JPS6044481B2 - Extraction part structure of extraction turbine - Google Patents

Extraction part structure of extraction turbine

Info

Publication number
JPS6044481B2
JPS6044481B2 JP10393478A JP10393478A JPS6044481B2 JP S6044481 B2 JPS6044481 B2 JP S6044481B2 JP 10393478 A JP10393478 A JP 10393478A JP 10393478 A JP10393478 A JP 10393478A JP S6044481 B2 JPS6044481 B2 JP S6044481B2
Authority
JP
Japan
Prior art keywords
turbine
extraction
steam
pressure turbine
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10393478A
Other languages
Japanese (ja)
Other versions
JPS5532932A (en
Inventor
至文 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10393478A priority Critical patent/JPS6044481B2/en
Publication of JPS5532932A publication Critical patent/JPS5532932A/en
Publication of JPS6044481B2 publication Critical patent/JPS6044481B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は抽気タービンに係り、特に抽気部の構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air bleed turbine, and particularly to the structure of an air bleed section.

〔発明の背景〕[Background of the invention]

第1図は抽気タービンの全体概念図を示す。 FIG. 1 shows an overall conceptual diagram of the extraction turbine.

ボイラBからの高温・高圧蒸気は主蒸気止め弁1及−び
蒸気加減弁2を介して抽気タービン3の高圧タービン4
に供給される。高圧タービン4で仕事をした蒸気は抽気
部5において抽気口6からプロセス蒸気系統Pに送られ
る蒸気と、低圧タービン7に送られる蒸気に分けられる
。プロセス蒸気系統;Pでは、例えば塩水の淡水化等に
蒸気を使用するため、ある決められた一定の蒸気圧を必
要とする。
High-temperature, high-pressure steam from the boiler B passes through the main steam stop valve 1 and the steam control valve 2 to the high-pressure turbine 4 of the extraction turbine 3.
is supplied to The steam that has done work in the high-pressure turbine 4 is divided into steam that is sent to the process steam system P from the extraction port 6 in the extraction section 5 and steam that is sent to the low-pressure turbine 7. In the process steam system P, steam is used for desalination of salt water, for example, so a certain fixed steam pressure is required.

このため抽気加減弁8の開閉により低圧タービン7に供
給する蒸気量を調整し一定圧力を得る方法をとつている
。高圧タービン4と低圧タービン7の間には抽気仕切板
9があり直接蒸気が低圧タービン7に流入しないように
なつている。低圧タービン7て仕事をした蒸気は排気口
10からコンデンサーCに排出される。そして高圧ター
ビン4の高圧段11及び低圧タービン7の低圧段12に
受けた動力はロータ13に直結した発電機14Jを回転
させ電気出力を得るようになつている。次に抽気タービ
ン抽気部の構造であるが、従来技術としては第2図に示
すように上下に操作される型の抽気加減弁8がタービン
ケーシング15の上方に配置されている。従つて低圧タ
ービン ヘの最大流入蒸気量が多くなるとそれに伴つて
抽気加減弁8の口径d、を大きくする必要がある。抽気
加減弁8の口径d、を大きくするということは抽気ター
ビン3の全体からみるとロータ方向長さを延ばすことに
なり、そのため、しばしば抽気加減弁8は第3図の断面
図で示すように小さな弁を数多く、タービンの軸と直角
方向に並べて軸方向長さを延ばさないよう対処している
。しカルながら上記構造にしても、第2図に示す如く弁
の口径と弁座を設ける分だけロータ13の遊び部分16
ができてしまうという欠点があつた。さらに低圧タービ
ン ヘの流入蒸気量が多くなると第4図及び第5図の如
く、タービンケーシング15から配管17で1度蒸気を
取り出し抽気加減弁8で蒸気量を制御し、再び低圧ター
ビン7に蒸気を戻す方法をとるが、ケーシング15に設
けた蒸気の排出口18部及び流入口19部は配管17と
結ばれるため、円形形状をとらねばならず、このため第
4図から明らかな如くロータ13の遊び部分16が非常
に長くなつてしまうという欠点があつた。〔発明の目的
〕本発明の目的は、かかる抽気タービンの抽気部におけ
るロータの遊び部分を極力短くしてコンパクトな抽気タ
ービン構造を提供することにある。
For this reason, a method is used in which the amount of steam supplied to the low pressure turbine 7 is adjusted by opening and closing the extraction control valve 8 to obtain a constant pressure. A bleed partition plate 9 is provided between the high pressure turbine 4 and the low pressure turbine 7 to prevent direct steam from flowing into the low pressure turbine 7. The steam that has done work in the low pressure turbine 7 is discharged from the exhaust port 10 to the condenser C. The power received by the high pressure stage 11 of the high pressure turbine 4 and the low pressure stage 12 of the low pressure turbine 7 rotates a generator 14J directly connected to the rotor 13 to obtain electrical output. Next, regarding the structure of the bleed air turbine bleed section, in the prior art, as shown in FIG. 2, a bleed air control valve 8 of the type that can be operated up and down is disposed above the turbine casing 15. Therefore, as the maximum amount of steam flowing into the low-pressure turbine increases, it is necessary to increase the diameter d of the extraction control valve 8. Increasing the diameter d of the bleed air control valve 8 means increasing the length in the rotor direction when looking at the entire bleed air turbine 3, and therefore, the bleed air control valve 8 is often A large number of small valves are arranged perpendicular to the turbine axis to avoid increasing the axial length. However, even with the above structure, as shown in FIG.
The disadvantage is that it can cause Furthermore, when the amount of steam flowing into the low-pressure turbine increases, as shown in FIGS. 4 and 5, steam is taken out from the turbine casing 15 through the piping 17 and the amount of steam is controlled using the extraction control valve 8, and then the steam is returned to the low-pressure turbine 7. However, since the steam outlet 18 and the steam inlet 19 provided in the casing 15 are connected to the piping 17, they must have a circular shape. The disadvantage is that the free play portion 16 of the device becomes very long. [Object of the Invention] An object of the present invention is to provide a compact bleed turbine structure by minimizing the idle portion of the rotor in the bleed section of the bleed turbine.

〔発明の概要〕本発明の特徴とするところは、抽気部分
のロータの遊び部分を極力短くするため、バタフライ弁
タイプの抽気加減弁をケーシングの半径方向に伸延した
蒸気通路部に複数個配置するようにしたものて、抽気部
である高圧側蒸気排気口及び低圧側蒸気流入口をケーシ
ングのほぼ半周以上にわたつて設ける構造にしたもので
ある。
[Summary of the Invention] The present invention is characterized in that a plurality of butterfly valve type bleed control valves are arranged in the steam passage extending in the radial direction of the casing in order to minimize the play area of the rotor in the bleed part. In this structure, the high-pressure side steam exhaust port and the low-pressure side steam inlet, which are air extraction parts, are provided over approximately half the circumference of the casing.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の一実施例を図面を参照して説明する。 Next, one embodiment of the present invention will be described with reference to the drawings.

全体の概要構成については第1図乃至第3図と同様であ
るので説明を省略し、相違部分について述べる。
Since the overall general structure is the same as that shown in FIGS. 1 to 3, the explanation will be omitted, and only the different parts will be described.

第6図及び第7図に示すとおり、抽気部5において、ケ
ーシング15を抽気口6の反対側を半径方向に拡大した
拡張部分20を形成し、この部分を排気部の高圧側と低
圧側との蒸気通路部21としている。
As shown in FIGS. 6 and 7, in the bleed part 5, the casing 15 is expanded in the radial direction on the opposite side of the bleed port 6 to form an enlarged part 20, and this part is defined as the high pressure side and the low pressure side of the exhaust part. This is the steam passage section 21.

高圧段落11で仕事をし終えた蒸気のうち、プロセス側
で必要とする蒸気を下方の抽気口6から抽気し、低圧タ
ービン7に流す蒸気は高圧タービン排気口18からケー
シング15を半径方向に拡大した拡張部分20によつて
元のケーシング15の外側壁との間で形成される高低圧
蒸気通路部21をタービン軸と平行に低圧タービン7側
に流れる。この高低圧連絡蒸気通路部21の途中に隔壁
24があり、この隔壁24に弁口25が形成され、各弁
口25にはバタフライ弁タイプの抽気加減弁8を配置す
る。制御機構22により弁−棒23を介して一連の抽気
加減弁8の開度を調整する。低圧側の蒸気入口19の開
口は抽気加減弁8の形状とは無関係に第6図及び第7図
から明らかな如く、低圧タービンケーシングの直径Dを
直径とする円弧上にほぼ半周にわたり開口を設けること
ができるので、下記する数値検討で明らかであるが十分
短いタービン軸方向距離の間隔を必要とするだけで低圧
タービン7側に多量の蒸気の送気が可能である。このタ
ービン軸方向距離について具体的数値を当てはめて検討
してみる。
Of the steam that has completed its work in the high-pressure stage 11, the steam required on the process side is extracted from the lower extraction port 6, and the steam flowing to the low-pressure turbine 7 is expanded in the radial direction of the casing 15 from the high-pressure turbine exhaust port 18. Steam flows parallel to the turbine axis toward the low-pressure turbine 7 through a high-low-pressure steam passage section 21 formed between the expanded portion 20 and the outer wall of the original casing 15 . There is a partition wall 24 in the middle of this high and low pressure communicating steam passage section 21, and valve ports 25 are formed in this partition wall 24, and a butterfly valve type bleed air adjustment valve 8 is arranged in each valve port 25. A control mechanism 22 adjusts the opening of a series of bleed control valves 8 via a valve-rod 23. As is clear from FIGS. 6 and 7, the opening of the steam inlet 19 on the low pressure side is provided over approximately half the circumference on an arc whose diameter is the diameter D of the low pressure turbine casing, regardless of the shape of the extraction control valve 8. Therefore, as is clear from the numerical study described below, it is possible to send a large amount of steam to the low pressure turbine 7 side by simply requiring a sufficiently short distance in the turbine axial direction. Let's consider this turbine axial distance by applying specific numerical values.

第1の従来構造(第2図及び第3図)てn個の抽気加減
弁の口径をd1とし、第2の従来構造(第4図及び第5
図)でN本”のバイブの口径を↓とする。一方、本発明
による実施例(第6図及び第7図)で、ケーシングの内
径Dのところで角度αの範囲から低圧タービンに蒸気を
流入せしめる時の軸方向距離をLとする時、各々必要蒸
気量を通過せしめる面積を求めることになるので下記関
係となる。NXXXdl2=NX÷×D22=ふ×π×
DXLここでそれぞれの実施例は図示されている通り、
n=5、N=2、α=1800とし、d1=110”瓢
、D=1500薗とするとD2=174W1In1L=
2hと計算され、本発明の実施例ではタービン軸方向距
離を第1の従来構造110Tnm1第2の従来構造17
4瓢と比べ2『しか必要とせずロータの遊び部分16を
大幅に短くすることができる。
In the first conventional structure (FIGS. 2 and 3), the diameter of the n bleed control valves is d1, and in the second conventional structure (FIGS. 4 and 5)
In the example shown in Figs. 6 and 7, steam is introduced into the low-pressure turbine from an angle α at the inner diameter D of the casing. When the axial distance at the time of pressure is set as L, the area that allows each required amount of steam to pass is determined, so the following relationship is obtained.NXXXdl2=NX÷×D22=F×π×
DXL where each embodiment is as shown:
If n = 5, N = 2, α = 1800, d1 = 110" gourd, D = 1500 son, then D2 = 174W1In1L =
2h, and in the embodiment of the present invention, the turbine axial distance is
Only 2" is required compared to 4", and the play portion 16 of the rotor can be significantly shortened.

さらに計算例ではα=180すとしたが、これを240
0位まで拡大して適用することも可能であり、そうする
とさらにL寸法を短くすることも可能である。本実施例
の構造では抽気加減弁8は半径方向に拡大された高低圧
連絡蒸気通路部21中にあり、さらに多量の蒸気量を制
御する場合にも半径方向にケーシングを拡大し、バタフ
ライ弁タイプの抽気加減弁そのものを大きくすることで
対処し、軸方向距離であるL寸法への影響は極めて小さ
い。尚一般に制御蒸気量が多量となる場合には、それに
伴つてケーシング径Dを大きくするので、ケーシングの
半径方向に拡大する拡張部分20が全体のケーシング構
造に比べて異様に大きく成り過ぎることはない。〔発明
の効果〕 本発明によれば、抽気タービン抽気部のロータ遊び部分
を最小に出来ることから、抽気タービン全体をコンパク
トに出来るという効果が達成される。
Furthermore, in the calculation example, α=180, but this is changed to 240
It is also possible to apply it by expanding it to the 0th position, and in that case, it is also possible to further shorten the L dimension. In the structure of this embodiment, the extraction control valve 8 is located in the high and low pressure communication steam passage section 21 that is expanded in the radial direction, and when controlling a large amount of steam, the casing is expanded in the radial direction, and the butterfly valve type is used. This can be dealt with by enlarging the bleed air control valve itself, and the effect on the axial distance L dimension is extremely small. Generally, when the amount of controlled steam increases, the casing diameter D is increased accordingly, so that the expanded portion 20 that expands in the radial direction of the casing does not become abnormally large compared to the overall casing structure. . [Effects of the Invention] According to the present invention, it is possible to minimize the rotor play portion of the extraction section of the extraction turbine, thereby achieving the effect that the entire extraction turbine can be made compact.

また、実施例の効果としては、ロータ全長を短く出来る
ことからロータ軸系の安定性が向上することもあげられ
る。
Another advantage of the embodiment is that the overall length of the rotor can be shortened, which improves the stability of the rotor shaft system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な抽気タービンの全体を表わす概要図、
第2図は従来形抽気タービンの抽気部を表わす断面図、
第3図は第2図における■−■方向断面図、第4図は他
の従来形抽気タービンの抽気部を表わす断面図、第5図
は第4図における■一■方向断面図、第6図は本発明の
一実施例を示す抽気タービンの抽気部を表わす断面図、
第7図は第6図における■−■方向断面図である。 4・・・・・・高圧タービン、5・・・・・・抽気部、
7・・・・・・低圧タービン、8・・・・・・抽気加減
弁、13・・・・・・ロータ、15・・・・・・ケーシ
ング、16・・・・・・ロータ遊び部、18・・・・・
高圧タービン排出口、19・・・・・・低圧タービン流
入口、20・・・・・・拡張部分、21・・・・・・蒸
気通路部、22・・・・・・制御機構、23・・・・・
・抽気加減弁弁棒。
Figure 1 is a schematic diagram showing the entire general extraction turbine;
Figure 2 is a sectional view showing the extraction section of a conventional extraction turbine;
3 is a cross-sectional view in the ■--■ direction in FIG. 2, FIG. 4 is a cross-sectional view showing the extraction section of another conventional bleed turbine, FIG. 5 is a cross-sectional view in the ■--■ direction in FIG. The figure is a sectional view showing an extraction part of an extraction turbine showing an embodiment of the present invention.
FIG. 7 is a sectional view in the direction ■--■ in FIG. 6. 4... High pressure turbine, 5... Air extraction part,
7...Low pressure turbine, 8...Bleed air control valve, 13...Rotor, 15...Casing, 16...Rotor play part, 18...
High pressure turbine exhaust port, 19...Low pressure turbine inlet, 20...Extended portion, 21...Steam passage portion, 22...Control mechanism, 23...・・・・・・
・Bleed air control valve stem.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧タービンから低圧タービンに流れる蒸気量を調
節する機能を有する抽気タービンの抽気部構造において
、タービンケーシングの抽気口の反対側を半径方向に拡
大して、その内側に高圧タービン排出口と低圧タービン
流入口を連絡する蒸気通路を形成し、前記通路部にター
ビン軸に直交するように配置した同一の弁棒に固着され
た複数のバタフライ式抽気加減弁を設置し、この加減弁
を通つた蒸気を低圧タービンケーシングの円周方向にほ
ぼ半周以上にわたつて形成された低圧タービン流入口よ
り、低圧タービンに導くようにしたことを特徴とする抽
気タービンの抽気部構造。
1 In the extraction part structure of an extraction turbine that has the function of adjusting the amount of steam flowing from the high-pressure turbine to the low-pressure turbine, the side opposite to the extraction port of the turbine casing is expanded in the radial direction, and the high-pressure turbine exhaust port and the low-pressure turbine are installed inside it. A steam passage connecting the inlets is formed, and a plurality of butterfly-type extraction control valves fixed to the same valve stem arranged perpendicular to the turbine axis are installed in the passage, and the steam passing through the control valves is installed. A bleed part structure of a bleed air turbine, characterized in that the bleed air is guided to a low pressure turbine through a low pressure turbine inlet that is formed over approximately half a circumference or more in the circumferential direction of a low pressure turbine casing.
JP10393478A 1978-08-28 1978-08-28 Extraction part structure of extraction turbine Expired JPS6044481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10393478A JPS6044481B2 (en) 1978-08-28 1978-08-28 Extraction part structure of extraction turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10393478A JPS6044481B2 (en) 1978-08-28 1978-08-28 Extraction part structure of extraction turbine

Publications (2)

Publication Number Publication Date
JPS5532932A JPS5532932A (en) 1980-03-07
JPS6044481B2 true JPS6044481B2 (en) 1985-10-03

Family

ID=14367257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10393478A Expired JPS6044481B2 (en) 1978-08-28 1978-08-28 Extraction part structure of extraction turbine

Country Status (1)

Country Link
JP (1) JPS6044481B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150529U (en) * 1985-03-11 1986-09-17
CN106481372B (en) * 2015-08-25 2018-08-17 上海电气电站设备有限公司 The built-in regulating valve of steam turbine
WO2018146792A1 (en) * 2017-02-10 2018-08-16 三菱重工コンプレッサ株式会社 Steam turbine, partition member, and method for operating steam turbine

Also Published As

Publication number Publication date
JPS5532932A (en) 1980-03-07

Similar Documents

Publication Publication Date Title
US3313518A (en) Turbine control
US4651532A (en) Method of warming up a reheat turbine
KR900001954A (en) How to reduce the valve loop to increase the efficiency of the steam turbine
JPS6044481B2 (en) Extraction part structure of extraction turbine
US10494947B2 (en) Operation method for steam turbine, and steam turbine
US4870823A (en) Low load operation of steam turbines
US2377611A (en) Turbine
RU2211338C2 (en) Device for nozzle steam distribution in high-pressure cylinder of steam turbine
JPS6140405A (en) Controller for pressure of bleed of bleed condensate turbine
EP1666699B1 (en) Combined cycle power plant with gas and steam turbo groups
JP2001317304A (en) Combination system of plural boilers and steam turbine, and power generation plant
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
JPH0364603A (en) Method and apparatus for charging steam turbine
US1811302A (en) Elastic fluid turbine power installation
JPS5836243B2 (en) steam generator
SU800394A1 (en) Secondary supply of partial turbine
JPS59115477A (en) Multistage hydraulic machinery
JPH0553922B2 (en)
US1159754A (en) Turbine.
JPS61138885A (en) Geo-thermal turbine plant
US809816A (en) Elastic-fluid turbine.
JPS59113216A (en) Steam-turbine plant
JPS59213907A (en) Barrel-type turbine
SU1663202A1 (en) Stator of turbo-driven set
CN114718665A (en) Turboset with double-channel adjusting stage, calculation method and operation method