JP3615586B2 - Ammonia gas recovery liquefaction equipment - Google Patents

Ammonia gas recovery liquefaction equipment Download PDF

Info

Publication number
JP3615586B2
JP3615586B2 JP05134895A JP5134895A JP3615586B2 JP 3615586 B2 JP3615586 B2 JP 3615586B2 JP 05134895 A JP05134895 A JP 05134895A JP 5134895 A JP5134895 A JP 5134895A JP 3615586 B2 JP3615586 B2 JP 3615586B2
Authority
JP
Japan
Prior art keywords
ammonia
ammonia gas
liquefaction
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05134895A
Other languages
Japanese (ja)
Other versions
JPH08245217A (en
Inventor
満雄 出水
良策 湊
応宣 伊達
宏二 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP05134895A priority Critical patent/JP3615586B2/en
Publication of JPH08245217A publication Critical patent/JPH08245217A/en
Application granted granted Critical
Publication of JP3615586B2 publication Critical patent/JP3615586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Description

【0001】
【産業上の利用分野】
本発明は、例えば布などの被加工品を液体アンモニアに浸漬させるとともに、それ続いてアンモニアを揮発させる加工設備からアンモニアガスを回収して液化させるアンモニア回収液化装置に関する。
【0002】
【従来技術】
天然繊維、例えばコットンでは、液体アンモニアによる処理で、結晶構造とフィブリル配列に変化が起こり、柔軟、防縮、防皺、強度向上などの性質アップが図れることが知られている。即ち、当該天然繊維に防縮、防皺などの加工を施すには、通常繊維を加工室内で液体アンモニアに浸漬したのち、加熱によりアンモニアガスを蒸散させて行っている。
【0003】
そして、このような加工設備では、アンモニアガスを回収して液化し、再利用するようにしているのであるが、この回収液化装置として、従来、特公昭58−53108号や特開平4−308267号のものが知られている。
特公昭58−53108号公報に開示されている回収液化装置は、液体アンモニアを貯蔵している加工槽と加熱ドラムからなる加熱装置を配置した加工室と、この加工室に連続する状態で配置した揮発室とで加工設備を形成し、加工室から導出したアンモニアガス導出路を圧縮機の吸入口に接続し、この圧縮機の吐出口を凝縮器に接続してアンモニアガスを液化させ、この液化した液体アンモニアを一旦貯蔵容器に貯溜し、しかるのち過熱低減容器を介して加工室の加工槽に返送するようにするとともに、揮発室からのアンモニアガスを焼却装置その他の処分設備に送り込んで処理するようにしたものである。
【0004】
また、特開平4−308267号公報に示されている回収液化装置は、液体アンモニアを貯蔵している加工槽と加熱ドラムからなる加熱装置を配置した加工室と、この加工室に連続する状態で配置した揮発室とで加工設備を形成し、加工室から導出したアンモニアガス導出路を圧縮機の吸入口に接続し、この圧縮機の吐出口を凝縮器に接続してアンモニアガスを液化させ、この液化した液体アンモニアをアンモニアタンクに貯溜し、しかるのちクーラーを経て加工室の加工槽に返送するようにするとともに、揮発室からのアンモニアガスをスクラバーに送り込んで処理するようにしたものである。
【0005】
【発明が解決しようとする課題】
上述の従来の液化回収装置はいずれも、揮発室ではアンモニアガスの混合濃度が低いことから、この揮発室からのアンモニアガスを処理して廃棄するようにしていることから、アンモニアの回収効率が低いという問題があった。
本発明は、このような点に鑑み、加工設備から導出されるアンモニアガスを高い効率で回収することを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するために本発明は、液化装置を送風機と、冷却器と凝縮器とを直列に配置して構成し、揮発室からのアンモニアガスを処理する水吸収装置から導出した処理水導出路をアンモニア分離機構に接続し、このアンモニア分離機構で発生したアンモニアガスを液化装置の冷却器に供給するようにしたことを特徴としている。
【0007】
【作用】
本発明では、揮発室からのアンモニアガスを水吸収装置で水に吸収させてアンモニア水とし、このアンモニア水をアンモニア分離機構に供給して高濃度のアンモニアガス分離し、この分離させたアンモニアガスを液化装置の冷却器に供給して液化することになる。この結果、従来廃棄処理されていた揮発室でのアンモニアガス成分も液化回収することができ、アンモニアの回収効率が向上することになる。
【0008】
また、請求項3に示すようにアンモニア分離機構で分離した水をアンモニアガスの水吸収装置に返送するようにすると、アンモニア分離機構で分離しきれなかったアンモニア成分を含む処理水で新たなアンモニアガスを吸収処理することになるから、この処理水中のアンモニア成分が濃縮される状態となり、アンモニアの回収効率をより向上させることができる。
【0009】
請求項4〜請求項7に示すように、複数の吸収塔を直列に配置して水吸収装置を構成し、揮発室からの導出ガスやシールボックスからの導出ガスあるいは液化機構(4)からの排出ガスを、水吸収装置にそのガス濃度に応じて吸収塔を選択して導入させるようにすると、吸収塔でのアンモニア吸収を効率よく行うことができ、アンモニア成分の回収効率がよりり向上することになる。
【0010】
さらに、請求項8に示すように、水吸収装置からの排出ガス及び、大気成分を多く含んでいるシールボックスからの導出ガスを中和処理装置で処理するようにすると、排出ガスを無害化した状態で廃棄することができる。
【0011】
さらにまた、請求項9や請求項10に示すように、揮発室からのアンモニアガス導出路やシールボックスからのリークガス導出路にそれぞれブロワーを配置し、このブロワーの吸引力で揮発室やシールボックス内の圧力を所定の負圧状態に維持するようにし、揮発室からのアンモニアガス導出路やシールボックスからのリークガス導出路にそれぞれ開度調節弁を配置するとともに、各ブロワーの上流側にそれぞれ空気取入弁を配置した場合には、揮発室やシールボックス内の圧力変動に対する応答性を向上させることができる。
【0012】
【実施例】
図面は本発明の実施例を示す概略系統図である。
このアンモニアガスの回収液化装置は、ケーシング(1)内に天然繊維を防縮・防皺加工する加工室(2)と揮発室(3)とを区画して形成し、定常運転時において加工室(2)から導出したアンモニアガスを回収液化する液化機構(4)と、定常運転時において揮発室(3)から導出したアンモニアガス処理する処理機構(5)とを有している。
【0013】
加工室(2)内には、液体アンモニアを貯溜する加工槽(6)と、加熱ドラムで形成した乾燥装置(7)とが配置してあり、ケーシング(1)内に連続的に供給されるコットン等の天然繊維(A)を加工室(2)内で加工槽(6)内の液体アンモニアに浸漬させて防縮・防皺加工を施した後、乾燥装置(7)に作用させて天然繊維(A)に付着ている液体アンモニアの大部分を気化・蒸散させるようにしてある。
【0014】
加工室(2)内でアンモニア成分の大部分を気化・蒸散させた天然繊維(A)は加工室(2)に続いて揮発室(3)に導入される。この揮発室(3)では、天然繊維(A)に対して蒸気を作用させ、繊維に残存していたアンモニア成分をガス化して除去する。
【0015】
そして、ケーシング(1)に形成した加工室(2)への加工品取入口と、揮発室(3)からの加工品取出口には、アンモニアガスの流出や大気の流入を防止するためにシールボックス(8)が配置してあり、加工室(2)と揮発室(3)との間に形成した連通口にも、両室(2)(3)間でアンモニアガスや蒸気が行き来しないようにするためにシールボックス(8)が配置してある。
【0016】
加工室(2)からはアンモニアガス回収路(9)が導出してあり、このアンモニアガス回収路(9)は緩衝室(10)を介して液化機構(4)に接続されている。この液化機構(4)は、アンモニアガスを吸引排出するブロワー(11)と、このブロワー(11)から排出されたアンモニアガスを冷却する冷却器(12)と、冷却器(12)で冷却されたアンモニアガスを液化する凝縮器(13)とで構成してあり、凝縮器(13)の内部には冷凍機(14)の冷媒管が配置してある。そして、この凝縮器(13)から液体アンモニア移送ポンプ(15)を配置した液体アンモニア取出路(16)が導出してあり、この液体アンモニア導出路(16)を加工室(2)の加工槽(6)に連通接続させてある。なお、液化アンモニア移送ポンプ(15)に変えて凝縮器(13)と加工槽(6)との間に高低差を設け、重力で流し込むようにすることも考えられる。
【0017】
また、揮発室(3)からはアンモニア含有ガス導出路(17)が導出してあり、このアンモニア含有ガス導出路(17)は水吸収装置(18)に連通してある。そして、この水吸収装置(18)から連出されている排気通路(19)にブロワー(20)を配置し、このブロワー(20)の吸引力で揮発室(3)からアンモニアガスを吸引排出するようにしてある。排気通路(19)は中和処理装置(21)に接続してあり、水吸収装置(18)で吸収しきれなかったアンモニアガスを硫酸等の酸と接触させて中和処理するようにしてある。なお、この排気通路(19)のブロワー(20)よりも水吸収装置(18)側には揮発室(3)内を一定範囲の負圧状態に維持するために空気取り入れ弁(22)が配設してある。この空気取り入れ弁(22)を揮発室(3)の圧力調整機構(図示略)と連動させることにより、応答性の早い圧力制御が可能となる。
【0018】
さらに、ケーシング(1)の各シールボックス(8)からリークガス取り出し路(23)が連出してあり、このリークガス取り出し路(23)は前記中和処理装置(21)に接続してある。また、シールボックス(8)内でのリークガス中のアンモニアガス濃度高い場合には、リークガスを水吸収装置(18)に導入してアンモニアガス成分を回収できるようにするために、リークガス取り出し路(23)と水吸収装置(18)とをガス濃度を検出して開閉する流路遮断弁を介して接続してある。そして、このリークガス取り出し路(23)にはブロワー(24)が配設してあり、このブロワー(24)よりもシールボックス(8)側に各シールボックス(8)内の圧力を一定範囲の負圧状態に維持するための空気取り入れ弁(25)が配置してある。この空気取り入れ弁(25)をシールボックス(8)の圧力調整機構(図示略)と連動させることにより、応答性の早い圧力制御が可能となる。
【0019】
図中符号(26)は水吸収装置(18)から連出した処理水導出路で、この処理水導出路(26)はアンモニア分離機構(40)に接続されている。このアンモニア分離機構(40)は、処理水導出路(26)に配置した処理水貯溜タンク(28)と処理水移送ポンプ(29)、処理水移送ポンプ(29)に接続されている蒸留装置(27)、蒸留装置(27)で蒸留分離したアンモニアガスを冷却する分縮器(39)、及びアンモニアガスを分離した処理水を冷却する熱交換器(30)とで構成してある。そして、このアンモニア分離機構(40)は、水吸収装置(18)でアンモニアを吸収してアンモニア水となった処理水を蒸留装置(27)に導入してアンモニア水からアンモニアガス成分を気化分離させ、分離後のアンモニアガスを分縮器(39)を介して液化機構(4)の冷却器(12)に導入して回収液化する。一方、蒸留装置(27)でアンモニア成分の大部分を放出した処理水は熱交換器(30)で冷却された後、水吸収装置(18)に返送して、揮発室(3)からのアンモニアガス吸収処理に再使用するようにしてある。
【0020】
符号(31)はアンモニアの補充容器で、この補充容器(31)は凝縮器(13)に接続してあり、補充容器(31)から導入されたアンモニアは凝縮器(13)で凝縮液化され、回収液化された液体アンモニアとともに、加工室(2)の加工槽(6)に供給される。また、加工室(2)内の圧力を一定範囲の負圧雰囲気に維持するために、液化ガス回収路(9)のブロワー(11)の下流側と緩衝室(10)の上流側とをバイパス路(32)で接続してあり、このバイパス路(32)にはバイパス弁(33)が装着してある。
【0021】
また、加工室(2)には、加工室(2)内の圧力が急激に低下した際に加工室(2)内の圧力を回復させるためのアンモニアガス供給路(34)と、加工設備の起動時に加工室(2)内の空気を置換したり、加工設備の停止時にアンモニアガスを置換するための窒素ガス供給路(35)が接続してある。そして、この置換時に排出されるガスを処理するために、加工室(2)から連出されているアンモニアガス回収路(9)と揮発室(3)から連出されているアンモニア含有ガス導出路(17)とを連通路(36)で接続し、この連通路(36)に切り換え弁(37)を配置してある。
【0022】
したがって、加工設備の停止時に加工室(2)内を窒素で置換する際には、液化機構(4)のブロワー(11)を停止させた状態で切り換え弁(37)を開弁することにより、加工室(2)内のアンモニアガス窒素ガスとともに水吸収装置(18)に送給して処理するようにしている。さらに、 加工室(2)には、加工室内(2)の圧力が変動して所定の圧力範囲よりも高くなったり低くなったりした際に作動する安全弁装置(38)が設けてあり、この安全弁装置(38)が圧力高側で作動した際に排出されるアンモニアガスは、図示を省略した処理装置で無害化処理するようにしてある。そして、安全弁装置(38)が圧力低側で作動した際には、大気を加工室(2)に取り込むようにしてある。
【0023】
上述の構成からなるアンモニアの液化回収装置では、液化機構(4)のブロワー(11)の吐出口からのガスの一部を緩衝室(10)側に戻すことにより、加工室(2)の内圧が大気圧よりも水柱で数mm〜十数mm程度の低圧(負圧)もしくは高圧(陽圧)となる状態に加工室(2)に作用するブロワー(11)の吸引力を調整し、水吸収装置(18)から連出した排気通路(19)に配置したブロワー(20)の上流側に配置した空気取り入れ弁(22)により、揮発室(3)の内圧を大気圧よりも水柱で数mm〜十数mm程度の低圧(負圧)となる状態に揮発室(3)に作用するブロワー(20)の吸引力を調整している。
【0024】
また、リークガス取り出し路(23)でのブロワー(24)の上流側に配置した空気取り入れ弁(25)により、シールボックス(8)内の内圧が加工室(2)及び揮発室(3)の内圧よりもさらに低圧に維持されるようにシールボックス(8)に作用しているブロワー(24)の吸引力を調整している。これにより、大気から流入しようとする空気や加工室(2)及び揮発室(3)から漏れ出ようとするアンモニアガスはそれぞれ各室(2)(3)と外部とを区画するケーシング壁面に配置したシールボックス(8a)(8b)に流入し、ここから中和処理装置(21)に供給される。また、加工室(2)及び揮発室(3)間の区画壁に配置したシールボックス(8c)には、加工室(2)内の高濃度アンモニアガスと、揮発室(3)内の蒸気が混合している低濃度アンモニアガスとが流入することになるから、この混合ガスも水吸収装置(18)もしくは中和処理装置(21)で中和処理される。
【0025】
そして、加工室(2)内のアンモニアガスは、加工槽(6)から蒸発したものと、乾燥装置(7)での加熱により気化したもので、不純物が殆ど混入していない高濃度アンモニアガスであることから、このアンモニアガスをアンモニアガス回収路(9)により、液化機構(4)に供給して液化し、この液化された液体アンモニアを加工室(2)内の加工槽(6)に戻すように構成してある。
【0026】
一方、揮発室(3)では、蒸気により繊維(A)に付着しているアンモニア成分を蒸発気化させていることから、揮発室(3)内は大量の蒸気中にアンモニアガスが交じった低濃度のアンモニアガス雰囲気であり、この揮発室内のアンモニアガスは直接回収して液化することには適さない。このため、一旦揮発室(3)内のアンモニア成分を水吸収装置(18)で吸収除去し、水吸収装置(18)からの処理水をアンモニア分離機構で蒸留分離し、分離したアンモニアガスを液化機構(4)に供給して回収液化している。
【0027】
蒸留装置(27)でアンモニアガスを分離した処理水には僅かにアンモニア成分が溶け込んでいる。この僅かにアンモニア成分が溶け込んでいる処理水は揮発室からのアンモニアガス吸収操作に支障を来さないことから、このアンモニア成分含有処理水を水吸収装置(18)に返送し、再使用するようにしてある。そして、蒸留装置(27)からの処理水を水処理装置(18)に返送することにより、僅かに溶け込んでいるアンモニア成分を揮発室(3)からのアンモニアガスとともに蒸留装置(27)取り除くことができる。そして、水吸収装置(18)で除去しきれなかったアンモニアガスは、中和処理装置(21)で酸により中和したのち廃棄する。
【0028】
なお、上記実施例において、水吸収装置(18)としてスクラバーを使用しているが、ガス中のアンモニア濃度や得ようとするアンモニア水の濃度に応じて複数のスクラバーを直列に接続するようにしてもよい。また、その場合には、シールボックス(8)からのリークガスや液化機構(4)からの排出ガスあるいは非定常運転時での加工室(2)や揮発室(3)からの導出ガスをそのアンモニア濃度に応じて適当なスクラバーに導入させるようにすれば、アンモニアガスの回収効率をよりり高めることができる。
【0029】
【発明の効果】
本発明では、加工室からのアンモニアガスを回収して液化するとともに、揮発室からのアンモニアガスを水処理装置で水に吸収させてアンモニア水とし、このアンモニア水をアンモニア分離機構に供給してアンモニアガスと水とに分離させ、この分離させたアンモニアガスを液化機構の冷却器に供給して液化するようにしてあるので、従来廃棄処理されていた揮発室でのアンモニアガス成分も液化回収することができ、アンモニアの回収効率が向上することになる。
【0030】
さらに、アンモニア分離機構で分離したアンモニアガスを液化機構の冷却器に供給することにより、アンモニア分離機構では液化機構で純化可能な純度まで純化させればよいから、アンモニア分離機構の蒸留装置の運転条件をゲージ圧2Kg/cm未満、温度200℃未満の低圧・低温で運転することができ、作業性を向上させることができる。
【0031】
また、アンモニア分離機構で分離した水をアンモニアガスの水処理装置に返送するようにすると、アンモニア分離機構では分離しきれなかったアンモニア成分を含む処理水で新たなアンモニアガスを吸収処理することになるから、この処理水中のアンモニア成分が濃縮される状態となり、アンモニアの回収効率をより向上させることができることになる。
【0032】
さらに、水処理装置からの排出ガスや大気成分を多く含んでいるシールボックスからの導出ガスを中和処理水装置で処理するようにすると、排出ガスを無害化した状態で廃棄することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す概略系統図である。
【符号の説明】
2…加工室、3…揮発室、4…液化機構、6…加工槽、7…乾燥装置、8…シールボックス、9…アンモニアガス回収路、11…送風機、12…冷却器、13…凝縮器、18…水吸収装置、20・24…ブロワー、21…中和処理装置、22・25…空気取入弁、23…リークガス取り出し路、26…処理水導出路、27…蒸留装置、29…処理水移送ポンプ、30…熱交換器、39…分縮器、40…アンモニア分離機構。
[0001]
[Industrial application fields]
The present invention, for example a workpiece with immersion in liquid ammonia, such as cloth, to ammonia recovery liquefier for liquefying and recovering ammonia gas followed by processing equipment to volatilize the ammonia it.
[0002]
[Prior art]
It is known that natural fibers, such as cotton, change in crystal structure and fibril arrangement by treatment with liquid ammonia, and can improve properties such as flexibility, shrinkage prevention, flaw prevention, and strength improvement. That is, in order to process the natural fiber such as shrinkage and proofing, the fiber is usually immersed in liquid ammonia in the processing chamber and then the ammonia gas is evaporated by heating.
[0003]
In such processing equipment, ammonia gas is recovered, liquefied, and reused. Conventionally, as this recovery liquefaction apparatus, Japanese Patent Publication No. 58-53108 and Japanese Patent Application Laid-Open No. 4-308267 are used. Things are known.
The recovery liquefaction apparatus disclosed in Japanese Patent Publication No. 58-53108 is disposed in a continuous state in a processing chamber in which a processing tank storing liquid ammonia and a heating device including a heating drum are disposed. Form a processing facility with the volatilization chamber, connect the ammonia gas lead-out path led out from the processing chamber to the suction port of the compressor, connect the discharge port of this compressor to the condenser to liquefy the ammonia gas, this liquefaction The liquid ammonia is temporarily stored in a storage container and then returned to the processing tank in the processing chamber via the overheat reduction container, and the ammonia gas from the volatilization chamber is sent to the incinerator and other disposal facilities for processing. It is what I did.
[0004]
In addition, a recovery liquefaction apparatus disclosed in Japanese Patent Laid-Open No. 4-308267 includes a processing chamber in which a processing tank storing liquid ammonia and a heating device including a heating drum are arranged, and a state continuous to the processing chamber. Form the processing equipment with the arranged volatilization chamber, connect the ammonia gas lead-out path led out from the processing chamber to the suction port of the compressor, connect the discharge port of this compressor to the condenser to liquefy the ammonia gas, This liquefied liquid ammonia is stored in an ammonia tank and then returned to the processing tank of the processing chamber via a cooler, and the ammonia gas from the volatilization chamber is sent to the scrubber for processing.
[0005]
[Problems to be solved by the invention]
In any of the conventional liquefaction recovery devices described above, the ammonia gas mixing concentration is low in the volatilization chamber, so that the ammonia gas from the volatilization chamber is treated and discarded, so the ammonia recovery efficiency is low. There was a problem.
In view of such a point, an object of the present invention is to recover ammonia gas derived from a processing facility with high efficiency.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a treated water derived from a water absorbing device for treating a ammonia gas from a volatilization chamber, in which a liquefier is configured by arranging a blower, a cooler, and a condenser in series. The lead-out path is connected to an ammonia separation mechanism, and the ammonia gas generated by the ammonia separation mechanism is supplied to the cooler of the liquefaction device.
[0007]
[Action]
In the present invention, ammonia gas from the volatilization chamber is absorbed into water by a water absorption device to form ammonia water, and this ammonia water is supplied to an ammonia separation mechanism to separate high-concentration ammonia gas. It is supplied to the cooler of the liquefier and liquefied. As a result, the ammonia gas component in the volatilization chamber that has been conventionally disposed of can be liquefied and recovered, and the ammonia recovery efficiency is improved.
[0008]
Further, when the water separated by the ammonia separation mechanism is returned to the water absorption device for ammonia gas as described in claim 3, new ammonia gas is obtained with the treated water containing the ammonia component that could not be separated by the ammonia separation mechanism. Thus, the ammonia component in the treated water is concentrated, and the ammonia recovery efficiency can be further improved.
[0009]
As shown in Claims 4 to 7, a plurality of absorption towers are arranged in series to constitute a water absorption device, and the gas derived from the volatilization chamber, the gas derived from the seal box, or the liquefaction mechanism (4) When exhaust gas is introduced into the water absorption device by selecting an absorption tower according to the gas concentration, ammonia absorption in the absorption tower can be efficiently performed, and the recovery efficiency of the ammonia component is further improved. It will be.
[0010]
Furthermore, as shown in claim 8, when the exhaust gas from the water absorption device and the derived gas from the seal box containing a large amount of atmospheric components are processed by the neutralization processing device, the exhaust gas is rendered harmless. Can be discarded in the state.
[0011]
Furthermore, as shown in claim 9 and claim 10, a blower is disposed in each of the ammonia gas lead-out path from the volatilization chamber and the leak gas lead-out path from the seal box. The pressure control valve is maintained in a predetermined negative pressure state, and an opening control valve is provided in each of the ammonia gas lead-out path from the volatilization chamber and the leak gas lead-out path from the seal box, and the air intake is provided upstream of each blower. When the valve is arranged, the responsiveness to pressure fluctuations in the volatilization chamber or the seal box can be improved.
[0012]
【Example】
The drawing is a schematic system diagram showing an embodiment of the present invention.
This ammonia gas recovery and liquefaction device is formed in a casing (1) by dividing a natural processing chamber (2) and a volatilization chamber (3) into natural fibers. It has a liquefaction mechanism (4) for recovering and liquefying the ammonia gas derived from 2) and a processing mechanism (5) for treating the ammonia gas derived from the volatilization chamber (3) during steady operation.
[0013]
In the processing chamber (2), a processing tank (6) for storing liquid ammonia and a drying device (7) formed of a heating drum are arranged and continuously supplied into the casing (1). After natural fibers (A) such as cotton are immersed in the liquid ammonia in the processing tank (6) in the processing chamber (2) and subjected to shrinkage / anti-mold processing, the natural fibers are allowed to act on the drying device (7). Most of the liquid ammonia adhering to (A) is vaporized and evaporated.
[0014]
The natural fiber (A) obtained by vaporizing and evaporating most of the ammonia component in the processing chamber (2) is introduced into the volatilization chamber (3) following the processing chamber (2). In the volatilization chamber (3), steam acts on the natural fiber (A) to gasify and remove the ammonia component remaining in the fiber.
[0015]
The workpiece inlet to the machining chamber (2) formed in the casing (1) and the workpiece outlet from the volatilization chamber (3) are sealed to prevent outflow of ammonia gas and inflow of air. The box (8) is arranged so that ammonia gas and steam do not go back and forth between the chambers (2) and (3) at the communication port formed between the processing chamber (2) and the volatilization chamber (3). A seal box (8) is arranged for this purpose.
[0016]
An ammonia gas recovery path (9) is led out from the processing chamber (2), and this ammonia gas recovery path (9) is connected to the liquefaction mechanism (4) via the buffer chamber (10). The liquefaction mechanism (4) was cooled by a blower (11) for sucking and discharging ammonia gas, a cooler (12) for cooling ammonia gas discharged from the blower (11), and a cooler (12). It is comprised with the condenser (13) which liquefies ammonia gas, and the refrigerant | coolant pipe | tube of the refrigerator (14) is arrange | positioned inside the condenser (13). And the liquid ammonia extraction path (16) which has arrange | positioned the liquid ammonia transfer pump (15) is derived | led-out from this condenser (13), and this liquid ammonia extraction path (16) is led to the processing tank (2) of the processing chamber (2). 6). It is also conceivable to provide a height difference between the condenser (13) and the processing tank (6) in place of the liquefied ammonia transfer pump (15) so as to be poured by gravity.
[0017]
An ammonia-containing gas lead-out path (17) is led out from the volatilization chamber (3), and the ammonia-containing gas lead-out path (17) communicates with the water absorption device (18). And a blower (20) is arrange | positioned in the exhaust passage (19) led out from this water absorption apparatus (18), and ammonia gas is sucked and discharged from the volatilization chamber (3) with the suction force of this blower (20). It is like that. The exhaust passage (19) is connected to the neutralization treatment device (21), and the ammonia gas that could not be absorbed by the water absorption device (18) is brought into contact with an acid such as sulfuric acid for neutralization treatment. . In addition, an air intake valve (22) is arranged on the side of the water absorption device (18) from the blower (20) of the exhaust passage (19) in order to maintain the inside of the volatilization chamber (3) in a certain range of negative pressure. It is set up. By linking this air intake valve (22) with a pressure adjusting mechanism (not shown) of the volatilization chamber (3), pressure control with quick response can be performed.
[0018]
Further, a leak gas take-out path (23) is continuously provided from each seal box (8) of the casing (1), and this leak gas take-out path (23) is connected to the neutralization processing device (21). In addition, when the ammonia gas concentration in the leak gas in the seal box (8) is high, in order to introduce the leak gas into the water absorption device (18) and recover the ammonia gas component, 23) and the water absorption device (18) are connected via a flow path shut-off valve that opens and closes by detecting the gas concentration. A blower (24) is disposed in the leak gas take-out passage (23), and the pressure in each seal box (8) is reduced within a certain range to the seal box (8) side of the blower (24). An air intake valve (25) is provided for maintaining the pressure state. By linking this air intake valve (25) with a pressure adjustment mechanism (not shown) of the seal box (8), pressure control with quick response can be performed.
[0019]
The code | symbol (26) in a figure is the treated water derivation path which led out from the water absorption apparatus (18), and this treated water derivation path (26) is connected to the ammonia separation mechanism (40). The ammonia separation mechanism (40) includes a treated water storage tank (28) disposed in the treated water lead-out path (26), a treated water transfer pump (29), and a distillation apparatus (29) connected to the treated water transfer pump (29). 27), a partial condenser (39) for cooling the ammonia gas distilled and separated by the distillation apparatus (27), and a heat exchanger (30) for cooling the treated water from which the ammonia gas has been separated. And this ammonia separation mechanism (40) introduce | transduces into the distillation apparatus (27) the process water which became ammonia water by absorbing ammonia with a water absorption apparatus (18), and vapor-separates an ammonia gas component from ammonia water. Then, the separated ammonia gas is introduced into the cooler (12) of the liquefaction mechanism (4) through the partial condenser (39) to be recovered and liquefied. On the other hand, the treated water from which most of the ammonia component has been released by the distillation device (27) is cooled by the heat exchanger (30), and then returned to the water absorption device (18), where ammonia from the volatilization chamber (3) is returned. Reused for gas absorption treatment.
[0020]
Reference numeral (31) is an ammonia replenishment container, which is connected to the condenser (13), and the ammonia introduced from the replenishment container (31) is condensed and liquefied by the condenser (13), Together with the recovered liquid ammonia, it is supplied to the processing tank (6) of the processing chamber (2). Further, in order to maintain the pressure in the processing chamber (2) in a negative pressure atmosphere within a certain range, the downstream side of the blower (11) of the liquefied gas recovery path (9) and the upstream side of the buffer chamber (10) are bypassed. It connects by the path | route (32), The bypass valve (33) is mounted | worn with this bypass path (32).
[0021]
Further, the processing chamber (2) includes an ammonia gas supply path (34) for recovering the pressure in the processing chamber (2) when the pressure in the processing chamber (2) rapidly decreases, and a processing facility. A nitrogen gas supply path (35) for replacing the air in the processing chamber (2) at the time of startup or replacing the ammonia gas when the processing equipment is stopped is connected. And in order to process the gas discharged | emitted at the time of this replacement | exchange, the ammonia gas collection | recovery path | route (9) and the ammonia-containing gas extraction path | route which are led out from the process chamber (2) and the volatilization chamber (3) are processed. (17) is connected to the communication path (36), and a switching valve (37) is arranged in the communication path (36).
[0022]
Therefore, when the inside of the processing chamber (2) is replaced with nitrogen when the processing equipment is stopped, the switching valve (37) is opened while the blower (11) of the liquefaction mechanism (4) is stopped, The ammonia gas nitrogen gas in the processing chamber (2) is fed to the water absorption device (18) for processing. Further, the processing chamber (2) is provided with a safety valve device (38) that operates when the pressure in the processing chamber (2) fluctuates and becomes higher or lower than a predetermined pressure range. The ammonia gas discharged when the device (38) is operated on the high pressure side is detoxified by a processing device (not shown). When the safety valve device (38) operates on the low pressure side, air is taken into the processing chamber (2).
[0023]
In the ammonia liquefaction recovery apparatus having the above-described configuration, the internal pressure of the processing chamber (2) is restored by returning a part of the gas from the discharge port of the blower (11) of the liquefaction mechanism (4) to the buffer chamber (10) side. The suction force of the blower (11) acting on the processing chamber (2) is adjusted so that the water column is at a low pressure (negative pressure) or a high pressure (positive pressure) of several mm to several tens of mm from the atmospheric pressure. Due to the air intake valve (22) arranged upstream of the blower (20) arranged in the exhaust passage (19) led out from the absorption device (18), the internal pressure of the volatilization chamber (3) is reduced by the number of water columns from the atmospheric pressure. The suction force of the blower (20) acting on the volatilization chamber (3) is adjusted to a low pressure (negative pressure) of about mm to several tens of mm.
[0024]
Further, the internal pressure in the seal box (8) is changed to the internal pressure in the processing chamber (2) and the volatilization chamber (3) by the air intake valve (25) arranged on the upstream side of the blower (24) in the leak gas extraction path (23). The suction force of the blower (24) acting on the seal box (8) is adjusted so as to be maintained at a lower pressure than that. As a result, the air that is about to flow in from the atmosphere and the ammonia gas that is about to leak out from the processing chamber (2) and the volatilization chamber (3) are arranged on the casing wall surface that divides each chamber (2) (3) from the outside. It flows into the sealed box (8a) (8b) and is supplied to the neutralization processing device (21) from here. Further, in the seal box (8c) disposed on the partition wall between the processing chamber (2) and the volatilization chamber (3), high-concentration ammonia gas in the processing chamber (2) and vapor in the volatilization chamber (3) are present. Since the mixed low-concentration ammonia gas flows in, this mixed gas is also neutralized by the water absorption device (18) or the neutralization treatment device (21).
[0025]
The ammonia gas in the processing chamber (2) is a high-concentration ammonia gas that has evaporated from the processing tank (6) and has been vaporized by heating in the drying device (7) and contains almost no impurities. Therefore, the ammonia gas is supplied to the liquefaction mechanism (4) through the ammonia gas recovery path (9) and liquefied, and the liquefied liquid ammonia is returned to the processing tank (6) in the processing chamber (2). It is constituted as follows.
[0026]
On the other hand, in the volatilization chamber (3), since the ammonia component adhering to the fiber (A) is evaporated by vapor, the volatilization chamber (3) has a low concentration in which ammonia gas is mixed with a large amount of vapor. The ammonia gas atmosphere is not suitable for direct recovery and liquefaction. For this reason, the ammonia component in the volatile chamber (3) is once absorbed and removed by the water absorption device (18), the treated water from the water absorption device (18) is distilled and separated by the ammonia separation mechanism, and the separated ammonia gas is liquefied. It is supplied to the mechanism (4) and liquefied.
[0027]
The ammonia component is slightly dissolved in the treated water from which the ammonia gas has been separated by the distillation apparatus (27). Since the treated water in which the ammonia component is slightly dissolved does not hinder the ammonia gas absorption operation from the volatilization chamber, the treated water containing the ammonia component is returned to the water absorption device (18) for reuse. It is. Then, by returning the treated water from the distillation apparatus (27) to the water treatment apparatus (18), the ammonia component slightly dissolved together with the ammonia gas from the volatilization chamber (3) can be removed by the distillation apparatus (27). it can. The ammonia gas that cannot be removed by the water absorption device (18) is neutralized with an acid by the neutralization treatment device (21) and then discarded.
[0028]
In the above embodiment, a scrubber is used as the water absorption device (18), but a plurality of scrubbers are connected in series according to the ammonia concentration in the gas and the concentration of ammonia water to be obtained. Also good. Further, in that case, the leakage gas from the seal box (8), the exhaust gas from the liquefaction mechanism (4), or the derived gas from the processing chamber (2) or the volatilization chamber (3) during the unsteady operation is used as ammonia. If it introduce | transduces into a suitable scrubber according to a density | concentration, the collection | recovery efficiency of ammonia gas can be improved more.
[0029]
【The invention's effect】
In the present invention, the ammonia gas from the processing chamber is recovered and liquefied, and the ammonia gas from the volatilization chamber is absorbed into water by a water treatment device to form ammonia water, and this ammonia water is supplied to the ammonia separation mechanism to produce ammonia. Gas and water are separated, and the separated ammonia gas is supplied to the liquefaction mechanism cooler to be liquefied, so the ammonia gas component in the volatilization chamber, which has been conventionally disposed of, must also be liquefied and recovered. As a result, the ammonia recovery efficiency is improved.
[0030]
Further, by supplying ammonia gas separated by the ammonia separation mechanism cooler liquefaction mechanism, because the ammonia separation mechanism it is sufficient to purify until purification possible purity liquefied mechanism, the operation of the distillation apparatus with ammonia separation mechanism It is possible to operate under a low pressure / low temperature of a gauge pressure of less than 2 kg / cm 2 and a temperature of less than 200 ° C., and workability can be improved.
[0031]
Further, when the water separated by the ammonia separation mechanism is returned to the ammonia gas water treatment device, the new ammonia gas is absorbed by the treated water containing ammonia components that could not be separated by the ammonia separation mechanism. Thus, the ammonia component in the treated water is concentrated, and the ammonia recovery efficiency can be further improved.
[0032]
Furthermore, if the exhaust gas from the water treatment device and the derived gas from the seal box containing a large amount of atmospheric components are treated by the neutralization treatment water device, the exhaust gas can be discarded in a detoxified state.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram showing an embodiment of the present invention.
[Explanation of symbols]
2 ... Processing chamber, 3 ... Volatilization chamber, 4 ... Liquefaction mechanism, 6 ... Processing tank, 7 ... Drying device, 8 ... Seal box, 9 ... Ammonia gas recovery path, 11 ... Blower, 12 ... Cooler, 13 ... Condenser , 18 ... Water absorption device, 20/24 ... Blower, 21 ... Neutralization treatment device, 22/25 ... Air intake valve, 23 ... Leak gas extraction passage, 26 ... Treatment water outlet passage, 27 ... Distillation device, 29 ... Treatment Water transfer pump, 30 ... heat exchanger, 39 ... condenser, 40 ... ammonia separation mechanism.

Claims (10)

液体アンモニアを貯溜する加工槽(6)と乾燥装置(7)とを収容した加工室(2)と、この加工室(2)に連続する液体アンモニアの揮発室(3)とを有するアンモニアによる加工設備の加工室(2)からアンモニアガス回収路(9)を導出し、このアンモニアガス回収路(9)を液化機構(4)に接続し、この液化機構(4)で液化した液体アンモニアを加工室(2)内の加工槽(6)に供給するとともに、揮発室(3)から導出したアンモニア含有ガスを水吸収装置(18)に供給して処理水で吸収処理するようにしたアンモニアガスの回収液化装置において、
液化機構(4)をブロワー(11)、冷却器(12)、凝縮器(13)を直列に配置して構成し、揮発室(3)からのアンモニア含有ガスを処理する水吸収装置(18)から導出した処理水導出路(26)をアンモニア分離機構(40)に接続し、このアンモニア分離機構(40)で発生したアンモニアガスを液化機構(4)の冷却器(12)に供給するようにしたことを特徴とするアンモニアガス回収液化装置。
Processing with ammonia having a processing chamber (2) containing a processing tank (6) for storing liquid ammonia and a drying device (7), and a liquid ammonia volatilization chamber (3) continuous with the processing chamber (2). The ammonia gas recovery path (9) is led out from the processing chamber (2) of the equipment, this ammonia gas recovery path (9) is connected to the liquefaction mechanism (4), and the liquid ammonia liquefied by this liquefaction mechanism (4) is processed. The ammonia gas supplied to the processing tank (6) in the chamber (2) and supplied with the ammonia-containing gas derived from the volatilization chamber (3) to the water absorption device (18) to be absorbed with the treated water. In the recovery liquefaction device,
A water absorption device (18) for processing the ammonia-containing gas from the volatilization chamber (3) by configuring the liquefaction mechanism (4) by arranging a blower (11), a cooler (12), and a condenser (13) in series. The treated water lead-out path (26) derived from the above is connected to the ammonia separation mechanism (40), and the ammonia gas generated by the ammonia separation mechanism (40) is supplied to the cooler (12) of the liquefaction mechanism (4). An ammonia gas recovery and liquefaction device characterized by that.
アンモニア分離機構(40)は、処理水移送ポンプ(29)と、蒸留装置(27)と、分縮器(39)と、熱交換器(30)を有し、水吸収装置(18)からの処理水から高濃度アンモニアガスを分離するものである請求項1に記載のアンモニアガス回収液化装置。The ammonia separation mechanism (40) has a treated water transfer pump (29), a distillation device (27), a partial condenser (39), and a heat exchanger (30), and is supplied from the water absorption device (18). The ammonia gas recovery and liquefaction device according to claim 1, wherein high concentration ammonia gas is separated from treated water. アンモニア分離機構(40)でアンモニアガスを除去した処理水を熱交換器(30)を介して水処理装置(18)に返送するようにした請求項1または請求項2に記載のアンモニアガス回収液化装置。The ammonia gas recovery liquefaction according to claim 1 or 2, wherein the treated water from which the ammonia gas has been removed by the ammonia separation mechanism (40) is returned to the water treatment device (18) via the heat exchanger (30). apparatus. 複数の吸収塔を直列に配置して水吸収装置(18)を構成し、この水吸収装置(18)に揮発室(3)からの導出ガスをそのアンモニアガス濃度に応じて吸収塔を選択して導入するようにした請求項1〜請求項3のいずれか1項に記載のアンモニアガス回収液化装置。A plurality of absorption towers are arranged in series to form a water absorption device (18), and an absorption tower is selected for the water absorption device (18) according to the ammonia gas concentration of the gas derived from the volatilization chamber (3). The ammonia gas recovery and liquefaction device according to any one of claims 1 to 3, wherein the ammonia gas recovery and liquefaction device is introduced. 複数の吸収塔を直列に配置して水吸収装置(18)を構成し、この水吸収装置(18)に液化機構(4)からの排出ガスをそのアンモニアガス濃度に応じて吸収塔を選択して導入するようにした請求項1〜請求項4のいずれか1項に記載のアンモニアガス回収液化装置。A plurality of absorption towers are arranged in series to constitute a water absorption device (18), and the absorption tower is selected according to the ammonia gas concentration of the exhaust gas from the liquefaction mechanism (4) in this water absorption device (18). The ammonia gas recovery and liquefaction device according to any one of claims 1 to 4, wherein the ammonia gas recovery and liquefaction device is introduced. 複数の吸収塔を直列に配置して水吸収装置の(18)を構成し、この水吸収装置(18)に加工室(2)及び揮発室(3)の各加工物連通口部分に配置したシールボックス(8)からの導出ガスをそのアンモニアガス濃度に応じて吸収塔を選択して導入するようにした請求項1〜請求項5のいずれか1項に記載のアンモニアガス回収液化装置。A plurality of absorption towers are arranged in series to constitute (18) of the water absorption device, and this water absorption device (18) is arranged at each workpiece communication port portion of the processing chamber (2) and the volatilization chamber (3). The ammonia gas recovery and liquefaction apparatus according to any one of claims 1 to 5, wherein the lead-out gas from the seal box (8) is introduced by selecting an absorption tower in accordance with the ammonia gas concentration. 複数の吸収塔を直列に配置して水吸収装置の(18)を構成し、この水吸収装置(18)に加工室(2)からの導出ガスをそのアンモニアガス濃度に応じて吸収塔を選択して導入するようにした請求項1〜請求項6のいずれか1項に記載のアンモニアガス回収液化装置。A plurality of absorption towers are arranged in series to constitute (18) of the water absorption device, and the absorption tower is selected according to the ammonia gas concentration of the derived gas from the processing chamber (2) in this water absorption device (18). The ammonia gas recovery and liquefaction apparatus according to claim 1, wherein the ammonia gas recovery and liquefaction apparatus is introduced. 水吸収装置(18)からの排出ガスを中和処理装置(21)に導入するとともに、加工室(2)及び揮発室(3)の各加工物連通口部分に配置したシールボックス(8)のうち少なくとも外壁部分に配置したシールボックス(8a)(8b)からの導出ガスを中和処理装置(21)に導入するようにした請求項1〜7に記載のアンモニアガス回収液化装置。The exhaust gas from the water absorption device (18) is introduced into the neutralization treatment device (21), and the seal box (8) disposed at each workpiece communication port portion of the processing chamber (2) and the volatilization chamber (3). The ammonia gas recovery and liquefaction device according to claim 1, wherein the gas derived from the seal box (8 a) (8 b) disposed at least on the outer wall portion is introduced into the neutralization treatment device (21). 水吸収装置(18)と直列にブロワー(20)を配置し、このブロワー(20)での吸引力で揮発室(3)内の圧力を所定の負圧状態に維持するように構成し、揮発室(3)から導出したアンモニア含有ガス導出路(17)の途中に開度調節弁を設配置するとともに、ブロワー(20)の吸込口近傍に空気取入弁(22)を配置した請求項1〜請求項8に記載のアンモニアガス回収液化装置。A blower (20) is arranged in series with the water absorption device (18), and the pressure in the volatilization chamber (3) is maintained in a predetermined negative pressure state by the suction force of the blower (20). An opening control valve is provided and arranged in the middle of the ammonia-containing gas lead-out path (17) led out from the chamber (3), and an air intake valve (22) is arranged near the suction port of the blower (20). The ammonia gas recovery liquefaction device according to claim 8. シールボックス(8)からのリークガス取り出し路(23)にブロワー(24)を配置し、このブロワー(24)での吸引力でシールボックス(8)内を所定の負圧状態に維持するように構成し、リークガス取り出し路(23)のブロワー(24)よりも上流側に開度調節弁を配置するとともに、ブロワー(24)の吸込口近傍に空気取入弁(25)を配置した請求項6または請求項8に記載のアンモニアガス回収液化装置。The blower (24) is arranged in the leak gas extraction path (23) from the seal box (8), and the inside of the seal box (8) is maintained in a predetermined negative pressure state by the suction force of the blower (24). And an air intake valve (25) disposed in the vicinity of the suction port of the blower (24), and an opening degree adjusting valve is disposed upstream of the blower (24) of the leak gas extraction passage (23). The ammonia gas recovery liquefying apparatus according to claim 8.
JP05134895A 1995-03-10 1995-03-10 Ammonia gas recovery liquefaction equipment Expired - Fee Related JP3615586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05134895A JP3615586B2 (en) 1995-03-10 1995-03-10 Ammonia gas recovery liquefaction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05134895A JP3615586B2 (en) 1995-03-10 1995-03-10 Ammonia gas recovery liquefaction equipment

Publications (2)

Publication Number Publication Date
JPH08245217A JPH08245217A (en) 1996-09-24
JP3615586B2 true JP3615586B2 (en) 2005-02-02

Family

ID=12884428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05134895A Expired - Fee Related JP3615586B2 (en) 1995-03-10 1995-03-10 Ammonia gas recovery liquefaction equipment

Country Status (1)

Country Link
JP (1) JP3615586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007378A (en) * 2006-06-30 2008-01-17 Iwatani Internatl Corp Method for recovering gaseous ammonia and recovering device therefor
JP4899159B2 (en) * 2007-04-04 2012-03-21 株式会社前川製作所 Fabric processing method and apparatus using ammonia
IT1398003B1 (en) * 2010-02-09 2013-02-04 Franchetti PLANT AND ITS PROCEDURE FOR RECOVERY AND RE-ENABLEMENT OF THE AMMONIA IN A TEXTILE TREATMENT PLANT

Also Published As

Publication number Publication date
JPH08245217A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
EP0933331B1 (en) Evaporative concentration apparatus for waste water
US5590519A (en) Combined combustion and exhaust gas cleansing plant
US4511376A (en) Method of separating a noncondensable gas from a condensable vapor
JPS6038173B2 (en) Methods and devices for purifying exhaust air
JP4899159B2 (en) Fabric processing method and apparatus using ammonia
JPH04369305A (en) Method and device for providing required deaerating temperature difference
US7487640B2 (en) Method and device for removing water from a steam plant
US4330307A (en) Method of separating a noncondensable gas from a condensable vapor
CN111269200B (en) Recovery and purification system and method of gas sterilizing agent
JP3615586B2 (en) Ammonia gas recovery liquefaction equipment
US3574066A (en) Multistage evaporation unit and gasliquid direct contact distillation apparatus
FI87735B (en) OVER ANCHOR ORDER FOR OPENING WITH GASER FRAON
JPH0510964B2 (en)
JP2004181373A (en) Air dryer
TW202120162A (en) Separation device and separation method for different substances capable of effectively using the heat of the ammonia-containing steam for saving energy and lowering operation cost
JP3020825U (en) Ammonia gas collector for processing equipment using ammonia
KR102062062B1 (en) Ejector-vacuum-preheater for evaporative concentration apparatus and evaporative concentration method thereof
JPH11142053A (en) Cryogenic rectification system for recovering fluorine compound
JPS5853108B2 (en) Method for recovery and reuse of ammonia in systems for treating textiles with liquid ammonia
JPH1015334A (en) Refining of carbon dioxide gas and device therefor
JPH0995857A (en) Ammonia processing facility
KR20010113860A (en) Device for cleaning a fluid in the form of a vapor from a circuit
JPH0775642B2 (en) Method for evaporating and concentrating aqueous solution containing water-soluble organic matter
KR960010363B1 (en) Evaporating and concentrating method of aqueous organic materials
KR800000125B1 (en) Process for recovery of ammonia in liquid ammonia fabric treating system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees