JPS6044243B2 - Method for producing oxygen-enriched gas using steam - Google Patents
Method for producing oxygen-enriched gas using steamInfo
- Publication number
- JPS6044243B2 JPS6044243B2 JP7184678A JP7184678A JPS6044243B2 JP S6044243 B2 JPS6044243 B2 JP S6044243B2 JP 7184678 A JP7184678 A JP 7184678A JP 7184678 A JP7184678 A JP 7184678A JP S6044243 B2 JPS6044243 B2 JP S6044243B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- ejector
- gas
- enriched gas
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
【発明の詳細な説明】
本発明は水蒸気を用いることによつて廃水処理−や燃
焼炉の支燃ガスなどに用い得る酸素富化ガスを製造する
ための方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing oxygen-enriched gas that can be used for wastewater treatment, combustion supporting gas for combustion furnaces, etc. by using steam.
酸素富化ガスの製造方法としては深冷分離法により液
体酸素を得たり、ゼオライI〜などによる吸着分離法が
あるが、何れもその諸設備、場所、費−用が極めて大と
なる欠点がある。Methods for producing oxygen-enriched gas include obtaining liquid oxygen by cryogenic separation and adsorption separation using zeolite I, but both have the disadvantage that the equipment, space, and cost are extremely large. be.
そこで近時オルガノポリゾロンキサン、シリコンゴム
などの有機系薄膜を形成し、同膜の表裏両面側に圧力差
を与えることによつて、空気がこの有機系薄膜を通過し
得るようにし、当該通過時におけるガス体侵透速度の差
を利用して、通過側に酸素富化ガスを抽出する隔膜式空
気分離装置も用いられるようになつているが、これとて
も上記圧力差を生じさせるため別途用意した動力源を必
要とし、従つて前記難点を根本的に解決するものとはな
つていない。Therefore, in recent years, organic thin films such as organopolyzolone xane and silicone rubber have been formed, and by applying a pressure difference between the front and back sides of the film, air can pass through this organic thin film. Diaphragm-type air separation devices are also being used that extract oxygen-enriched gas from the passage side by utilizing the difference in gas permeation rate at different times; Therefore, it does not fundamentally solve the above-mentioned problems.
一方大規模な高炉、溶融炉、燃焼炉をもつ工業地区や
産業廃水処理を行つているところでは、多量の発生ガス
による廃熱や、これに伴う蒸気が豊富に存在するが、こ
れらの多くは無駄に放散されているため、この余剰エネ
ルギの回収利用について特に最近その研究が活発化して
いる。On the other hand, in industrial areas with large-scale blast furnaces, melting furnaces, and combustion furnaces, and in places where industrial wastewater is treated, there is an abundance of waste heat from large amounts of generated gas and associated steam, but many of these Since this surplus energy is being dissipated in vain, research into the recovery and use of this surplus energy has been particularly active recently.
ところがその成果は発生ガスぞものをガスタービンに
導入して発電を行い電気エネルギとして利用するとか、
廃熱によつて水蒸気を発生させ蒸気タービンにより発電
を行うもので、何れも電気エネルギに変換した後、電力
としてこれを活用するものであるため、その効率が悪く
満足すべきものとなつていない。However, the results were that the generated gas itself was introduced into a gas turbine to generate electricity and use it as electrical energy.
Waste heat is used to generate steam and a steam turbine is used to generate electricity, and in both cases, the efficiency is poor and unsatisfactory as it is converted into electrical energy and then used as electricity.
本発明はこのように有効利用がなされず、回収されな
いまゝ廃棄されているエネルギを、活用することによつ
て別途動力源を用いることなく酸素富化ガスを製造し得
るようにして、エネルギの有効利用と同富化ガス製造方
法の改善とを両立させようとするもので、以下その詳細
を図面によつて詳細に説示する。The present invention makes it possible to produce oxygen-enriched gas without using a separate power source by utilizing energy that is not effectively utilized and is wasted without being recovered, thereby saving energy. The aim is to achieve both effective utilization and improvement of the enriched gas production method, and the details will be explained below in detail with reference to the drawings.
隔膜式空気分離装置1は前記のようにシリコンゴムなど
の有機系薄膜を有し、その表側は外気2に面すると共に
裏側は、蒸気真空ポンプなどと呼ばれるスチームエゼク
タ3の吸入口4と連結され、同工セクタ3の入口5から
、前記のように工業地区等で生じた余剰蒸気や廃熱によ
つて発生させた水蒸気6を供給して、これを通過せしめ
ることにより出口7から流出させるのであり、図中8は
当該流出途上に設けたドレインセパレータ、9はその冷
却水を示している。As mentioned above, the diaphragm type air separation device 1 has an organic thin film made of silicone rubber or the like, and its front side faces the outside air 2, and its back side is connected to the inlet 4 of a steam ejector 3 called a steam vacuum pump or the like. , the steam 6 generated from surplus steam and waste heat generated in the industrial area as described above is supplied from the inlet 5 of the same industrial sector 3, and is allowed to flow through the outlet 7. In the figure, 8 indicates a drain separator provided on the way out, and 9 indicates the cooling water.
従つて第1図の場合、上記の通り水蒸気6をスチームエ
ゼクタ3に供給通過させれば、当該蒸気流によりその吸
入口4側が減圧状態となり、同工セクタが1段だけでも
100トリチエリ程度の真空度が得られ、この負圧と大
気圧との圧力差によつて空気はスチームエゼクタ3側に
向け侵入することになり、これにより同装置1の裏側よ
り酸素富化ガス10を抽出することができるのであつて
、実際上前記の如く1段だけで15イ/h1酸素ガス濃
度40%の同富化ガスを得ることができた。Therefore, in the case of Fig. 1, if the steam 6 is supplied and passed through the steam ejector 3 as described above, the steam flow causes the suction port 4 side to be in a depressurized state, and even if the same sector has only one stage, a vacuum of about 100 torr is created. Due to the pressure difference between this negative pressure and atmospheric pressure, air enters toward the steam ejector 3 side, which makes it possible to extract the oxygen-enriched gas 10 from the back side of the device 1. In fact, as mentioned above, it was possible to obtain the same enriched gas with an oxygen gas concentration of 40% at 15 i/h1 using only one stage.
この結果同工セクタ3からは水蒸気と酸素富化ガスとの
混合ガス11が吐出されることになり、この場合必要が
あれば図示のようにドレインセパレータ8を設けること
により当該水蒸気を除去して供給すべき需要先12へ送
るようにすればよいが、例えば需要先12が廃水処理槽
である場合な4どは、ドレインセパレータ8を設けず同
上工セクタ3と需要先12とを直接配管するようにして
もよく、この場合配管が適当長あれは廃水処理槽入口に
おける温度も当該処理に影響を与えない程度とすること
ができる。次に第2図に示した実施例では13が高炉、
溶融炉、燃焼炉等の炉で、該炉13の高温廃ガスによつ
て水蒸気を発生させ、これをスチームエゼクタ3の入口
5に導入するようになし、同工セクタ3の出口7を、上
記炉13における需要先12としての支燃ガス供給箇所
と連結することにより、閉回路を組むようにしたものを
示しており、かくてこの場合にはスチームエゼクタ3の
出口7から吐出された混合ガス11中の水蒸気がドレイ
ンセパレータ8により凝縮されて同セパレータ8外に排
出されることになり、酸素富化ガスだけが炉13の支燃
ガスとして吹き込まれるのであり、これにより加熱され
た炉13の廃熱を利用して得た水フ蒸気がスチームエゼ
クタ3に送られる。こ)で実際炉13の図示しない蒸気
発生器から7k9/CriGの圧力をもつたスチームを
スチームエゼクタ3に毎時160k9供与したところ、
同工セクタ3の吸入口4における真空度が70〜100
トリチ・エリとなり、毎時15イの40%酸素富化ガス
を隔膜式空気分離装置1により得ることができ、出口7
からの混合ガス11からドレインセパレータ8により水
蒸気を除去することにより、略50%の相対湿度をもつ
た40%酸素富化ガスを上記の如く毎時゛15dだけ炉
13の支燃ガスとして吹き込むことができた。As a result, a mixed gas 11 of water vapor and oxygen-enriched gas is discharged from the same sector 3. In this case, if necessary, the water vapor can be removed by providing a drain separator 8 as shown. The water may be sent to the demand destination 12 to which it should be supplied, but if the demand destination 12 is a wastewater treatment tank, for example, the drain separator 8 is not provided and the pipes are directly connected between the same sector 3 and the demand destination 12. In this case, if the piping is appropriately long, the temperature at the inlet of the wastewater treatment tank can be set to a level that does not affect the treatment. Next, in the example shown in FIG. 2, 13 is a blast furnace;
In a furnace such as a melting furnace or a combustion furnace, steam is generated by the high-temperature waste gas of the furnace 13, and this is introduced into the inlet 5 of the steam ejector 3, and the outlet 7 of the sector 3 is connected to the A closed circuit is shown by connecting the combustion supporting gas supply point as the demand destination 12 in the furnace 13, and in this case, the mixed gas 11 discharged from the outlet 7 of the steam ejector 3 The water vapor inside is condensed by the drain separator 8 and discharged outside the separator 8, and only the oxygen-enriched gas is blown into the furnace 13 as a combustion supporting gas. Water vapor obtained using heat is sent to the steam ejector 3. In this case, when steam with a pressure of 7k9/CriG was actually supplied to the steam ejector 3 at 160k9 per hour from the steam generator (not shown) of the furnace 13,
The degree of vacuum at the intake port 4 of the same sector 3 is 70 to 100.
40% oxygen-enriched gas can be obtained by the diaphragm air separation device 1 at a rate of 15 per hour, and the outlet 7
By removing water vapor from the mixed gas 11 using the drain separator 8, 40% oxygen-enriched gas having a relative humidity of approximately 50% can be blown into the furnace 13 as combustion supporting gas for 15 d per hour as described above. did it.
本発明は上記のようにして具現できるので、工場等にお
いて多量に生ずる廃熱や余剰スチームを直接活用するこ
とができ、酸素富化ガスの製造に際し、別途動力を用い
ることなく、当該スチーム利用によつて同ガスが得られ
るので、高純度の酸素を空気に混合して炉の支燃ガスに
用いている従来のものに比し、その費用を大巾に低減す
ることができ、隔膜式空気分離装置とスチームエゼクタ
の連結という新規な構成により目的を達成し得るため、
設備、場所の点でも従来方の難点を解消できることにな
る。Since the present invention can be realized as described above, it is possible to directly utilize waste heat and surplus steam generated in large quantities in factories, etc., and to utilize the steam without using additional power when producing oxygen-enriched gas. Since the same gas can be obtained, the cost can be significantly reduced compared to the conventional method in which high-purity oxygen is mixed with air and used as combustion supporting gas for the furnace. The purpose can be achieved by a new configuration of connecting the separation device and the steam ejector.
This also solves the problems of the conventional method in terms of equipment and location.
第1図は本発明に係る酸素富化ガスの製造に用い得る装
置の一実施例を示した系統説明図、第2図は同装置の他
実施例を示す系統説明図てある。
1・・・・・・隔膜式空気分離装置、2・・・・・・外
気、3・・・・・スチームエゼクタ、6・・・・・・水
蒸気、10・・・・・・酸素富化ガス、12・・・・・
・需要先。FIG. 1 is a system explanatory diagram showing one embodiment of the apparatus that can be used for producing oxygen-enriched gas according to the present invention, and FIG. 2 is a system explanatory diagram showing another embodiment of the same apparatus. 1...Diaphragm type air separation device, 2...Outside air, 3...Steam ejector, 6...Water vapor, 10...Oxygen enrichment Gas, 12...
・Demand destination.
Claims (1)
過せしめることにより、該エゼクタに減圧状態を生ぜし
め、これによる負圧と外気との圧力差によつて、外気が
同エゼクタと連結した隔膜式空気分離装置を通過するよ
うにして、同装置により抽出された酸素富化ガスを前記
水蒸気と共に同上エゼクタより流出させ、この混合ガス
より必要に応じ同水蒸気より分離して、所望需要先に吐
出するようにしたことを特徴とする蒸気による酸素富化
ガスの製造方法。 2 溶解炉等の炉によつて発生する水蒸気をスチームエ
ゼクタに供給通過するようにし、同エゼクタから流出さ
れる混合ガスから水蒸気を分離し、これにより得た酸素
富化ガスを、上記炉の支燃ガス供給箇所へ吐出するよう
にしたことを特徴とする特許請求の範囲第1項記載の蒸
気による酸素富化ガスの製造方法。[Claims] 1. By supplying and passing water vapor such as surplus steam to a steam ejector, a reduced pressure state is created in the ejector, and due to the pressure difference between the resulting negative pressure and the outside air, the outside air is removed from the ejector. The oxygen-enriched gas extracted by the connected diaphragm type air separation device flows out from the ejector together with the water vapor, and the mixed gas is separated from the water vapor as necessary to meet the desired demand. A method for producing oxygen-enriched gas using steam, characterized in that the gas is discharged first. 2 Steam generated by a furnace such as a melting furnace is supplied to a steam ejector and passed through, the steam is separated from the mixed gas flowing out from the ejector, and the oxygen-enriched gas obtained thereby is used as a support for the furnace. 2. A method for producing oxygen-enriched gas using steam according to claim 1, characterized in that the steam is discharged to a fuel gas supply location.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7184678A JPS6044243B2 (en) | 1978-06-14 | 1978-06-14 | Method for producing oxygen-enriched gas using steam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7184678A JPS6044243B2 (en) | 1978-06-14 | 1978-06-14 | Method for producing oxygen-enriched gas using steam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54162697A JPS54162697A (en) | 1979-12-24 |
JPS6044243B2 true JPS6044243B2 (en) | 1985-10-02 |
Family
ID=13472304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7184678A Expired JPS6044243B2 (en) | 1978-06-14 | 1978-06-14 | Method for producing oxygen-enriched gas using steam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6044243B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248418A (en) * | 1987-04-02 | 1988-10-14 | Ube Ind Ltd | Separation of gaseous mixture |
GB9703989D0 (en) * | 1997-02-26 | 1997-04-16 | Boc Group Plc | Gas separation |
JP4944074B2 (en) * | 2008-08-26 | 2012-05-30 | パナソニック株式会社 | Oxygen enrichment equipment |
JP2010051842A (en) * | 2008-08-26 | 2010-03-11 | Panasonic Electric Works Co Ltd | Oxygen enrichment device |
JP6294724B2 (en) * | 2014-03-26 | 2018-03-14 | Jxtgエネルギー株式会社 | Gas separator |
-
1978
- 1978-06-14 JP JP7184678A patent/JPS6044243B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS54162697A (en) | 1979-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4560394A (en) | Oxygen enrichment system | |
MXPA02001247A (en) | A humidifying gas induction or supply system. | |
WO2018103133A1 (en) | Sea water desalination system using flue gas hydrate method based on lng cold energy | |
CN210495768U (en) | Device for recycling dichloromethane of diaphragm of lithium battery by wet process through compression condensation membrane separation technology | |
WO2004086547A3 (en) | Cathode inlet gas humidification system and method for a fuel cell system | |
US8371122B2 (en) | Geothermal power generation system and method of making power using the system | |
JPS6044243B2 (en) | Method for producing oxygen-enriched gas using steam | |
US20090107156A1 (en) | Heat pump system, operation procedure therefor and evaporator system | |
WO2023287905A4 (en) | Systems and methods for hydrogen recovery | |
KR890004398B1 (en) | Method and apparatus for separating of product gas from raw gas | |
CN109173619A (en) | A kind of device and method of the collecting oxygen from compressed air | |
US3364125A (en) | Waste heat flash evaporator in ion pressure turbine condenser system | |
CN108291719A (en) | Using wet combustion come the method and apparatus of gas turbine operation | |
CN209860060U (en) | Air inlet humidifying device for hydrogen fuel cell | |
CN209537409U (en) | Biogas film purifies integrating device | |
GB1360549A (en) | Method and apparatus for recovering the energy of expansion of | |
CN210751677U (en) | High-efficient waste liquid enrichment facility | |
KR100315094B1 (en) | Air Cooling Method for Air Compressor | |
JPS62229768A (en) | Fuel cell | |
JPH07317508A (en) | Power generation/desalination device utilizing sea water temperature difference | |
JPS59216441A (en) | Hydrogen-cooled turbine generator | |
SU1309903A3 (en) | Method of humidifying gas flow | |
CN221933100U (en) | Waste heat recovery system of spandex refining tower | |
JPH11244843A (en) | Steam compression type pure water producing device | |
JPH0495358A (en) | Fuel cell power generation system |