JPS6044624B2 - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device

Info

Publication number
JPS6044624B2
JPS6044624B2 JP51078105A JP7810576A JPS6044624B2 JP S6044624 B2 JPS6044624 B2 JP S6044624B2 JP 51078105 A JP51078105 A JP 51078105A JP 7810576 A JP7810576 A JP 7810576A JP S6044624 B2 JPS6044624 B2 JP S6044624B2
Authority
JP
Japan
Prior art keywords
circuit
received signal
signal
output
rectangular wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51078105A
Other languages
Japanese (ja)
Other versions
JPS533844A (en
Inventor
博志 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP51078105A priority Critical patent/JPS6044624B2/en
Publication of JPS533844A publication Critical patent/JPS533844A/en
Publication of JPS6044624B2 publication Critical patent/JPS6044624B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば超音波レベル計或は超音波濃度計、超
音波探傷器等の超音波を利用した超音波測定装置に係わ
り、特に、多重反射現象によつて誤動作しないようにし
ようとする超音波測定装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an ultrasonic measuring device using ultrasonic waves, such as an ultrasonic level meter, an ultrasonic concentration meter, an ultrasonic flaw detector, etc. The present invention relates to an ultrasonic measuring device that is intended to prevent malfunctions due to multiple reflection phenomena.

<従来の技術〉 第1図は従来より一般に使われている超音波レベル計の
一例を示す系統図である。
<Prior Art> FIG. 1 is a system diagram showing an example of an ultrasonic level meter that has been commonly used in the past.

第1図において、超音波発振器1はタイミングパルス発
生器2から出力されるタイミングパルスによつてある時
間間隔をもつて送受波器3を励振する。
In FIG. 1, an ultrasonic oscillator 1 excites a transducer 3 at certain time intervals using timing pulses output from a timing pulse generator 2.

送受波器3はこれによつて間欠的に超音波を被測定対象
、例えば液面4に向つて送波する。時間幅測定回路5は
、タイミングパルス発生器2から測定開始信号が供給さ
れて時間幅の測定が開始され、受波回路6にて検出した
液面4からの反射波の受波信号を入力して時間幅の測定
を終了させ、その測定結果を表示器7に出力する。ここ
で受波回路6は、送受波器3にてとらえた液面4からの
反射波の受波信号を所定レベルまで増幅する前置増幅器
8と、送波時点直後から時間の経過と共に利得が増加す
るように動作する距離補正回路9と、自動利得制御回路
10と、距離補正回路9の利得を時間の経過と共に漸次
増加するように制御する制御回路11とにより構成され
る。
Thereby, the transducer 3 intermittently transmits ultrasonic waves toward the object to be measured, for example, the liquid surface 4. The time width measuring circuit 5 starts measuring the time width when a measurement start signal is supplied from the timing pulse generator 2, and inputs a reception signal of the reflected wave from the liquid surface 4 detected by the wave reception circuit 6. The time width measurement is completed and the measurement result is output to the display 7. Here, the wave receiving circuit 6 includes a preamplifier 8 that amplifies the received signal of the reflected wave from the liquid surface 4 captured by the wave transmitter/receiver 3 to a predetermined level, and a preamplifier 8 that amplifies the received signal of the reflected wave from the liquid surface 4 captured by the wave transceiver 3 to a predetermined level. The distance correction circuit 9 is constructed of a distance correction circuit 9 that operates to increase the gain, an automatic gain control circuit 10, and a control circuit 11 that controls the gain of the distance correction circuit 9 to gradually increase as time passes.

次に、距離補正回路9と制御回路11の設置理由を述べ
る。
Next, the reason for installing the distance correction circuit 9 and the control circuit 11 will be described.

一般に液面4は自由に変動するものであるから、超音波
レベル計の送受波器3と液面4との間の距離は自由に変
化する。
Since the liquid level 4 generally changes freely, the distance between the transducer 3 of the ultrasonic level meter and the liquid level 4 changes freely.

ところで、送受波器3・に返つてくる反射波の大きさは
、送受波器3と液面4との間の距離の2乗にほぼ反比例
することが知られている。このため前置増幅器8の出力
側に得られる受波信号の大きさは液面4の位置によつて
変化する。つまり送受波器3と液面4との間の・距離が
長くなるに伴つて受波信号のレベルは小さくなつてしま
うこととなる。このために距離補正回路9と制御回路1
1が設けられる。距離補正回路9は、例えば乗算回路を
用いることができ、制御回路11から例えば時間の経過
と共に漸次上昇する制御信号を入力し、この制御信号と
前置増幅器8からの受波信号とを乗算する。このように
することによつて、送波時点から時間が掛つて到来する
受波信号程大きく増幅でき、液面4の遠近に関係なく受
波信号を一定の振幅にして自動利得制御回路10に供給
することができる。く発明が解決しようとする問題点〉 しかし、この従来の超音波測定装置には、以下に述べる
ような問題点がある。
By the way, it is known that the magnitude of the reflected wave that returns to the transducer 3 is approximately inversely proportional to the square of the distance between the transducer 3 and the liquid surface 4. Therefore, the magnitude of the received signal obtained at the output side of the preamplifier 8 changes depending on the position of the liquid level 4. In other words, as the distance between the transducer 3 and the liquid surface 4 becomes longer, the level of the received signal becomes smaller. For this purpose, the distance correction circuit 9 and the control circuit 1
1 is provided. The distance correction circuit 9 can use, for example, a multiplication circuit, receives a control signal that gradually increases over time from the control circuit 11, and multiplies this control signal by the received signal from the preamplifier 8. . By doing this, the received signal that arrives after a longer time from the time of transmission can be amplified more greatly, and the received signal can be kept at a constant amplitude regardless of the distance from the liquid level 4 to the automatic gain control circuit 10. can be supplied. Problems to be Solved by the Invention> However, this conventional ultrasonic measuring device has the following problems.

尚、第2図乃至第4図に第1図の動作の説明に供する波
形図を示す。距離補正回路9を設けたことによつて、送
受波器3と液面4との間の距離がある程度離れている間
は正常に動作するが、送受波器3と液面4との間の距離
が短くなると多重反射現象が起き誤動作が生じる結果と
なる。
Incidentally, FIGS. 2 to 4 show waveform diagrams for explaining the operation of FIG. 1. By providing the distance correction circuit 9, the transducer 3 and the liquid level 4 operate normally while the distance between the transducer 3 and the liquid level 4 is a certain distance. When the distance becomes short, a multiple reflection phenomenon occurs, resulting in malfunction.

即ち、液面4が送受波器3に接近すると、液面4て反射
した超音波の勢力は大きいため送受波器3の面で再び反
射し、これが再び液面4に向い、液面4から再度反射波
が返つてくる。これを数回繰返し、送波信号Cに続いて
第1受波信号A1、第2受波信号A2、第3受波信号A
3、・・・第n受波信号Anの如く複数の受波信号が連
続的に発生する。この複数の受波信号が結局第2図に示
ずように、距離補正回路9によつて一定の振幅に揃えら
れて自動利得制御回路10に供給される。ここで2つの
不都合が生じる場合がある。
That is, when the liquid surface 4 approaches the transducer 3, the force of the ultrasonic wave reflected from the liquid surface 4 is large, so it is reflected again from the surface of the transducer 3, and it is directed toward the liquid surface 4 again, and from the liquid surface 4. The reflected wave returns again. Repeating this several times, following the transmission signal C, the first reception signal A1, the second reception signal A2, and the third reception signal A
3. A plurality of received signals such as the n-th received signal An are generated continuously. As shown in FIG. 2, the plurality of received signals are eventually adjusted to a constant amplitude by the distance correction circuit 9 and supplied to the automatic gain control circuit 10. Two problems may occur here.

ぞの1つとして、複数の受波信号Al,A2,A3,・
・・Anが続けて自動利得制御回路10に供給されるの
で、自動利得制御回路10が複数の受波信号の平均値に
よつて動作し、その利得が不必要に絞られる。
As one of these, a plurality of received signals Al, A2, A3, .
...An is continuously supplied to the automatic gain control circuit 10, so the automatic gain control circuit 10 operates based on the average value of the plurality of received signals, and its gain is unnecessarily narrowed down.

従つて、受波回路6としての出力信号は、第3図に示す
ように、レベルの小さいものとなつて受波信号検知レベ
ルPに達せず、第1受波信号A1で時間幅測定回路5の
時間幅測定動作を停止させることができなくなる。その
結果測定不能に陥る恐れがある。その2として、距離補
正回路9が設けられたことによつて、続けて到来する複
数の受波信号Al,A2,A3,・・・Anは第4図に
示すように漸次その振幅を大きくされてしまう恐れがあ
る。
Therefore, as shown in FIG. 3, the output signal from the receiving circuit 6 has a low level and does not reach the received signal detection level P, and the first received signal A1 is detected by the time width measuring circuit 5. It becomes impossible to stop the time width measurement operation. As a result, measurement may become impossible. Second, by providing the distance correction circuit 9, the amplitudes of the successively arriving received signals Al, A2, A3, . . . An are gradually increased as shown in FIG. There is a risk that it will happen.

その結果、複数の受波信号Al,A2,A3,・・・M
によつて自動利得制御信号が形成されるため自動利得制
御回路10の利得が大きく絞られてしまい、第1受波信
号A1が時間幅測定回路5の測定停止信号としてのレベ
ルPに達せず、例えばこれに続く第2受波信号A2又は
第3受波信号〜が時間幅測定終了信号として作用し、故
に誤つた測定値を表示してしまう恐れがある。この発明
の目的は、上記従来例にあるような多重反射現象による
誤動作を回避して、正確な測定結果が得られる超音波測
定装置を提供することにある。
As a result, a plurality of received signals Al, A2, A3,...M
Since an automatic gain control signal is formed by For example, the second received signal A2 or the third received signal ~ which follows this acts as a time width measurement end signal, and therefore there is a possibility that an erroneous measured value may be displayed. An object of the present invention is to provide an ultrasonic measuring device that can avoid malfunctions due to multiple reflection phenomena as in the conventional example and can obtain accurate measurement results.

く問題点を解決するための手段〉 上述の目的を達成するためこの発明は、超音波を送受波
器を用いて被測定対象に向つて送波し、その反射波又は
通過波を受波して各種の測定を行なう超音波測定装置に
おいて、受波された受波信号の振幅により利得が自動利
得制御回路で制御され、超音波送波後の多重反射現象が
起きる距離の最大値に対する時間幅を設定しこの時間幅
より短い時間幅内に上記受波信号の第1受波信号が得ら
れるか否かを検出回路で検出し、この検出回路で上記第
1受波信号が検出された時の上記検出回路からの信号に
より上記自動利得制御回路の利得を保持する手段でその
時の状態に保持することを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention transmits ultrasonic waves toward an object to be measured using a transducer and receives the reflected waves or passing waves. In ultrasonic measurement equipment that performs various measurements, the gain is controlled by an automatic gain control circuit based on the amplitude of the received signal, and the time width for the maximum distance at which multiple reflections occur after ultrasonic wave transmission. is set, and a detection circuit detects whether or not the first received signal of the above received signal is obtained within a time width shorter than this time width, and when the above first received signal is detected by this detection circuit. The present invention is characterized in that the gain of the automatic gain control circuit is maintained at the current state by a means for holding the gain of the automatic gain control circuit based on a signal from the detection circuit.

〈実施例〉 この発明においては、送受波器と液面との間の距離があ
る設定値より小さくなり多重反射現象が起きる状態にな
つた場合は、自動利得制御回路を第1受波信号の振幅だ
けに強制的に依存させるよ″うにして、多重反射現象が
起きても確実に第1受波信号によつて時間幅測定回路の
動作を停止させることができるようにし、多重反射の影
響を受けることのない超音波測定装置を得るものである
<Embodiment> In this invention, when the distance between the transducer and the liquid surface becomes smaller than a certain set value and a multiple reflection phenomenon occurs, the automatic gain control circuit is activated to control the first received signal. By forcibly making it depend only on the amplitude, even if a multiple reflection phenomenon occurs, the operation of the time width measurement circuit can be reliably stopped by the first received signal, thereby reducing the influence of multiple reflections. The present invention provides an ultrasonic measuring device that is not subjected to

以下、この発明の一実施例を従来の技術の説明と同様に
超音波レベル計を例にとり図面に基づいて詳細に説明す
る。第5図はこの発明の一実施例を示す系統図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings, taking an ultrasonic level meter as an example, similar to the description of the prior art. FIG. 5 is a system diagram showing an embodiment of the present invention.

尚、第5図において第1図と対応する部分には同一符号
を付し、その重複説明は省略する。第5図において、本
発明自動利得制御回路(以下1AGC回路.と略称する
)10はここてはキイードM℃回路構成とされる。即ち
、M℃回路10は、この例では乗算回路10aと、この
乗算回路10aの出力信号を取に出してダイオードD1
を通じて記憶コンデンサC1に受波信号の振幅に比例し
たレベルのAGC信号を供給するスイッチ素子10bと
、記憶コンデンサC1に記憶したAGC信号と設定電圧
源10cからの電圧値との差を増幅して乗算回路10a
にフィードバックする差動増幅器10dとにより構成す
ることができる。このAGC回路10は、多重反射現象
が起き得る程度に液面4が送受波器3に近付くと、スイ
ッチ素子10bは第1受波信号A1が生起される間だけ
オンとし、第1受波信号A1の振幅に比例したAGC電
圧を記憶コンデンサC1に記憶させるように動作する。
このAGC回路10のスイッチ素子10bをオン、オフ
動作させるために、単安定マルチバイブレータ(以下5
単安定マルチョと略称する)12,13,14と、アン
ドゲート回路15と、フリップフロップ回路16と、オ
アゲート回路17と、インバータ18とにより構成され
る検出回路が設けられる。
In FIG. 5, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and redundant explanation thereof will be omitted. In FIG. 5, the automatic gain control circuit (hereinafter abbreviated as 1AGC circuit) 10 of the present invention has a keyed M° circuit configuration. That is, in this example, the M°C circuit 10 includes a multiplier circuit 10a and an output signal of the multiplier circuit 10a, which is connected to a diode D1.
A switching element 10b supplies an AGC signal at a level proportional to the amplitude of the received signal to the storage capacitor C1 through the switch element 10b, and amplifies and multiplies the difference between the AGC signal stored in the storage capacitor C1 and the voltage value from the set voltage source 10c. circuit 10a
It can be configured by a differential amplifier 10d that feeds back to the In this AGC circuit 10, when the liquid level 4 approaches the transducer 3 to the extent that a multiple reflection phenomenon may occur, the switch element 10b is turned on only while the first received signal A1 is generated, and the first received signal A1 is turned on. It operates to store an AGC voltage proportional to the amplitude of A1 in the storage capacitor C1.
In order to turn on and off the switching element 10b of this AGC circuit 10, a monostable multivibrator (hereinafter referred to as 5
A detection circuit is provided which includes monostable multi-channel circuits 12, 13, and 14, an AND gate circuit 15, a flip-flop circuit 16, an OR gate circuit 17, and an inverter 18.

この検出回路からの信号によつてN℃回路10のスイッ
チ素子10bをオン又はオフ動作させる。第6図は第5
図の動作の説明に供する波形図である。
The switch element 10b of the N°C circuit 10 is turned on or off by a signal from this detection circuit. Figure 6 is the 5th
FIG. 4 is a waveform diagram for explaining the operation shown in the figure.

以下、この波形図と共に第5図の動作を説明する。スイ
ッチ素子10bは、先す送受波器3から超音波が送波さ
れる時間及びその前後のある時間はオフに制御される。
The operation shown in FIG. 5 will be explained below along with this waveform diagram. The switch element 10b is controlled to be turned off during the time when the ultrasonic wave is transmitted from the transducer 3 and a certain time before and after that time.

このために、タイミングパルス発生器2から送波タイミ
ングのある時間前に出される信号を取り出し、この信号
を単安定マルチ14に供給し、この単安定マルチ14よ
り第6図(1)Bに示すように送波信号Cの送波期間を
含む矩形波Pbを得るようにし、この矩形波Pbをオア
ケート回路17、インバータ18を通じてスイッチ素子
10bに供給し、この矩形波Pbが1L論理にある間ス
イッチ素子10bをインバータ18からの矩形波Pg(
7)ROョ論理でオフに保持させるようにする。一方、
多重反射現象の影響をより確実に受けないようにするた
めの保護回路として、この実施例では単安定マルチ13
が設けられる。
For this purpose, a signal issued a certain time before the wave transmission timing is extracted from the timing pulse generator 2, and this signal is supplied to the monostable multi 14, as shown in FIG. 6 (1) B. A rectangular wave Pb including the transmitting period of the transmitting signal C is obtained as shown in FIG. The element 10b is connected to the rectangular wave Pg (
7) Make the RO logic hold it off. on the other hand,
In this example, a monostable multi-13
is provided.

単安定マルチ13は、タイミングパルス発生器2から送
波タイミング信号が供給され、送波時点からある一定時
間RL論理を保持する第6図(1)Cに示す矩形波Pc
を出力する。この矩形波Pcのパルス幅Tcは、多重反
射現象が起きる距離の最大値に対応する時間幅に設定さ
れる。単安定マルチ12は、時間幅測定回路5の出力で
ある時間幅測定信号が供給されて、この時間幅測定信号
の立下りからある一定時間r1ョ論理を保持する矩形波
Peを得る。時間幅測定回路5は、この例ではフリップ
フロップ回路を用いることができ、そのセット端子Sに
はタイミングパルス発生器2から送波タイミングパルス
が供給され、リセット端子Rには受波回路6からの受波
信号が供給される。従つて、第1受波信号A1が所定の
レベルに達している場合、この第1受波信号A1によつ
て時間幅測定回路5はリセットされ、その出力には時間
幅測定信号として第6図(1)Dに示すような送波時点
から第1受波信号A1までの間11J論理に保持される
矩形波Pdが得られる。尚、この矩形波Pdのパルス幅
が計測すべき距離に対応するので、例えばす矩形波Pd
が11J論理に保持されている間クロックパルスを計数
させ、このクロックパルス数を表示器7にて表示させて
送受波器3から液面4までの距離を表示させることがで
きる。
The monostable multi 13 is supplied with a wave transmission timing signal from the timing pulse generator 2, and generates a rectangular wave Pc shown in FIG.
Output. The pulse width Tc of this rectangular wave Pc is set to a time width corresponding to the maximum value of the distance at which the multiple reflection phenomenon occurs. The monostable multi 12 is supplied with the time width measurement signal that is the output of the time width measurement circuit 5, and obtains a rectangular wave Pe that maintains the logic for a certain period of time from the fall of the time width measurement signal. The time width measurement circuit 5 can use a flip-flop circuit in this example, and its set terminal S is supplied with the transmitting timing pulse from the timing pulse generator 2, and its reset terminal R is supplied with the transmitting timing pulse from the receiving circuit 6. A received signal is supplied. Therefore, when the first received signal A1 has reached a predetermined level, the time width measuring circuit 5 is reset by the first received signal A1, and the time width measuring circuit 5 is outputted as a time width measuring signal as shown in FIG. (1) A rectangular wave Pd maintained at 11J logic from the time of transmission to the first received signal A1 as shown in D is obtained. Incidentally, since the pulse width of this rectangular wave Pd corresponds to the distance to be measured, for example, the pulse width of the rectangular wave Pd
The clock pulses are counted while the 11J logic is maintained, and the number of clock pulses is displayed on the display 7 to display the distance from the transducer 3 to the liquid level 4.

再び単安定マルチ12の動作について説明する。The operation of the monostable multi 12 will be explained again.

単安定マルチ12では、時間幅測定回路5の出力である
矩形波Pdの立下りから少なくとも第1受波信号A1が
終了するまでの時間11.J論理を保持する矩形波Pe
を発生する。この矩形波Peがアンドゲート回路15に
供給される。従つて、単安定マルチ13から出力される
矩形波Pcがr1ョ論理を保つている間に矩形波Peが
生起されると、矩形波Peはアンドゲート回路15を通
過してフリップフロップ回路16のセット端子Sに導か
れる。従つて、矩形波Peの立下りにてフリップフロッ
プ回路16はセットされる。尚、フリップフロップ回路
16のリセット端子Rには例えば送波タイミングパルス
を供給し、送波時点にてフリップフロップ回路16をリ
セットさせればよい。従つてフリップフロップ回路16
からは第6図(1),E,Fに示すように矩形波Peの
立下り”時点がら送波タイミングまでの間11j論理に
保持される矩形波Pfが得られる。この矩形波Pfはオ
アゲート回路17を通過してインバータ18にて極性反
転されてスイッチ素子10bに供給されるから、結局ス
イッチ素子10bは第6図(1)Gに示すように、矩形
波Pbの立下りから矩形波Pfの立下りまでの間オンと
なり、その他の期間はオフに保持される。従つてこの状
態では、第1受波信号A1だけがダイオードD1にて整
流され、その整流出力が記憶コンデンサC1に記憶(充
電)される。言替えれば、この記憶コンデンサC1には
第1受波信号A1の振幅だけに依存したレベルのAGC
信号が得られる。第1受波信号A1の振幅が大きい時は
、差動増幅器10dの出力は正極性の電圧が漸次低下し
、これが乗算回路10aに供給されるから乗算回路10
aから得られる受波信号のレベルは小さくなる方向に制
御される。逆に第1受波信号A1の振幅が小さい時は、
記憶コンデンサC1の充電電圧が小さくなり、差動増幅
器10dの出力は正極性方向に増加し乗算回路10aの
利得は上昇する。従つて上述の如く構成することにより
、第6図(■)に併せて示すように、第1受波信号Al
,Al″が単安定マルチ13からの矩形波Pc,Pc″
の時間幅Tc内に受波される場合に限つて、第1受波信
号Al,Al″の生起後スイッチ素子10bはオフに制
御されて、それ以降の第2受波信号A2,〜″、第3受
波信号A3,A3″,・・・第n受波信号An,An″
がAGC信号成分に加算されるのを阻止する。
In the monostable multi 12, the time 11. from the fall of the rectangular wave Pd, which is the output of the time width measurement circuit 5, until at least the first received signal A1 ends. Rectangular wave Pe that maintains J logic
occurs. This rectangular wave Pe is supplied to the AND gate circuit 15. Therefore, when the rectangular wave Pe is generated while the rectangular wave Pc output from the monostable multi 13 maintains the logic of r1, the rectangular wave Pe passes through the AND gate circuit 15 and is output to the flip-flop circuit 16. It is led to the set terminal S. Therefore, the flip-flop circuit 16 is set at the falling edge of the rectangular wave Pe. Note that, for example, a wave transmission timing pulse may be supplied to the reset terminal R of the flip-flop circuit 16 to reset the flip-flop circuit 16 at the time of wave transmission. Therefore, the flip-flop circuit 16
As shown in FIG. 6(1), E and F, a rectangular wave Pf is obtained which is held in the 11j logic from the falling point of the rectangular wave Pe to the wave transmission timing. It passes through the circuit 17, has its polarity inverted by the inverter 18, and is supplied to the switching element 10b, so that the switching element 10b eventually converts the rectangular wave Pf from the falling edge of the rectangular wave Pb, as shown in FIG. 6 (1) G. It is turned on until the fall of , and is kept off during the rest of the period. Therefore, in this state, only the first received signal A1 is rectified by the diode D1, and its rectified output is stored in the storage capacitor C1 ( In other words, this storage capacitor C1 has an AGC level that depends only on the amplitude of the first received signal A1.
I get a signal. When the amplitude of the first received signal A1 is large, the positive polarity voltage of the output of the differential amplifier 10d gradually decreases, and this is supplied to the multiplier circuit 10a.
The level of the received signal obtained from a is controlled in the direction of decreasing. Conversely, when the amplitude of the first received signal A1 is small,
The charging voltage of the storage capacitor C1 becomes smaller, the output of the differential amplifier 10d increases in the positive polarity direction, and the gain of the multiplier circuit 10a increases. Therefore, by configuring as described above, as shown in FIG. 6 (■), the first received signal Al
, Al'' are the rectangular waves Pc, Pc'' from the monostable multi 13
Only when the waves are received within the time width Tc of , the switch element 10b is controlled to be turned off after the generation of the first received signals Al, Al'', and the subsequent second received signals A2, ~'', Third received signal A3, A3'', ... nth received signal An, An''
is prevented from being added to the AGC signal component.

従つて近距離で多重反射現象が起きる状況では第1受波
信号Al,Al″の振幅だけが検出され、AGC回路1
0は第1受波信号Al,Al″に対してだけ正常な増幅
動作を行ない、時間幅測定回路5に正常な測定停止信号
を供給することができる。ところで、液面4が送受波器
3より大きく離れた場合には、第6図(■)に示すよう
に第1受波信号A1″は単安定マルチ13からの矩形波
Pc″″の立下り後に生起されるから、この状態では単
安定マルチ12からの矩形波Pe″はアンドゲート回路
15を通過できず、故にフリップフロップ回路16はい
つまでもセセツトされない(出力は第6図(■)Fに示
すようにROョ論理を保持する)。よつてスイッチ素子
10bは、単安定マルチ14からの矩形波Pb″の期間
だけオフに制御され、その他の期間はオンに制御される
ので、遠距離から反射してくる受波信号を距離補正回路
9とAGC回路10の協働によつて正確にとらえること
がてきる。〈その他の実施例〉 ところで上述においては、送波信号の減衰振動の期間が
一定に抑えられて矩形波Pbの時間幅より後にわずかで
も残らないような状態で動作するものとして説明したが
、実際上は電源投入時や温度変化等によつて減衰振動の
時間幅が変動し、単安定マルチ14からの矩形波Pbの
立下りより後にまだ減衰振動が残つてしまう場合が生じ
る。
Therefore, in a situation where a multiple reflection phenomenon occurs in a short distance, only the amplitude of the first received signals Al, Al'' is detected, and the AGC circuit 1
0 performs a normal amplification operation only for the first received wave signals Al, Al'', and can supply a normal measurement stop signal to the time width measuring circuit 5. By the way, when the liquid level 4 is If the distance is larger, the first received signal A1'' is generated after the fall of the rectangular wave Pc'' from the monostable multi 13, as shown in FIG. The rectangular wave Pe'' from the stable multiplier 12 cannot pass through the AND gate circuit 15, so the flip-flop circuit 16 is not set forever (the output maintains the RO logic as shown in FIG. 6(■)F). Therefore, the switch element 10b is controlled to be OFF only during the period of the rectangular wave Pb'' from the monostable multi 14, and is controlled to be ON during the other periods, so that the received signal reflected from a long distance is transferred to the distance correction circuit. 9 and the AGC circuit 10 work together to enable accurate capture. <Other Examples> By the way, in the above description, it is assumed that the operation is performed in such a state that the period of damped oscillation of the transmitted signal is suppressed to a constant value so that even the slightest amount does not remain after the time width of the rectangular wave Pb. As shown above, the time width of the damped oscillation fluctuates due to power-on, temperature changes, etc., and there are cases where the damped oscillation still remains after the fall of the rectangular wave Pb from the monostable multi 14.

この時の検出回路の動作例を、装置の電源スイッチ投入
直後で且つAGC回路10の記憶コンデンサC1の充電
電圧がゼロ、即ち、AGC回路10が最大利得状態にあ
る時を第6図(■)を用いて説明する。このようなAG
C回路10の利得が大きい状態にあつて単安定マルチ1
4からの矩形波Pb2″5の立下り以後に残存する減衰
振動C″″″は、AGC回路10で充分増幅され得るた
め受波信号として誤つて検出される。
An example of the operation of the detection circuit at this time is shown in Figure 6 (■) immediately after the power switch of the device is turned on and the charging voltage of the storage capacitor C1 of the AGC circuit 10 is zero, that is, the AGC circuit 10 is in the maximum gain state. Explain using. AG like this
When the gain of the C circuit 10 is large, the monostable multi 1
The damped vibration C″″″ remaining after the fall of the rectangular wave Pb2″5 from Pb2″5 can be sufficiently amplified by the AGC circuit 10, so that it is erroneously detected as a received signal.

この結果フリップフロップ回路5がリセットされて矩形
波Pd″″″が立下り、この信号で単安定マルチ12か
らの矩形波Pe″″″をアンドゲート回路15に出力す
る。一方矩形波Pc″″″がRlJ論理となつているの
でアンドゲート回路15からは01J論理がフリップフ
ロップ回路16に出力される。この結果フリップフロッ
プ回路16がセットされて矩形波Pr″″″がr1ョ論
理となり、インバータ18からの矩形被Pg″″″が1
L論理から10ョ論理になつて正規の第1受波信号A1
″″゛が到来しないうちにスイッチ素子10bがオフと
なる。尚、矩形波Pg″″″が最初に”1L論理となる
のは単安定マルチ14からの矩形波Pb″″″が10ョ
論理となる立下り時で、この時にスイッチ素子10bが
オンとなる。従つて、このような状態となつた時のAG
C回路10の利得は残存する減衰振動の時点に依存する
ので、最大利得状態のまま保持される。故に、次の送波
信号に対しても同じように動作する。即ち、矩形波Pb
″″″より減衰振動の時間幅が大きくなり或は最初から
大きかつた場合等は、残存する減衰振動を受波信号と誤
るような状態となり、その結果一旦AGC回路10の利
得が最大利得状態となつてしまつた時は、この最大利得
状態にロックされてしまう現象が生じるという欠点があ
る。第7図はこの欠点を除去するための実施例の系統図
、第8図は第6図に対応して表わす第7図におけるAG
C回路の利得が大きくなつた時の対応動作説明に供する
波形図である。
As a result, the flip-flop circuit 5 is reset and the rectangular wave Pd'''' falls, and this signal outputs the rectangular wave Pe'''' from the monostable multi 12 to the AND gate circuit 15. On the other hand, since the rectangular wave Pc'''' is in the RlJ logic, the AND gate circuit 15 outputs the 01J logic to the flip-flop circuit 16. As a result, the flip-flop circuit 16 is set and the rectangular wave Pr'''' is output. r1 logic, and the rectangular target Pg'''' from the inverter 18 is 1.
The normal first received signal A1 changes from L logic to 10 logic.
The switch element 10b is turned off before ``'''' arrives. Note that the rectangular wave Pg""" first becomes "1L logic" at the falling edge when the rectangular wave Pb""" from the monostable multi 14 becomes "10" logic, and at this time the switch element 10b is turned on. .Therefore, when this situation occurs, AG
Since the gain of the C circuit 10 depends on the point in time of the remaining damped oscillation, it remains at its maximum gain state. Therefore, it operates in the same way for the next transmitted signal. That is, the rectangular wave Pb
If the time width of the damped oscillation becomes larger than ``'''' or is larger from the beginning, the remaining damped oscillation may be mistaken for a received signal, and as a result, the gain of the AGC circuit 10 temporarily returns to the maximum gain state. When this happens, there is a drawback that a phenomenon occurs in which the maximum gain state is locked. Fig. 7 is a system diagram of an embodiment for eliminating this drawback, and Fig. 8 is similar to Fig. 6. AG in FIG. 7 correspondingly represented
FIG. 7 is a waveform diagram for explaining the corresponding operation when the gain of the C circuit becomes large.

第7図に示すこの例では、AGC回路10の差動増幅器
10dの出力を比較器19の反転端子に入力して非反転
端子に接続される設定値と比較し、差動増幅器10dの
出力が設定値より大きく、AGC回路10が所定の利得
より高くなつている時は比較器19の出力をROョ論理
に反転させる。
In this example shown in FIG. 7, the output of the differential amplifier 10d of the AGC circuit 10 is input to the inverting terminal of the comparator 19 and compared with the set value connected to the non-inverting terminal, and the output of the differential amplifier 10d is When the gain is larger than the set value and the AGC circuit 10 has a gain higher than a predetermined value, the output of the comparator 19 is inverted to RO logic.

この比較器19のTOョ論理をアンドゲート回路15に
供給してアンドゲート回路15の出力をROョ論理に固
定する。即ち、減衰振動の残存成分によつてフリップフ
ロップ5がリセットされ、第8図(1)に示すように矩
形波Pdの立下りによつて単安定マルチ12からの矩形
波Peがアンドゲート回路15に出力されてもこの出力
を無視してアンドゲート回路15の出力を10ョ論理に
固定する。従つてフリップフロップ回路46の出力は第
8図Fに示すようにROョ論理が維持されるので、スイ
ッチ素子10bは単安定マルチ14の矩形波Pbの立下
り時点、即ち、その論理出力がRlJから10ョとなつ
た時点でインバータ18からの矩形波Pgがr1ョ論理
となりオンに制御される。オン制御されたスイッチ素子
10bを介して第1受波信号A1、第2受波信号A2、
・・・第n受波信号Mの整流出力が記憶コンデンサC1
に充電され、AGC回路10の利得を下げる。インバー
タ18からの出力Pgは、第8図(1)Gに示すように
、次の単安定マルチ14の出力矩形波Pb″がRlJ論
理となつた時点、即ち、次の送信が開始された時点で1
0J論理となる。従つて次の送信の時においては、利得
の下つたAGC回路10の差動増幅器10dの出力を比
較器19によつて設定値と比較する。比較の結果まだ差
動増幅器10dの出力が設定値より大きい時は上記の動
作を再度繰り返す。比較の結果、差動増幅器10dの出
力が比較器19の設定値より小さくなつた時(AGC回
路10が所定の利得と等しいか小さくなつている時)は
、比較的19の出力を10ョ論理からRlj論理に反転
させてアンドゲート回路15に供給し、アンドゲート回
路15を単安定マルチ12,13からの矩形波Pc,P
eの論理出力に依存した動作、即ち、アンドケート回路
15を開け多重反射防止の動作を第8図(■,■−)に
示すように行なわせる構成とすることができる。
The TO logic of the comparator 19 is supplied to the AND gate circuit 15, and the output of the AND gate circuit 15 is fixed to the RO logic. That is, the flip-flop 5 is reset by the residual component of the damped vibration, and as shown in FIG. Even if the output is output to 10, this output is ignored and the output of the AND gate circuit 15 is fixed at 10 logic. Therefore, the output of the flip-flop circuit 46 maintains the RO logic as shown in FIG. At the point when the voltage becomes 10, the rectangular wave Pg from the inverter 18 becomes r1, and is controlled to be turned on. A first received signal A1, a second received signal A2,
...The rectified output of the n-th received signal M is the storage capacitor C1
The gain of the AGC circuit 10 is lowered. The output Pg from the inverter 18 is, as shown in FIG. 8 (1) G, when the output rectangular wave Pb'' of the next monostable multi 14 becomes RlJ logic, that is, when the next transmission is started. de1
It becomes 0J logic. Therefore, at the time of the next transmission, the output of the differential amplifier 10d of the AGC circuit 10 whose gain has decreased is compared with the set value by the comparator 19. As a result of the comparison, if the output of the differential amplifier 10d is still larger than the set value, the above operation is repeated again. As a result of the comparison, when the output of the differential amplifier 10d becomes smaller than the set value of the comparator 19 (when the gain of the AGC circuit 10 is equal to or smaller than the predetermined gain), the output of the differential amplifier 10d is relatively is inverted to Rlj logic and supplied to the AND gate circuit 15.
An operation depending on the logical output of e, that is, an operation for preventing multiple reflections by opening the nest circuit 15, can be configured as shown in FIG. 8 (■, ■-).

ところで、第7図において比較器19の出力信号を利用
して何等かの原因によつて反射波が返つてこなくなつて
しまつた状態を検出し、この検出出力によつて先に測定
しているデータ値を保持して表示を保持させるようにす
ることもてきる。
By the way, in Fig. 7, the output signal of the comparator 19 is used to detect a state in which the reflected wave does not return due to some reason, and this detection output is used to detect the state in which the reflected wave is not returned. It is also possible to maintain the display by retaining the data value.

〈発明の効果〉以上、実施例と共に具体的に本発明を説
明したように、この発明によれば例えば超音波レベル計
の誤動作を確実に防止でき信頼性を向上できる。
<Effects of the Invention> As described above in detail with reference to the embodiments, according to the present invention, malfunctions of, for example, an ultrasonic level meter can be reliably prevented and reliability can be improved.

尚、この発明は超音波レベル計に応用されるだけに限ら
ず、その他の超音波を利用した測定器にも適用できるこ
とは容易に理解てきよう。
It should be noted that it will be easily understood that the present invention is not limited to being applied to an ultrasonic level meter, but can also be applied to other measuring instruments that utilize ultrasonic waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波レベル計を説明するための系統図
、第2図乃至第4図はその動作の説明に供する波形図、
第5図はの発明の一実施例を示す系統図、第6図はその
動作の説明に供する波形図、第7図はこの発明の他の実
施例を示す系統ノ図、第8図はその動作の説明に供する
波形図である。 1・・・・・・超音波発信器、3・・・・・・送受波器
、5・・・時間幅測定回路、6・・・・・・受波回路。
FIG. 1 is a system diagram for explaining a conventional ultrasonic level meter, and FIGS. 2 to 4 are waveform diagrams for explaining its operation.
Fig. 5 is a system diagram showing one embodiment of the invention, Fig. 6 is a waveform diagram for explaining its operation, Fig. 7 is a system diagram showing another embodiment of the invention, and Fig. 8 is a system diagram thereof. FIG. 3 is a waveform diagram for explaining the operation. 1... Ultrasonic transmitter, 3... Transmitter/receiver, 5... Time width measuring circuit, 6... Wave receiving circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波を送受波器に用いて被測定対象に向つて送波
し、その反射波又は通過波を受波して各種の測定を行な
う超音波測定装置において、上記受波された受波信号の
振幅により利得が制御される自動利得制御回路と、上記
送波後の多重反射現象が起きる距離の最大値に対する時
間幅を設定しこの時間幅より短かい時間幅内に上記受波
信号の第1受波信号が得られるか否かを検出する検出回
路と、該検出回路で上記第1受波信号が検出された時の
上記検出回路からの信号により上記自動利得制御回路の
利得をその時の状態に保持する手段と、を有することを
特徴とする超音波測定装置。
1. In an ultrasonic measuring device that uses a transducer to transmit ultrasonic waves toward an object to be measured and receives the reflected waves or passing waves to perform various measurements, the received signal is and an automatic gain control circuit whose gain is controlled by the amplitude of the received signal. a detection circuit for detecting whether or not the first received signal is obtained; and a signal from the detection circuit when the first received signal is detected by the detection circuit to control the gain of the automatic gain control circuit at that time. An ultrasonic measuring device comprising: means for maintaining the state.
JP51078105A 1976-06-30 1976-06-30 Ultrasonic measuring device Expired JPS6044624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51078105A JPS6044624B2 (en) 1976-06-30 1976-06-30 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51078105A JPS6044624B2 (en) 1976-06-30 1976-06-30 Ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JPS533844A JPS533844A (en) 1978-01-13
JPS6044624B2 true JPS6044624B2 (en) 1985-10-04

Family

ID=13652596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51078105A Expired JPS6044624B2 (en) 1976-06-30 1976-06-30 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JPS6044624B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021448A (en) * 1983-07-15 1985-02-02 Mitsubishi Heavy Ind Ltd Ultrasonic wave inspection apparatus
JPS61194318A (en) * 1985-02-25 1986-08-28 Fueroo:Kk Proper sensitivity setting of supersonic wave level meter
JPS61207927A (en) * 1985-03-12 1986-09-16 Fueroo:Kk Stable measuring method for ultrasonic level instrument
NL8502673A (en) * 1985-09-30 1987-04-16 Tno METHOD AND APPARATUS FOR DETERMINING THE SPEED, DIRECTION AND OTHER VALUES OF A FLOW, IN PARTICULAR A GAS FLOW.
JPH03118422A (en) * 1989-09-30 1991-05-21 Tokyo Keiso Co Ltd Liquid level detecting apparatus

Also Published As

Publication number Publication date
JPS533844A (en) 1978-01-13

Similar Documents

Publication Publication Date Title
US4080574A (en) Apparatus for providing time reference signals
JPS6347685A (en) Photoelectric destance measuring device by principle of transmission-time measurement
JPS5937459A (en) Body detector by ultrasonic wave
JPS5824730B2 (en) Ultrasonic pulse echo thickness measurement method and device
EP2356440B1 (en) Method for determining the starting instant of an acoustic signal response
JPS6233637B2 (en)
US4679175A (en) Ultrasonic distance sensor with dual burst noise rejection
JPS6044624B2 (en) Ultrasonic measuring device
US3951549A (en) Transmitter-receiver system
US3522580A (en) Apparatus and method for measuring speed of sound in liquid
US4051433A (en) Signal responsive burst period timer and counter for laser doppler velocimetry and the like
CN113959509B (en) Method and system for reducing time measurement error of ultrasonic water meter
US6538865B1 (en) Fault-detecting device for communication system
JPS61147174A (en) Method of transmitting and receiving periodic pulse row
JPS6044626B2 (en) Ultrasonic measuring device
JPH0432994B2 (en)
JP2771570B2 (en) Ultrasonic detector
JPS6084012A (en) Contactless switch
JPH04110687A (en) Temperature-compensation method of detection sensitivity in supersonic sensor
JPS6310795B2 (en)
US20230236647A1 (en) Receiver detection system and receiver detection device
JP2803192B2 (en) Ultrasonic measuring device
JPH0349397B2 (en)
JPH03118495A (en) Ultrasonic measuring apparatus
JPH0882673A (en) Ultrasonic distance-measuring apparatus