度
設定値TL1上限温度設定値THとをそれぞれ比較回路
22, 23で比較する。この結果、比較回路22から
オフ信号、比較一回路23からオン信号がでてこれがO
R回路25を経てホールド回路26に入りここでヒータ
電源のオン信号がホールドされヒータ電源が投入される
。この時点では、ライン温度勾配Sは未だ勾配をもつて
いないのでそれぞれの減算回路18,19からオフ信号
がでている。 ヒータ電源のオンによつてライン温度は
徐々に上昇し割算回路16で加熱時の温度勾配Mが得ら
れ、これが減算回路18に入る。
Next, the operation of the line heater control method configured as above will be explained. As shown in FIG. 3, when the temperature a at the time of suit start is lower than the lower limit temperature set value TL, the measured temperature a and the lower limit temperature set value TL1 of the lower limit and upper limit temperature setting devices 20 and 21 are set as the upper limit temperature set value TH. Comparisons are made by comparison circuits 22 and 23, respectively. As a result, an off signal is output from the comparator circuit 22 and an on signal is output from the comparator circuit 23.
The signal enters the hold circuit 26 via the R circuit 25, where the heater power ON signal is held and the heater power is turned on. At this point, the line temperature gradient S does not have a slope yet, so an off signal is output from each of the subtraction circuits 18 and 19. When the heater power is turned on, the line temperature gradually rises, and the dividing circuit 16 obtains a temperature gradient M during heating, which is input to the subtracting circuit 18.

このとき、減算回路18の他方入力部には実際のライン
測定温度勾配Sが入つている。このため、この減算回路
18において両温度勾配M..S/)守=s>Mの〔関
係になると、同回路18よりオン信号がでてこれがOR
回路24を経てホールト回路26に入り同回路26はリ
セツトされる。これにより、ホールド回路26はホール
ド状態を解除しヒータ電源はしや断される。 ヒータ電
源がしや断すると、その余熱で一定時間上昇を続けるが
、その後は下降状態に移行する。
At this time, the other input section of the subtraction circuit 18 contains the actual line-measured temperature gradient S. Therefore, in this subtraction circuit 18, both temperature gradients M. .. When the relationship S/) Mamoru = s>M is reached, an ON signal is output from the same circuit 18, which is OR.
The signal enters the halt circuit 26 via the circuit 24, and the circuit 26 is reset. As a result, the hold circuit 26 releases the hold state and the heater power is immediately cut off. When the heater power is turned off, the residual heat continues to rise for a certain period of time, but after that it shifts to a falling state.

そして、この下降勾配が一定条件つまり■!=s<Nに
なると、減算回路19からオン゛信号がで、これがOR
回路25を経てホールド回路26に入る。この結果、同
回路26はオン状態をホールドするとともに、このオン
信号で再びヒータ電源を投入する。 従つて、本制御方
式は常に下降温度設定値TLと上限温度設定値Lとの間
でヒータ電源の入切制御を行なることが可能となり、ひ
いては一定の温度範囲で迅速に追従させてラインの温度
制御を行なうことができる。
And this downward slope is a constant condition, that is ■! When =s<N, an ON signal is output from the subtraction circuit 19, and this is the OR signal.
It enters the hold circuit 26 via the circuit 25. As a result, the circuit 26 holds the on state and turns on the heater power again with this on signal. Therefore, with this control method, it is possible to always control the heater power on and off between the falling temperature set value TL and the upper limit temperature set value L, and in turn, it is possible to quickly follow the temperature within a certain temperature range and control the line. Temperature control can be performed.

次に、ヒータ電源の初期投入後、″温度勾配の条件が
成立しないで図示点線(イ)のように温度上昇を続け、
そのライン温度が上限温度設定値THを越えた場合には
比較回路22からオン信号がでこれがOR回路24を経
てホールド回路26に入る。
Next, after the initial power supply to the heater is turned on, the temperature continues to rise as shown by the dotted line (A) without the temperature gradient condition being met.
When the line temperature exceeds the upper limit temperature setting value TH, an on signal is generated from the comparator circuit 22 and enters the hold circuit 26 via the OR circuit 24.

このためホールド回路26はオン状態を解除しヒータ電
源をしや断する。しかし、実際はライン温度が上限温度
設定値THに達する前に温度勾配による条件成立がなさ
れるので、ライン温度は大きな振幅によつて変化するこ
となく第3図実線に示す温度曲線をとつて変化する。従
つて、特に、電源制御回路として順ヒステリシスと逆ヒ
ステリシス回路を組んで周囲温度による熱伝達の影響等
を考えて選択使用する必要がない。 以上詳記したよう
に本発明によれば、下限温度と上限温度との限界値を定
めてヒータ電源の入切制御を行なう外に、ラインや保温
材等による温度勾配と実際のライン測定温度勾配との関
係から一定の条件成立時ををもつてヒータ電源の入切制
御を行なうので、順、逆ヒステリシス特性を利用する必
要はなく、また環境変化時に季節による温度変化を踏え
、ライン等の熱容量、外部へ放出する熱容量が設定され
、これによつて設定値が演算されるのて、環境変化等の
外乱に追随し、そのプロセス対象(ライン等)の特性に
見合つた微細な制御を行なうことができる。
Therefore, the hold circuit 26 releases the on state and immediately cuts off the heater power. However, in reality, the condition due to the temperature gradient is satisfied before the line temperature reaches the upper limit temperature set value TH, so the line temperature does not change with a large amplitude but changes along the temperature curve shown by the solid line in Figure 3. . Therefore, it is not necessary to combine a forward hysteresis circuit and a reverse hysteresis circuit as a power supply control circuit, and to select and use them in consideration of the influence of heat transfer due to ambient temperature. As described in detail above, according to the present invention, in addition to controlling the heater power supply on/off by determining the lower limit temperature and upper limit temperature, the temperature gradient due to the line, heat insulating material, etc. and the actual line measurement temperature gradient Since the heater power supply is controlled to be turned on and off when certain conditions are met based on the relationship between The heat capacity and the heat capacity released to the outside are set, and the set value is calculated based on this, and it follows disturbances such as environmental changes and performs fine control that matches the characteristics of the process target (line, etc.). be able to.

しかも、下限温度設定値及ひ上限温度設定値に達する前
に温度勾配の条件成立によつてヒータ電源の入切制御を
行なうことから無駄時間がなく迅速な追従性をもつてラ
インの温度制御が行なわれ、これによつてライン温度の
良好を制御を行なうことができる。
Furthermore, since the heater power is turned on and off depending on the temperature gradient condition being met before the lower limit temperature set value and upper limit temperature set value are reached, line temperature control is possible with no wasted time and quick follow-up performance. This allows good control of the line temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−cは従来のラインヒータ制御方式を説明す
る温度曲線図およびヒータ電源の入切制御図、第2図は
本発明に係るラインヒータ制御方式を適用した装置のブ
ロツク図、第3図は本発明方式の装置の作用を説明する
図である。 10・・・・ライン自体の熱容量設定器、11・・・
保温材の熱容量設定器、12・・・・・・ヒータの熱容
量設定器、13・・・・ライン外部放出熱容量設定器、
14・・・・・・加算回路、15・・・・・・減算回路
、16, 17・・・・・・割算回路、S・・・・・・
ライン測定温度勾配、18, 19・・・・・・減算回
路、T・・・・・・ライン測定温度、20・・・・・・
上限温度設定器、21・・・・下限温度設定器、22,
23・・・・・比較回路、24,25・・OR回路、2
6・・・・・・ホールド回路。
1a-c are temperature curve diagrams and heater power supply on/off control diagrams for explaining the conventional line heater control method; FIG. 2 is a block diagram of a device to which the line heater control method according to the present invention is applied; The figure is a diagram illustrating the operation of the apparatus according to the present invention. 10...Heat capacity setting device for the line itself, 11...
Insulating material heat capacity setting device, 12... Heater heat capacity setting device, 13... Line external release heat capacity setting device,
14... Addition circuit, 15... Subtraction circuit, 16, 17... Division circuit, S...
Line measurement temperature gradient, 18, 19... Subtraction circuit, T... Line measurement temperature, 20...
Upper limit temperature setter, 21...lower limit temperature setter, 22,
23... Comparison circuit, 24, 25... OR circuit, 2
6...Hold circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 ライン、保温材、ヒータ等ライン要素の熱容量設定
値、外部放出熱容量設定値からヒータ加熱時および非加
熱時の温度勾配を求める手段と、この手段による加熱時
、非加熱時のライン要素の温度勾配と前記ライン要素の
実際のライン測定温度勾配とを比較する2系統の第1の
比較回路系と、上限温度設定値および下限温度設定値と
前記ライン要素の実際のライン測定温度とを比較する2
系統の第2の比較回路系と、非加熱系に属する第1、第
2の比較回路系のオン信号をホールドし、かつ加熱系に
属する第1、第2の比較回路系のオン信号でホールド状
態を解除されるホールド回路とを備え、このホールド回
路の出力信号でラインヒータの電源の入切制御を行なう
ようにしたことを特徴とするラインヒータ制御方式。
1. Means for determining the temperature gradient during heater heating and non-heating from the heat capacity set value and external release heat capacity set value of line elements such as lines, insulation materials, heaters, etc., and the temperature of line elements during heating and non-heating using this means. a two-system first comparison circuit system that compares the gradient with an actual line-measured temperature gradient of the line element; and a first comparison circuit system that compares an upper limit temperature set value and a lower limit temperature set value with the actual line-measured temperature of the line element; 2
Hold the ON signals of the second comparison circuit system of the system and the first and second comparison circuit systems belonging to the non-heating system, and hold the ON signals of the first and second comparison circuit systems belonging to the heating system. A line heater control method comprising: a hold circuit whose state is released; and an output signal from the hold circuit controls power supply to the line heater.
JP5974678A 1978-05-19 1978-05-19 Line heater control method Expired JPS6044686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5974678A JPS6044686B2 (en) 1978-05-19 1978-05-19 Line heater control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5974678A JPS6044686B2 (en) 1978-05-19 1978-05-19 Line heater control method

Publications (2)

Publication Number Publication Date
JPS54151786A JPS54151786A (en) 1979-11-29
JPS6044686B2 true JPS6044686B2 (en) 1985-10-04

Family

ID=13122100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5974678A Expired JPS6044686B2 (en) 1978-05-19 1978-05-19 Line heater control method

Country Status (1)

Country Link
JP (1) JPS6044686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369525B2 (en) * 1986-11-06 1991-11-01 Yasuhiko Kubota

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169908A (en) * 1984-02-14 1985-09-03 Youei Seisakusho:Kk Device for discriminating cause of deviation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369525B2 (en) * 1986-11-06 1991-11-01 Yasuhiko Kubota

Also Published As

Publication number Publication date
JPS54151786A (en) 1979-11-29

Similar Documents

Publication Publication Date Title
ES463838A1 (en) System for dispensing and controlling the temperature of hot melt adhesive
JPS6041910A (en) Boiling and cooking process controller
JPS6044686B2 (en) Line heater control method
GB1029165A (en) Method and apparatus for measuring cloud point temperatures
JPH0434050B2 (en)
FR2353803A1 (en) Charge temperature control for flow-through furnace - by optical pyrometers controlling burners with adjustable delay cutout
JPS625272B2 (en)
JPS5585842A (en) Controlling method of heat source demand
JPS5533289A (en) Temperature controller
SU623194A1 (en) Temperature regulator
JPH0315972Y2 (en)
JPS56240A (en) Device for picking up liquid metal
US3549864A (en) Methods of an apparatus for temperature control
JPS58124151A (en) Controlling apparatus of hot water storage type electric water heater
SU481887A1 (en) Thermoregulator
SU1667031A1 (en) Thermoelectric system for regulating temperature
JPS5589464A (en) Diffusion furnace temperature controller
SU598044A1 (en) Redundancy double-channel device for temperature control
JPS5994115A (en) Controller for heater heating piping
SU527522A1 (en) Device for automatic control of heat load of heat-generating turbine plant
EP0000236A1 (en) A method for controlling the energy balance of a system for catching, accumulating and transferring solar energy and a system therefor
JPS6235575B2 (en)
JPS5975322A (en) Autoclave heating device
GB1248230A (en) Heat-sensing system
IT1061586B (en) Building temp. control method and system - predicts heat energy to be transferred between temp. control fluid and building load during predetermined time interval