JP2004181373A - Air dryer - Google Patents

Air dryer Download PDF

Info

Publication number
JP2004181373A
JP2004181373A JP2002351899A JP2002351899A JP2004181373A JP 2004181373 A JP2004181373 A JP 2004181373A JP 2002351899 A JP2002351899 A JP 2002351899A JP 2002351899 A JP2002351899 A JP 2002351899A JP 2004181373 A JP2004181373 A JP 2004181373A
Authority
JP
Japan
Prior art keywords
water
drain
heat
compressed air
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002351899A
Other languages
Japanese (ja)
Other versions
JP3867662B2 (en
Inventor
Kenji Nakagawa
憲治 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2002351899A priority Critical patent/JP3867662B2/en
Publication of JP2004181373A publication Critical patent/JP2004181373A/en
Application granted granted Critical
Publication of JP3867662B2 publication Critical patent/JP3867662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Compressor (AREA)
  • Drying Of Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air dryer provided with an oil-water separation apparatus and which is space-saving type, low cost, and convenient for use and is capable of saving the energy by recycling waste heat in the apparatus as a heat source for vacuum distillation. <P>SOLUTION: This air dryer is a refrigeration type air dryer for cooling compressed air in a heat exchanger and compressing water contained in the compressed air as drain to be separated from the compressed air, and the air dryer is provided with an oil-water separation apparatus which is capable of evaporating and separating water in the drain from oil components by heating the drain from the heat exchanger in a reduced pressure in a vacuum distillation tank connected to the heat exchanger and recovering the evaporated water as purified water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、給油式圧縮機で得た圧縮空気を冷却し、圧縮空気中の水分をドレンとして凝縮させ圧縮空気と分離する冷凍式エアードライヤーに関するものである。
【0002】
【従来の技術】
給油式圧縮機は無給油式圧縮機に比べ機器の価格が安価なこと、圧縮効率がよくランニングコストが安いことなどの理由で、圧縮空気をユーティリティとして使用する産業分野において広く使用されている。
【0003】
エアードライヤーは圧縮空気中のドレンを除去し、空圧機器を保護する目的で使用されている。圧縮空気中のドレンを除去する技術としては、圧縮空気を冷凍機で冷却し水分を凝縮させる方式、活性アルミナなどの吸着材に水分を捕集させる方式、中空糸膜に圧縮空気を通し膜から水分子だけを透過させる方式等あるが、装置の保守性、価格の面から冷凍式が優位である。給油式圧縮機で得られた圧縮空気には、圧縮過程で潤滑、シール、冷却などの目的で潤滑油を使用しているため油分が含まれている。活性アルミナや中空糸膜は油分の付着を嫌うことから冷凍式エアードライヤーが一般的に使用されている。
【0004】
ところで、日本国内における排水基準として「水質汚濁防止法」があり、排水中に含まれる油分濃度は最高値が5mg/lと決められているが、給油式圧縮機で得られた圧縮空気から発生するドレンの油分濃度は一般に5mg/l以上500mg/l程度であり、ドレンは未処理の状態で排水することはできない。
【0005】
従来、冷凍式ドライヤーにて凝縮させたドレンは廃液タンクに貯留し、定期的に産業廃棄物処理業者に処理を依頼するか、ドレン浄化装置を設置し浄化処理を行った上で排水している。ドレン浄化装置としては、フィルタで油分を吸着する方式や、マイクロバブルによる油分浮選方式、真空蒸留方式(下記文献参照)などが一般に用いられている。
【0006】
【特許文献】
特開2000―18162号公報
【0007】
【発明が解決しようとする課題】
上記の従来技術によると、圧縮空気からドレンを凝縮させる機能と、凝縮したドレンを浄化処理する機能はそれぞれ個別の装置で対応している。このため、ドレンの凝縮機能と浄化処理機能を独立したシステムで対応することは、設置スペースの増加、設備コスト上昇、システム間の連繋操作など、不都合な要素が多い。
【0008】
冷凍式エアードライヤーの廃熱は再利用されることなく、コンデンサ部から大気に放出している。その廃熱量はエアードライヤーの冷凍機出力に対し約3〜4倍の熱量に達し、省エネルギー、地球環境の面から回収することが望ましい。
【0009】
それゆえ本発明の目的は、省スペース、省コストで使い勝手のよい油水分離装置付きのエアードライヤーを提供することにある。
【0010】
また、本発明の他の目的は、装置内での廃熱を真空蒸留の熱源として再利用することによって省エネルギー化を図ることができる油水分離装置付きのエアードライヤーを提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決する本発明の特徴とするところは、熱交換器において圧縮空気を冷却し、該圧縮空気中の水分をドレンとして凝縮させ圧縮空気と分離する冷凍式エアードライヤーにおいて、該熱交換器と連結した真空蒸留槽において該熱交換器から収容したドレンを加熱しつつ減圧下に置くことでドレン中の水分を蒸発させて油分と分離せしめ、蒸発した水分を処理水として回収するようにした油水分離装置を設けたことにある。
【0012】
また上記課題を解決する本発明の特徴とするところは、該真空蒸留槽におけるドレン加熱の熱源として、熱交換器で回収した熱と圧縮空気を冷却する冷媒の潜熱、及び真空蒸留のプロセスでエジェクターの循環水に移動した熱とエジェクターの循環水を温度制御する冷媒の潜熱の少なくとも一方をドレンの油水分離における熱源として使用することにある。
【0013】
【発明の実施の形態】
以下、図1に示した本発明の一実施形態について説明する。
図1において、1は冷凍式エアードライヤーの熱交換器、1a,1bは熱交換器1の中のバッフルプレートと配管、2は仕切り弁、3は冷媒圧縮機、4は真空蒸留槽、4a,4bは真空蒸留槽4の中における熱交換用の配管とコイル、5はホットガスバイパス弁、6はキャピラリーチューブ、7はドレン排出弁、9はエジェクター、10は水ポンプ、11は水タンク、12は冷媒圧縮機、13は循環水用クーラー、14はキャピラリーチューブであり、15はドレン配管、16〜19は冷媒圧縮機3の冷媒配管、20は排気用配管、21はドレン配管、22〜24は循環水配管、25〜27は冷媒圧縮機13の冷媒配管、28は浄化水排水管である。
【0014】
熱交換器1と真空蒸留槽4を接続するドレン配管15と冷媒配管16の途中にそれぞれ仕切り弁2とキャピラリーチューブ6を設けてある。冷媒配管17と18を接続する冷媒配管19の途中にホットガスバイパス弁5を設けてある。水ポンプ10と水タンク11を接続する循環水配管22の途中にエジェクター9を設けてあり、エジェクター9の途中の吸引口は排気用配管20で真空蒸留槽4の天板部と接続してある。真空蒸留槽4内の熱交換用コイル4bと循環水用クーラー13を接続する冷媒配管27の途中にキャピラリーチューブ14を設けてある。
【0015】
次に、圧縮空気の流れについて説明する。
エアードライヤーの熱交換器1の圧縮空気入口から、図示していない圧縮機の仕様圧力まで昇圧された50℃前後の圧縮空気が流入する。圧縮空気はバッフルプレート1aで流路を変え、配管1bに接触しながら熱交換器1の圧縮空気出口へ流れる。配管1bの表面は低温のため圧縮空気との間で熱交換が行われる。配管1b内の冷媒は圧縮空気で加熱され、低温の液冷媒から低温のガス冷媒に状態を変える。この時、圧縮空気は50℃前後の状態から5〜10℃の状態に冷却される。この過程で圧縮空気に含まれる水分は過飽和の状態となるため、水分は凝縮しドレンが発生する。
【0016】
熱交換器1の中で発生したドレンは圧縮空気と分離され、熱交換器1の下部に溜まる。仕切り弁2とドレン配管15で熱交換器1と連通する真空蒸留槽4が、ドレン容器として設けられている。熱交換器1に溜まったドレンは、一定量に達すると仕切り弁2が開くことで熱交換器1と真空蒸留槽4の圧力差(真空蒸留槽4の減圧については後述する)によって真空蒸留槽4側へ流れる。熱交換器1内にドレンがなくなると仕切り弁2は閉じて、熱交換器1と真空蒸留槽4は独立した機能の容器となる。
【0017】
真空蒸留槽4は配管20でエジェクター9につながっており、エジェクター9の排気作用によって真空蒸留槽4の内部は減圧された状態を保っている。また、真空蒸留槽4の内部には配管4aおよびコイル4bからなる熱交換手段が備えられている。
【0018】
冷媒圧縮機3は熱交換器1で圧縮空気から吸熱した低圧の冷媒ガスを冷媒配管17から吸入し、所定圧力まで昇圧して冷媒配管18へ吐出する。この昇圧で冷媒は、さらに潜熱を持つ。冷媒配管18は真空蒸留槽4へつながっており、真空蒸留槽4内部で熱交換器の機能を有している。即ち、冷媒配管18の内部は高温、高圧の冷媒ガスであり、真空蒸留槽4におけるドレンと熱交換し、冷媒ガスは高温の液状態に変わる。
【0019】
その後、冷媒液は冷媒配管16を通りキャピラリーチューブ6で絞られた後、冷媒配管16で膨張し低温の冷媒液となる。低温の冷媒液は前述の熱交換器1において圧縮空気から吸熱して圧縮空気の熱を回収し、低温・低圧の冷媒ガスに戻り、以降このサイクルを繰り返す。また、圧縮空気の容量変動により冷媒ガスへの熱移動量が変化するため、負荷に応じてホットガスバイパス弁5を開き、配管19を通じて冷媒配管18の高圧ガスを冷媒配管17の低圧側に戻す。
【0020】
次に、真空システムについて説明する。
エジェクター9,水ポンプ10,水タンク11,循環水用クーラー13は、循環水配管22〜24でつながっている。水ポンプ10から吐出した循環水はエジェクター9で高圧、高速のジェット流となり、エジェクター9の配管20から空気を吸引する。真空蒸留槽4は仕切り弁2の閉止により閉じられた空間となり、エジェクター9の吸引(排気)作用によって真空蒸留槽4の内部は減圧された状態となる。
【0021】
次に、ドレンの浄化プロセスについて説明する。
真空蒸留槽4のドレンは、冷媒圧縮機3と冷媒配管16〜18で構成されるヒートポンプによって、配管4a内の冷媒から熱移動を受け加熱される。真空蒸留槽4の内部は前述の真空システムによって減圧されているため、加熱されたドレンは100℃以下の低温で沸騰し、蒸発する。
【0022】
ドレンに含まれる油は沸点が100℃以上の高温であるため、水分だけが蒸発し、真空蒸留槽4において油分と水分の分離が起こる。水の蒸気はエジェクター9の排気作用によって配管20を通って排出され、エジェクター9で循環水に混合し、循環水によって冷却されて処理水となり、水タンク11に流入し、配管28を通って排出される。処理水は、既に油水分離が済んで油分を殆ど含まない蒸気を循環水で冷却した浄化水である。
【0023】
次に、循環水の温度制御について説明する。
エジェクター9に吸入された蒸気は、循環水によって冷却され水タンク11に処理水として回収される。循環水は蒸気から熱を供給されるため、経時的に水温が上昇し50〜60℃の温水となる。エジェクター9の排気性能は、水温が20℃程度を上限とし水温上昇に伴って低下する。したがって、排気能力を保つために循環水の水温を20℃以下に維持する必要がある。
【0024】
そこで、循環水冷却システムとして、冷媒圧縮機12,循環水用クーラー13,熱交換用コイル4bおよび冷媒配管25〜27からなる冷媒サイクルを設けている。循環水は水ポンプ10によって水タンク11から吸入され、循環水配管23,24の途中に設けられた循環水用クーラー13で熱交換をして冷却される。一方、循環水用クーラー13で高温になった冷媒ガスは冷媒圧縮機12で高温、高圧にし、熱交換用コイル4bへ導入する。真空蒸留槽4内部のドレンと熱交換し液冷媒となった後、配管27を通ってキャピラリーチューブ14で膨張し低温の液冷媒として循環水用クーラー13に戻り循環水を冷却し熱交換をする。
【0025】
以降このサイクルを繰り返すが、本サイクルでは、循環水の温度制御をすると同時に、冷媒圧縮機12において冷媒を昇圧する際に冷媒に与えた潜熱をドレンの加熱に利用して、そのために昇温した循環水の熱を真空蒸留槽4のドレン加熱熱源として回収している。
【0026】
真空蒸留槽4で分離された油分は、定期的にドレン排出弁7を開き図示していない廃液タンクなどに回収する。
【0027】
この実施形態では、エアードライヤーの熱交換器と油水分離装置が一体になっていて、省スペース、省コストで使い勝手のよい油水分離装置付きのエアードライヤーを得ることができる。
【0028】
また、エアードライヤーの熱交換器で回収した熱と真空蒸留のプロセスでエジェクターの循環水に移動した熱と圧縮空気を冷却する冷媒の潜熱及びエジェクターの循環水を温度制御する冷媒の潜熱をドレンの油水分離における熱源として使用し、省エネ効果の高いドレン浄化装置を備えたエアードライヤーを得ることができる。
【0029】
なお、真空蒸留槽4でのドレン加熱を充分行える場合には、配管4aとコイル4bのどちらかを削除して、エアードライヤーの熱交換器で回収した熱と圧縮空気を冷却する冷媒の潜熱、及び真空蒸留のプロセスでエジェクターの循環水に移動した熱とエジェクターの循環水を温度制御する冷媒の潜熱の少なくとも一方をドレンの油水分離における熱源として使用するようにしても良い。
【0030】
また、本エアードライヤーは給油式圧縮機で得られる圧縮空気だけでなく、配管系の途中で油分や水分を含んでしまった圧縮空気を乾燥したいような場合にも採用することができる。
【0031】
【発明の効果】
以上説明したように本発明によれば、省スペース、省コストで使い勝手のよい油水分離装置付きのエアードライヤーを得ることができる。
【0032】
また、本発明によれば、装置内での廃熱を真空蒸留の熱源として再利用することによって省エネルギー化を図ることができる油水分離装置付きのエアードライヤーを得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態になる油水分離装置付きのエアードライヤーの系統図である。
【符号の説明】
1…熱交換器
1a…バッフルプレート
1b…配管
2…仕切り弁
3…冷媒圧縮機
4…真空蒸留槽
4a…配管
4b…コイル
6…キャピラリーチューブ
9…エジェクター
10…水ポンプ
11…水タンク
12…冷媒圧縮機
13…循環水用クーラー
14…キャピラリーチューブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration air dryer that cools compressed air obtained by a refueling compressor, condenses moisture in the compressed air as drain, and separates the compressed air from the compressed air.
[0002]
[Prior art]
Oil-supplied compressors are widely used in the industrial field where compressed air is used as a utility, because of the lower price of equipment compared to non-oil-supplied compressors, better compression efficiency and lower running cost.
[0003]
Air dryers are used to remove drain from compressed air and protect pneumatic equipment. Techniques for removing the drain from compressed air include cooling the compressed air with a refrigerator to condense moisture, collecting water with an adsorbent such as activated alumina, and passing compressed air through a hollow fiber membrane to remove moisture from the membrane. Although there is a system that allows only water molecules to permeate, a refrigeration system is superior in terms of maintainability and cost of the device. The compressed air obtained by the oil supply type compressor contains an oil component because lubricating oil is used for lubrication, sealing, cooling, and the like in the compression process. Refrigerated air dryers are generally used because activated alumina and hollow fiber membranes dislike the attachment of oil.
[0004]
By the way, the "Water Pollution Control Law" is a wastewater standard in Japan, and the maximum concentration of oil contained in wastewater is determined to be 5 mg / l, but it is generated from compressed air obtained by a refueling compressor. The oil concentration of the drain is generally about 5 mg / l or more and about 500 mg / l, and the drain cannot be drained in an untreated state.
[0005]
Conventionally, drain condensed by a refrigeration dryer is stored in a waste liquid tank, and the wastewater is drained after regularly requesting an industrial waste disposal company to dispose of it or installing a drain purification device to perform purification treatment. . As a drain purifying device, a method of adsorbing oil using a filter, an oil flotation method using microbubbles, a vacuum distillation method (see the following document), and the like are generally used.
[0006]
[Patent Document]
JP 2000-18162 A
[Problems to be solved by the invention]
According to the above prior art, the function of condensing the drain from the compressed air and the function of purifying the condensed drain correspond to respective individual devices. For this reason, supporting the drain condensation function and the purification processing function by independent systems has many inconvenient factors, such as an increase in installation space, an increase in equipment costs, and a connection operation between systems.
[0008]
The waste heat of the refrigeration air dryer is released to the atmosphere from the condenser without being reused. The amount of the waste heat reaches about three to four times the amount of the output of the refrigerator of the air dryer, and it is desirable to recover the energy from the viewpoint of energy saving and global environment.
[0009]
Therefore, an object of the present invention is to provide an air dryer with an oil-water separator that is space-saving, cost-saving, and easy to use.
[0010]
Another object of the present invention is to provide an air dryer with an oil-water separator that can save energy by reusing waste heat in the device as a heat source for vacuum distillation.
[0011]
[Means for Solving the Problems]
A feature of the present invention that solves the above problems is that a refrigeration air dryer that cools compressed air in a heat exchanger, condenses moisture in the compressed air as a drain, and separates the compressed air from the heat, In a vacuum distillation tank connected to the heat exchanger, the drain contained in the heat exchanger was heated and placed under reduced pressure to evaporate the water in the drain to separate it from oil, and the evaporated water was recovered as treated water. That is, an oil-water separator was provided.
[0012]
Further, the features of the present invention that solves the above-mentioned problems are characterized in that the heat recovered by the heat exchanger and the latent heat of the refrigerant that cools the compressed air and the ejector in the vacuum distillation process are used as the heat source for drain heating in the vacuum distillation tank. At least one of the heat transferred to the circulating water and the latent heat of the refrigerant for controlling the temperature of the circulating water of the ejector is used as a heat source in oil-water separation of the drain.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, one embodiment of the present invention shown in FIG. 1 will be described.
In FIG. 1, 1 is a heat exchanger of a refrigeration air dryer, 1a and 1b are baffle plates and piping in the heat exchanger 1, 2 is a partition valve, 3 is a refrigerant compressor, 4 is a vacuum distillation tank, 4a, 4b is a pipe and coil for heat exchange in the vacuum distillation tank 4, 5 is a hot gas bypass valve, 6 is a capillary tube, 7 is a drain discharge valve, 9 is an ejector, 10 is a water pump, 11 is a water tank, 12 Is a refrigerant compressor, 13 is a circulating water cooler, 14 is a capillary tube, 15 is a drain pipe, 16 to 19 are refrigerant pipes of the refrigerant compressor 3, 20 is an exhaust pipe, 21 is a drain pipe, and 22 to 24. Is a circulating water pipe, 25 to 27 are refrigerant pipes of the refrigerant compressor 13, and 28 is a purified water drain pipe.
[0014]
A gate valve 2 and a capillary tube 6 are respectively provided in the middle of a drain pipe 15 and a refrigerant pipe 16 connecting the heat exchanger 1 and the vacuum distillation tank 4. The hot gas bypass valve 5 is provided in the middle of the refrigerant pipe 19 connecting the refrigerant pipes 17 and 18. An ejector 9 is provided in the middle of a circulating water pipe 22 connecting the water pump 10 and the water tank 11, and a suction port in the middle of the ejector 9 is connected to a top plate of the vacuum distillation tank 4 by an exhaust pipe 20. . A capillary tube 14 is provided in the middle of a refrigerant pipe 27 connecting the heat exchange coil 4b and the circulating water cooler 13 in the vacuum distillation tank 4.
[0015]
Next, the flow of the compressed air will be described.
From the compressed air inlet of the heat exchanger 1 of the air dryer, compressed air of about 50 ° C., which has been raised to a specified pressure of a compressor not shown, flows in. The compressed air changes its flow path with the baffle plate 1a and flows to the compressed air outlet of the heat exchanger 1 while contacting the pipe 1b. Since the surface of the pipe 1b has a low temperature, heat exchange is performed with the compressed air. The refrigerant in the pipe 1b is heated by the compressed air, and changes the state from a low-temperature liquid refrigerant to a low-temperature gas refrigerant. At this time, the compressed air is cooled from about 50 ° C. to 5 to 10 ° C. In this process, the water contained in the compressed air becomes supersaturated, so that the water condenses and drains.
[0016]
The drain generated in the heat exchanger 1 is separated from the compressed air and accumulates in the lower part of the heat exchanger 1. A vacuum distillation tank 4 communicating with the heat exchanger 1 through the gate valve 2 and the drain pipe 15 is provided as a drain container. When the drain accumulated in the heat exchanger 1 reaches a certain amount, the gate valve 2 is opened and the pressure difference between the heat exchanger 1 and the vacuum distillation tank 4 (decompression of the vacuum distillation tank 4 will be described later). It flows to the 4 side. When there is no drain in the heat exchanger 1, the gate valve 2 closes, and the heat exchanger 1 and the vacuum distillation tank 4 become containers having independent functions.
[0017]
The vacuum distillation tank 4 is connected to the ejector 9 via a pipe 20, and the inside of the vacuum distillation tank 4 is kept in a depressurized state by the exhaust action of the ejector 9. Further, inside the vacuum distillation tank 4, a heat exchange means including a pipe 4a and a coil 4b is provided.
[0018]
The refrigerant compressor 3 sucks the low-pressure refrigerant gas that has absorbed heat from the compressed air in the heat exchanger 1 from the refrigerant pipe 17, raises the pressure to a predetermined pressure, and discharges it to the refrigerant pipe 18. At this pressure increase, the refrigerant further has latent heat. The refrigerant pipe 18 is connected to the vacuum distillation tank 4 and has a function of a heat exchanger inside the vacuum distillation tank 4. That is, the inside of the refrigerant pipe 18 is a high-temperature, high-pressure refrigerant gas, which exchanges heat with the drain in the vacuum distillation tank 4, and the refrigerant gas changes to a high-temperature liquid state.
[0019]
Thereafter, the refrigerant liquid passes through the refrigerant pipe 16 and is throttled by the capillary tube 6, and then expands in the refrigerant pipe 16 to become a low-temperature refrigerant liquid. The low-temperature refrigerant liquid absorbs heat from the compressed air in the heat exchanger 1 to recover the heat of the compressed air, returns to the low-temperature, low-pressure refrigerant gas, and thereafter repeats this cycle. In addition, since the amount of heat transferred to the refrigerant gas changes due to the change in the capacity of the compressed air, the hot gas bypass valve 5 is opened according to the load, and the high-pressure gas in the refrigerant pipe 18 is returned to the low-pressure side of the refrigerant pipe 17 through the pipe 19. .
[0020]
Next, the vacuum system will be described.
The ejector 9, the water pump 10, the water tank 11, and the circulating water cooler 13 are connected by circulating water pipes 22 to 24. The circulating water discharged from the water pump 10 becomes a high-pressure, high-speed jet flow in the ejector 9 and sucks air from a pipe 20 of the ejector 9. The vacuum distillation tank 4 becomes a closed space by closing the gate valve 2, and the inside of the vacuum distillation tank 4 is depressurized by the suction (exhaust) action of the ejector 9.
[0021]
Next, the drain purification process will be described.
The drain of the vacuum distillation tank 4 is heated by a heat pump composed of the refrigerant compressor 3 and the refrigerant pipes 16 to 18 by receiving heat transfer from the refrigerant in the pipe 4a. Since the inside of the vacuum distillation tank 4 is depressurized by the above-mentioned vacuum system, the heated drain boils at a low temperature of 100 ° C. or less and evaporates.
[0022]
Since the oil contained in the drain has a high boiling point of 100 ° C. or more, only the water evaporates, and the oil and water separate in the vacuum distillation tank 4. The water vapor is discharged through the pipe 20 by the exhaust action of the ejector 9, mixed with the circulating water by the ejector 9, cooled by the circulating water to become treated water, flows into the water tank 11, and discharged through the pipe 28. Is done. The treated water is purified water in which steam that has already been separated from oil and water and contains almost no oil is cooled by circulating water.
[0023]
Next, the temperature control of the circulating water will be described.
The steam sucked into the ejector 9 is cooled by the circulating water and collected in the water tank 11 as treated water. Since the circulating water is supplied with heat from the steam, the temperature of the circulating water rises with time and becomes hot water of 50 to 60C. The exhaust performance of the ejector 9 decreases as the water temperature rises up to a water temperature of about 20 ° C. Therefore, it is necessary to maintain the temperature of the circulating water at 20 ° C. or lower in order to maintain the exhaust capacity.
[0024]
Therefore, as a circulating water cooling system, a refrigerant cycle including the refrigerant compressor 12, the circulating water cooler 13, the heat exchange coil 4b, and the refrigerant pipes 25 to 27 is provided. The circulating water is sucked from the water tank 11 by the water pump 10 and is cooled by exchanging heat with a circulating water cooler 13 provided in the middle of the circulating water pipes 23 and 24. On the other hand, the refrigerant gas which has become high temperature in the circulating water cooler 13 is made high temperature and high pressure in the refrigerant compressor 12, and is introduced into the heat exchange coil 4b. After heat exchange with the drain inside the vacuum distillation tank 4 to become a liquid refrigerant, it expands in the capillary tube 14 through the pipe 27 and returns to the circulating water cooler 13 as a low-temperature liquid refrigerant to cool the circulating water and exchange heat. .
[0025]
Thereafter, this cycle is repeated.In this cycle, the temperature of the circulating water is controlled, and at the same time, the latent heat given to the refrigerant when the refrigerant is pressurized in the refrigerant compressor 12 is used for heating the drain, and the temperature is raised for that purpose. The heat of the circulating water is recovered as a heat source for drain heating of the vacuum distillation tank 4.
[0026]
The oil separated in the vacuum distillation tank 4 is periodically opened to open the drain discharge valve 7 and is collected in a waste liquid tank (not shown).
[0027]
In this embodiment, the heat exchanger of the air dryer and the oil-water separator are integrated, and an air dryer with an oil-water separator that is space-saving, cost-saving, and easy to use can be obtained.
[0028]
In addition, the heat recovered by the heat exchanger of the air dryer, the heat transferred to the circulating water of the ejector in the vacuum distillation process, the latent heat of the refrigerant for cooling the compressed air, and the latent heat of the refrigerant for controlling the temperature of the circulating water of the ejector are drained. It is possible to obtain an air dryer equipped with a drain purifying device which is used as a heat source in oil-water separation and has a high energy saving effect.
[0029]
If the drain heating in the vacuum distillation tank 4 can be sufficiently performed, either the pipe 4a or the coil 4b is deleted, and the heat recovered by the heat exchanger of the air dryer and the latent heat of the refrigerant for cooling the compressed air, In addition, at least one of the heat transferred to the circulating water of the ejector and the latent heat of the refrigerant for controlling the temperature of the circulating water of the ejector in the vacuum distillation process may be used as a heat source in oil-water separation of the drain.
[0030]
The air dryer can be used not only for compressed air obtained by an oil-supply type compressor but also for drying compressed air containing oil and moisture in the middle of a piping system.
[0031]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an air dryer with an oil-water separator that is space-saving, cost-saving, and easy to use.
[0032]
Further, according to the present invention, it is possible to obtain an air dryer with an oil-water separator that can save energy by reusing waste heat in the device as a heat source for vacuum distillation.
[Brief description of the drawings]
FIG. 1 is a system diagram of an air dryer with an oil-water separator according to one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heat exchanger 1a ... Baffle plate 1b ... Piping 2 ... Partition valve 3 ... Refrigerant compressor 4 ... Vacuum distillation tank 4a ... Piping 4b ... Coil 6 ... Capillary tube 9 ... Ejector 10 ... Water pump 11 ... Water tank 12 ... Refrigerant Compressor 13: Cooler for circulating water 14: Capillary tube

Claims (2)

熱交換器において圧縮空気を冷却し、該圧縮空気中の水分をドレンとして凝縮させ圧縮空気と分離する冷凍式エアードライヤーにおいて、
該熱交換器と連結した真空蒸留槽において該熱交換器から収容したドレンを加熱しつつ減圧下に置くことでドレン中の水分を蒸発させて油分と分離せしめ、蒸発した水分を浄化水として回収するようにした油水分離装置を設けたことを特徴とするエアードライヤー。
In a refrigeration air dryer that cools compressed air in a heat exchanger and condenses moisture in the compressed air as a drain to separate it from compressed air,
The drain contained in the heat exchanger is heated and placed under reduced pressure in a vacuum distillation tank connected to the heat exchanger to evaporate the water in the drain to separate it from oil, and recover the evaporated water as purified water. An air dryer provided with an oil-water separation device adapted to perform the operation.
上記請求項1に記載のエアードライヤーにおいて、該真空蒸留槽におけるドレン加熱の熱源として、熱交換器で回収した熱と圧縮空気を冷却する冷媒の潜熱、及び真空蒸留のプロセスでエジェクターの循環水に移動した熱とエジェクターの循環水を温度制御する冷媒の潜熱の少なくとも一方を用いることを特徴とするエアードライヤー。In the air dryer according to claim 1, as a heat source for drain heating in the vacuum distillation tank, the heat recovered by the heat exchanger and the latent heat of the refrigerant that cools the compressed air, and the circulating water of the ejector in the vacuum distillation process. An air dryer using at least one of a transferred heat and a latent heat of a refrigerant for controlling the temperature of circulating water of an ejector.
JP2002351899A 2002-12-04 2002-12-04 Air dryer Expired - Fee Related JP3867662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351899A JP3867662B2 (en) 2002-12-04 2002-12-04 Air dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351899A JP3867662B2 (en) 2002-12-04 2002-12-04 Air dryer

Publications (2)

Publication Number Publication Date
JP2004181373A true JP2004181373A (en) 2004-07-02
JP3867662B2 JP3867662B2 (en) 2007-01-10

Family

ID=32753655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351899A Expired - Fee Related JP3867662B2 (en) 2002-12-04 2002-12-04 Air dryer

Country Status (1)

Country Link
JP (1) JP3867662B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232044A (en) * 2007-03-22 2008-10-02 Nissan Diesel Motor Co Ltd Charge tube
CN101972585A (en) * 2010-08-27 2011-02-16 无锡优元工业机械有限公司 Three-in-one device of refrigerated compressed air dryer
JP2013523439A (en) * 2010-04-09 2013-06-17 アバリディー プロプライエタリー リミテッド Vapor absorption system
JP2015073969A (en) * 2013-10-11 2015-04-20 日野自動車株式会社 Discharge mist capture device for air dryer device
CN105771524A (en) * 2016-05-11 2016-07-20 武汉东顺汽车配件有限公司 Functional combined air drier device
CN109488564A (en) * 2018-11-01 2019-03-19 贵州毅达环保股份有限公司 A kind of waste heat recovery system of air compressor
CN110339679A (en) * 2019-08-15 2019-10-18 王立水 Zero power consumption zero-pressure damages compressed air drier
CN115382364A (en) * 2022-11-01 2022-11-25 杭州嘉隆气体设备有限公司 Intelligent freezing type compressed air dryer and use method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321874B (en) * 2012-03-19 2016-01-27 黄华杰 Air compressor combined type directly-heated recovering device
CN111059801B (en) * 2019-12-11 2021-05-04 珠海格力电器股份有限公司 Condenser assembly, control method thereof, oil return assembly and air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232044A (en) * 2007-03-22 2008-10-02 Nissan Diesel Motor Co Ltd Charge tube
JP2013523439A (en) * 2010-04-09 2013-06-17 アバリディー プロプライエタリー リミテッド Vapor absorption system
CN101972585A (en) * 2010-08-27 2011-02-16 无锡优元工业机械有限公司 Three-in-one device of refrigerated compressed air dryer
JP2015073969A (en) * 2013-10-11 2015-04-20 日野自動車株式会社 Discharge mist capture device for air dryer device
CN105771524A (en) * 2016-05-11 2016-07-20 武汉东顺汽车配件有限公司 Functional combined air drier device
CN109488564A (en) * 2018-11-01 2019-03-19 贵州毅达环保股份有限公司 A kind of waste heat recovery system of air compressor
CN110339679A (en) * 2019-08-15 2019-10-18 王立水 Zero power consumption zero-pressure damages compressed air drier
CN115382364A (en) * 2022-11-01 2022-11-25 杭州嘉隆气体设备有限公司 Intelligent freezing type compressed air dryer and use method
CN115382364B (en) * 2022-11-01 2023-03-10 杭州嘉隆气体设备有限公司 Intelligent freezing type compressed air dryer and using method

Also Published As

Publication number Publication date
JP3867662B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
AU618509B2 (en) Absorption refrigeration method and apparatus
JPH071133B2 (en) Refrigerant recovery / purification system and method
US20140026613A1 (en) Cryogenic co2 separation using a refrigeration system
KR20080021477A (en) Distillation apparatus
JP3867662B2 (en) Air dryer
US4939903A (en) Refrigerant recovery and purification system and method
JP2019000845A (en) Exhaust gas purification and heat recovery system and method for sludge treatment
CN110255855B (en) Dual-cold-heat-source heat pump sludge low-temperature drying system with waste heat recovery function and application method thereof
US20110048920A1 (en) Adsorbent - Adsorbate Desalination Unit and Method
US20230143266A1 (en) Method and system for the production of liquid biogas
WO2016121012A1 (en) Liquid solid separating device
KR930700809A (en) Refrigerant regeneration method and apparatus
EP0480972A1 (en) Method and apparatus for recovery of volatile liquids such as refrigerants
RU2280826C2 (en) Method and plant for partial natural gas liquefaction
US5762763A (en) Method and apparatus for separating water from compressed air system condensate
CN217202411U (en) Vacuum low-temperature evaporation concentration treatment device for oily waste liquid heat pump
JPH11343976A (en) Oil separating system
CN203754456U (en) Nitrogen circulation type low-temperature evaporation concentration device
CN110538480A (en) condensing system and condensing method
KR20140134860A (en) Drying sludge apparatus
KR100929891B1 (en) Apparatus for dehydration and refining of methane gas
KR100529215B1 (en) dehumidifier for air compressor
RU2224581C1 (en) Installation of carbureted hydrogen gas pretreatment
CN107129089B (en) Water purifying equipment
KR200336292Y1 (en) dehumidifier for air compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees