JPS59213907A - Barrel-type turbine - Google Patents

Barrel-type turbine

Info

Publication number
JPS59213907A
JPS59213907A JP8799283A JP8799283A JPS59213907A JP S59213907 A JPS59213907 A JP S59213907A JP 8799283 A JP8799283 A JP 8799283A JP 8799283 A JP8799283 A JP 8799283A JP S59213907 A JPS59213907 A JP S59213907A
Authority
JP
Japan
Prior art keywords
working fluid
steam
orifice
chamber
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8799283A
Other languages
Japanese (ja)
Inventor
Kiwa Fujita
藤田 喜和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8799283A priority Critical patent/JPS59213907A/en
Publication of JPS59213907A publication Critical patent/JPS59213907A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles

Abstract

PURPOSE:To prevent an outer casing from overheating by connecting a pipe line having an orifice to a working fluid chamber between the outer and inner casings of a barrel-type turbine and discharging the working fluid. therefrom. CONSTITUTION:A bypass pipe line 22 is connected from a low temp. reheat pipe 23, through a drain pipe line 21 to a working fluid chamber 15 provided between the outer casing 1 and the inner casing 2 of a barrel-type turbine. An orifice 24 is provided on the pipe line 22 to allow constant flow of steam, the quantity of which is restricted by the orifice 24, from the working fluid chamber 15 to the low temp. reheat pipe. Thereby the stagnation of fluid in the working fluid chamber 15 is eleminated, preventing the outer casing from overheating.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は上下2つ割りと′Uずに一体のっぽ型とした外
部ケーシングを備えたつぼ型タービンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a pot-type turbine having an outer casing that is not divided into upper and lower halves and is integrally shaped like a tail.

〔従来技術とその問題点〕[Prior art and its problems]

タービンのケーシングを割り型とした場合、これらを強
固に結合するためフランジ部は肉厚で大型となり、また
高温強度の高い高価なポル1−を多数使用する必要があ
る。このような短所をなくJるため外部ケーシングをつ
ぼ型としてフランジ部を不要とし、また内部ケーシング
と外部ケーシングとの間に周方向に作動流体室を設置ノ
、それに内部ケージ゛ングから作動流体を導いてこの作
動流体室内の流体の圧力により内部ケーシングに圧縮力
を加えるようになしたものとしてつば型タービンが知ら
れている。このような構成にすることによりこの種のタ
ービンは内部ケーシングを割型と1ノでもフランジは小
さなものでよく、また締付のためのボルトに作用する力
も小さなものとすることができる。
When the turbine casing is made into a split mold, the flange portion becomes thick and large in order to firmly connect these parts, and it is also necessary to use a large number of expensive poles with high high temperature strength. In order to eliminate these disadvantages, the outer casing is shaped like a pot, eliminating the need for a flange, and a working fluid chamber is installed in the circumferential direction between the inner casing and the outer casing, and the working fluid is supplied from the inner casing. A collar-type turbine is known as one in which compressive force is applied to the inner casing by the pressure of the fluid in the working fluid chamber. With such a configuration, this type of turbine can have a small flange even if the inner casing is a split type, and the force acting on the bolt for tightening can also be made small.

しかしながら上述の如きタービンにおいては作動流体室
内の流体はそこから流出しないため、温度が上昇しこの
ため外部ケーシングの温度が高くなり、またこの温度上
昇の度合の予想が難かしくタービンの設尉が困難である
という問題を有している。
However, in the above-mentioned turbine, the fluid in the working fluid chamber does not flow out from there, so the temperature rises, which increases the temperature of the outer casing, and it is difficult to predict the degree of this temperature rise, making it difficult to install the turbine. The problem is that

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の点に鑑み作動流体室内の流体の
温度上昇を抑制することが可能なつぼ型タービンを提供
することにある。
In view of the above points, an object of the present invention is to provide a pot-type turbine capable of suppressing the temperature rise of the fluid in the working fluid chamber.

〔発明の要点〕[Key points of the invention]

上述の目的を達成するため、本発明においては、オリフ
ィスを有する管路を作動流体室に連通させ、これによっ
て少量の作動流体が定常的に外部に流出するようになし
、作動流体室内の流体の温度がすれへ流体が供給される
内部ケーシング内のタービン段部の流体温度により支配
されるようになす構成をとっている。
In order to achieve the above object, in the present invention, a conduit having an orifice is communicated with the working fluid chamber, whereby a small amount of working fluid constantly flows out to the outside, and the fluid in the working fluid chamber is reduced. The configuration is such that the temperature is dominated by the fluid temperature of the turbine stage within the inner casing to which the fluid is supplied.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明のっぽ型タービンの1つの実施例であり
、この例は蒸気タービンであり従って作動流体は水蒸気
である。1は外部ケーシングであり、フランジ部・を有
さない円周方向に連続したつば型ケーシングの形態をと
っている。外部ケーシング1内には内部ケーシング2が
設【ノられており、これは静翼3を支持している。内部
ケーシング2内にはロータ4が回転可能に設けられてお
り、その外周には動翼5を有していて、内部ケーシング
2とロータ4との間に蒸気作動室10が形成されている
。内部ケーシング2は外部ケーシング1の、内周のねじ
部と係合するねじリング6を締付けることにより外部ケ
ーシング1に対し−C固定される。
FIG. 1 shows one embodiment of the tail turbine of the present invention; this example is a steam turbine and therefore the working fluid is steam. Reference numeral 1 denotes an outer casing, which is in the form of a collar-shaped casing that is continuous in the circumferential direction and has no flange portion. An inner casing 2 is provided within the outer casing 1 and supports stator vanes 3. A rotor 4 is rotatably provided in the inner casing 2 and has rotor blades 5 on its outer periphery, and a steam working chamber 10 is formed between the inner casing 2 and the rotor 4. The inner casing 2 is fixed to the outer casing 1 by tightening a threaded ring 6 that engages with a threaded portion on the inner circumference of the outer casing 1.

内部ケーシング2にはまた、蒸気流入室7と蒸気排気室
8とが形成され、蒸気人口9より供給された水蒸気は蒸
気流入室7から静翼3及び動翼5により形成させるター
ビンの各作動段において仕事をし排気室8を通り蒸気出
口11より排出される。
The inner casing 2 is also formed with a steam inlet chamber 7 and a steam exhaust chamber 8, and the steam supplied from the steam outlet 9 is sent from the steam inlet chamber 7 to each operating stage of the turbine formed by the stationary blades 3 and rotor blades 5. The steam does work in the steam chamber, passes through the exhaust chamber 8, and is discharged from the steam outlet 11.

外部ケーシング1と内部ケーシング2どの間には、気密
リング13.14により密封された作動流体室、即ら本
例においては蒸気室15が形成されている。蒸気室15
はバランス孔16によって蒸気作動室10に連通させら
れている。バランス孔16の位置は蒸気流入室7から4
〜5段目に選ばれ、その部分における蒸気作動室10内
の圧力が蒸気室15に作用するようになっている。これ
によって内部ケーシングは半径方向の圧縮力を受1ノ、
内部ケーシング内の蒸気圧力による半径方向外方に働く
力に抵抗づ−るために内部ケーシング自体の強度は低く
抑えることができる。
A working fluid chamber, ie, a steam chamber 15 in this example, is formed between the outer casing 1 and the inner casing 2 and is sealed by an airtight ring 13, 14. Steam room 15
is communicated with the steam working chamber 10 by a balance hole 16. The position of the balance hole 16 is from steam inflow chamber 7 to 4.
The pressure within the steam working chamber 10 at that portion is selected to be the fifth stage, and the pressure within the steam working chamber 10 at that portion acts on the steam chamber 15. As a result, the inner casing receives a compressive force in the radial direction.
The strength of the inner casing itself can be kept low in order to resist the radially outward forces exerted by the steam pressure within the inner casing.

蒸気室15に溜まる凝縮水を排出するため、複数のドレ
ン口17.18.19が設けられており、その各々はド
レン口17について例示Jるようにドレン管路21に接
続されている。ドレン管路は弁25を有し、所定量の凝
縮水が溜まったときドレン管路21を導通状態とし凝縮
水を排出する。
In order to drain the condensed water that accumulates in the steam chamber 15, a plurality of drain ports 17, 18, 19 are provided, each of which is connected to a drain line 21, as illustrated for the drain port 17. The drain pipe has a valve 25, and when a predetermined amount of condensed water has accumulated, the drain pipe 21 is brought into a conductive state and the condensed water is discharged.

本例にJ3いては、このドレン管路21より延びるバイ
パス管路22が設けられ、このバイパス管路は低温再熱
管23に接続される。バイパス管路22にはオリフィス
24が設()られ、これによって蒸気室15からオリフ
ィス24の開口寸法により決定される制限された量の蒸
気が定常的にドレン管路21.オリフィス24及びバイ
パス包・路22を通って流れる。従って蒸気室15内の
蒸気温度はバランス孔16が位置決めされた作動段にお
ける蒸気の温度にほぼ保たれる。従って蒸気室15内の
蒸気温度の過熱による外部ケーシング1の過熱が避・け
られ、さらに蒸気による冷に1効果の不足で内部ケーシ
ングの高圧段の温度が上昇しこれからの輻射により外部
ケーシングが過熱するということが防止できる。
In this example, J3 is provided with a bypass pipe 22 extending from this drain pipe 21, and this bypass pipe is connected to a low temperature reheat pipe 23. An orifice 24 is provided in the bypass line 22 so that a limited amount of steam determined by the opening size of the orifice 24 from the steam chamber 15 is constantly transferred to the drain line 21. It flows through orifice 24 and bypass capsule/channel 22 . Therefore, the steam temperature in the steam chamber 15 is maintained approximately at the temperature of the steam at the operating stage where the balance hole 16 is positioned. Therefore, overheating of the outer casing 1 due to overheating of the steam temperature in the steam chamber 15 is avoided, and furthermore, the temperature of the high pressure stage of the inner casing rises due to the insufficient cooling effect of the steam, and the outer casing is overheated due to radiation. This can be prevented.

オリフィス24は開口寸法が不変のものでもよいが、可
変オリフィスとした場合には、タービン起動時に開度を
増大させて蒸気室15を通る蒸気流量を増大させ、ケー
シングの均一な加熱を促進させるように用いることがで
きる。
The orifice 24 may have a constant opening size, but if it is a variable orifice, the opening is increased at the time of turbine startup to increase the flow rate of steam passing through the steam chamber 15 and promote uniform heating of the casing. It can be used for.

また、可変オリフィスとする代りに、バイパス路を設け
ることも可能であり、このようにした実施例を第2図に
示す。この例においては図示しない部分は第1図の例と
同じ構成を有するものである。第2図の実施例において
は、オリフィス24に並列にバイパス路31が設けられ
、これはバイパス弁32によって開閉制御される。バイ
パス弁32はタービンの起動時に開き蒸気室15を通る
蒸気流量を増大させる。
Moreover, instead of using a variable orifice, it is also possible to provide a bypass path, and an embodiment in which this is done is shown in FIG. In this example, the parts not shown have the same structure as the example in FIG. 1. In the embodiment shown in FIG. 2, a bypass passage 31 is provided in parallel with the orifice 24, and the opening and closing of this passage is controlled by a bypass valve 32. Bypass valve 32 opens upon startup of the turbine to increase the flow of steam through steam chamber 15 .

第3図は本発明の他の実施例を示すもので、ここで第1
図の例に対応する構成要素には同じ符号を付してあり、
従ってこれらの説明は省略する。
FIG. 3 shows another embodiment of the invention, in which the first
Components corresponding to the example in the figure are labeled with the same reference numerals.
Therefore, a description of these will be omitted.

この実施例においては、然気室15のドレン管路21の
取付部以外の複数の箇所からバイパス管路41.42が
延びそれぞれバイパス管路22にオリフィス24と同様
のオリフィス43.44を介して接続されている。この
構成においては、オリフィス24.43.4.4の同口
面積を適宜に選定Jることにより内外のケーシングの温
度分布を積極的に制御することができる。
In this embodiment, bypass lines 41 and 42 extend from a plurality of locations other than the attachment point of the drain line 21 of the air chamber 15, and are connected to the bypass lines 22 through orifices 43 and 44 similar to the orifice 24, respectively. It is connected. In this configuration, by appropriately selecting the same opening areas of the orifices 24, 43, 4, 4, it is possible to actively control the temperature distribution of the inner and outer casings.

(発明の効果〕 本発明においては作動流体室内の流体が停滞しないため
、外部ケーシングの過熱を防止することができ、またこ
の流体の温度はタービンのどの段から流体を導くかで決
定されるものであり、タービン全体の熱応力に対づ°る
設計が容易になる。
(Effects of the Invention) In the present invention, since the fluid in the working fluid chamber does not stagnate, overheating of the outer casing can be prevented, and the temperature of this fluid is determined by which stage of the turbine the fluid is led from. This makes it easier to design the entire turbine to deal with thermal stress.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1つの実施例で゛あるつば型タービン
の縦断面図、第2図は本発明の他の実施例の一部を示す
管路の説明図、第3図は本発明のさらに他の実施例の断
面図である。 (符号説明) 1:外部ケーシング  2:内部ケーシング15:作動
流体空 21.22,41.42 :管路 24.43.44 ニオリフイス 31:バイパス路 特許出願人  富士電機製造株式会社
FIG. 1 is a longitudinal sectional view of a collar-type turbine which is one embodiment of the present invention, FIG. 2 is an explanatory diagram of a pipe line showing a part of another embodiment of the present invention, and FIG. FIG. 3 is a sectional view of still another embodiment of the invention. (Explanation of symbols) 1: External casing 2: Internal casing 15: Working fluid empty 21.22, 41.42: Pipe line 24.43.44 Niorifice 31: Bypass path Patent applicant Fuji Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】 1) つぼ型の外部ケーシングと内部ケーシングとを有
しこれらケーシングの間に作動流体室を形成し該作動流
体室に内81iケーシング内より作動流体を尋<Jζう
になしたつぼ型タービンにおいて、前記作動流体室に、
オリフィスを有する管路を連通させ、作動流体が定常的
に作動流体室より排出されるようになしたことを特徴と
するっぽ型タービン。 2、特許請求の範[/Jl第1項に記載のタービンにJ
)いて、前記オリフィスは可変であることを特徴とりる
つぼ型タービン。 3) 特許請求の範囲第1項に記載のタービンにおいて
、前記オリフィスに並列に、弁によって170閉制御さ
れるバイパス路が設けられていることを特徴とするつぼ
型タービン。 4)特許請求の範囲第1項より第3項のいづれかに記載
のタービンにおいて、前記管路は複数HCjられ、互い
に離れた位置において館記作動流体至に連通されている
ことな特徴とJるつぼ型タービン。
[Claims] 1) It has a vase-shaped outer casing and an inner casing, and a working fluid chamber is formed between these casings, and the working fluid is supplied to the working fluid chamber from inside the inner casing. In the pot-type turbine, in the working fluid chamber,
A tail-shaped turbine characterized in that a pipe line having an orifice is communicated with each other so that working fluid is constantly discharged from a working fluid chamber. 2. Claims[/JlThe turbine according to paragraph 1 is J
), wherein the orifice is variable. 3) A pot-type turbine according to claim 1, characterized in that a bypass passage 170 whose closing is controlled by a valve is provided in parallel with the orifice. 4) The turbine according to any one of claims 1 to 3, characterized in that a plurality of the pipes are connected to the working fluid at positions separated from each other. type turbine.
JP8799283A 1983-05-19 1983-05-19 Barrel-type turbine Pending JPS59213907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8799283A JPS59213907A (en) 1983-05-19 1983-05-19 Barrel-type turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8799283A JPS59213907A (en) 1983-05-19 1983-05-19 Barrel-type turbine

Publications (1)

Publication Number Publication Date
JPS59213907A true JPS59213907A (en) 1984-12-03

Family

ID=13930299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8799283A Pending JPS59213907A (en) 1983-05-19 1983-05-19 Barrel-type turbine

Country Status (1)

Country Link
JP (1) JPS59213907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6213710B1 (en) * 1996-04-11 2001-04-10 Siemens Aktiengesellschaft Method and apparatus for thrust compensation on a turbomachine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6213710B1 (en) * 1996-04-11 2001-04-10 Siemens Aktiengesellschaft Method and apparatus for thrust compensation on a turbomachine

Similar Documents

Publication Publication Date Title
US5340274A (en) Integrated steam/air cooling system for gas turbines
US2994472A (en) Tip clearance control system for turbomachines
RU2511914C2 (en) Circular fixed element for use with steam turbine and steam turbine
JPH06102988B2 (en) Gas turbine engine casing temperature controller
JPH0689653B2 (en) Vane and packing clearance optimizer for gas turbine engine compressors
JP2002508044A (en) Turbine shaft of internally cooled steam turbine and method of cooling turbine shaft
KR20000048258A (en) Cooling/heating augmentation during turbine startup/shutdown using a seal positioned by thermal response of turbine parts and consequent relative movement thereof
DK0491134T3 (en) Inlet housing for a steam turbine
US2796231A (en) High pressure steam turbine casing structure
US6341937B1 (en) Steam turbine with an improved cooling system for the casing
US2467818A (en) High-temperature turbine casing arrangement
JPS59213907A (en) Barrel-type turbine
US2377611A (en) Turbine
JPS61138804A (en) Cooling system for steam turbine
JPH0281905A (en) Forced cooling method for steam turbine and cooling device for the same
JP5279893B2 (en) Steam turbine with cooling device
RU2310086C1 (en) Gas-turbine plant
JPH09184402A (en) Steam turbine
JP6511519B2 (en) Controlled cooling of a turbine shaft
US20170226862A1 (en) Fluid cooled rotor for a gas turbine
CN108798791A (en) A kind of fixed blade for steam turbine grid and its processing method
JPS5896102A (en) Method and device for warming up steam turbine rotor
JPS60195305A (en) Casing structure for steam turbine
SU1126027A1 (en) Steam turbine cylinder
JPS5951105A (en) Gap control method of steam turbine