JPS6044174B2 - Multi-circuit protection valve for compressed air equipment - Google Patents

Multi-circuit protection valve for compressed air equipment

Info

Publication number
JPS6044174B2
JPS6044174B2 JP49102168A JP10216874A JPS6044174B2 JP S6044174 B2 JPS6044174 B2 JP S6044174B2 JP 49102168 A JP49102168 A JP 49102168A JP 10216874 A JP10216874 A JP 10216874A JP S6044174 B2 JPS6044174 B2 JP S6044174B2
Authority
JP
Japan
Prior art keywords
pressure
valve
compressed air
overflow
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49102168A
Other languages
Japanese (ja)
Other versions
JPS5074078A (en
Inventor
フアンゼロウ イエルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BABUKO UESUTEINGUHAUSU FUAARUTSUOIKUBUREMUZEN GmbH
Original Assignee
BABUKO UESUTEINGUHAUSU FUAARUTSUOIKUBUREMUZEN GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BABUKO UESUTEINGUHAUSU FUAARUTSUOIKUBUREMUZEN GmbH filed Critical BABUKO UESUTEINGUHAUSU FUAARUTSUOIKUBUREMUZEN GmbH
Publication of JPS5074078A publication Critical patent/JPS5074078A/ja
Publication of JPS6044174B2 publication Critical patent/JPS6044174B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/28Valves specially adapted therefor
    • B60T11/32Automatic cut-off valves for defective pipes
    • B60T11/326Automatic cut-off valves for defective pipes in pneumatic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/26Compressed-air systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/0466Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with a special seating surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Safety Valves (AREA)
  • Lift Valve (AREA)

Description

【発明の詳細な説明】 本発明は、多回路保護弁が1つの空気圧縮機と複数の圧
縮空気供給回路との間に接続され、この保護弁がそれぞ
れの圧縮空気供給回路にあふれ弁をもち、これらのあふ
れ弁の弁閉鎖部材がそれぞ)れ調節可能な圧力形成ばね
により弁座に押付けられ、かつあふれ弁のあふれ圧力に
達した際弁座から離れて圧縮空気の流通を行なう、車両
の圧縮空気装置特に路面走行車両の圧縮空気制動装置用
多回路保護弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a multi-circuit protection valve connected between an air compressor and a plurality of compressed air supply circuits, the protection valve having an overflow valve in each compressed air supply circuit. , the valve closing member of each of these overflow valves is pressed against the valve seat by an adjustable pressure-forming spring, and leaves the valve seat when the overflow pressure of the overflow valve is reached, allowing the flow of compressed air. The present invention relates to a multi-circuit protection valve for a compressed air system, particularly a compressed air braking system for a road vehicle.

圧力形成ばねのばね力を設定する際の避けられない設定
公差のために、多回路保護弁のあふれ弁を同じに設定す
ることはほとんど不可能である。
Due to the unavoidable setting tolerances when setting the spring force of the pressure-forming spring, it is almost impossible to set the overflow valves of multicircuit protection valves identically.

これは、あふれ弁が異なる開放圧力をもつことを意味す
る。通常の設定公差としてほぼ0.3barの圧力差が
見込まれる。設定公差が存在すると、まず低く設定され
た方の回路が圧縮空気を充填され、続いて高く設定され
た方の回路が充填される。さて低く設定された方の回路
に欠陥が生じて、この回路の圧力がなくなつても、高く
設定された方の健全な回路を充填できるようにすること
が必要である。公知の多回路保護弁では、この要求を満
たすためあふれ弁の前にそれぞれ固定絞りを接続してい
た。それにより高まる供給導管内の圧力は、高く設定さ
れた方のあふれ弁の設定公差により生ずる高い開放圧力
に達する。この装置は特に大きい流量に対して流通断面
積が小さいという欠点をもつている。
This means that the overflow valves have different opening pressures. A pressure difference of approximately 0.3 bar is to be expected as a normal setting tolerance. If a setting tolerance exists, the circuit with the lower setting is filled with compressed air first, followed by the circuit with the higher setting. Now, even if the lower set circuit becomes defective and the pressure in this circuit disappears, it is necessary to be able to fill the higher set healthy circuit. In order to meet this requirement, known multi-circuit protection valves each have a fixed throttle connected in front of each overflow valve. The resulting increased pressure in the supply line reaches a high opening pressure, which is caused by the setting tolerance of the higher overflow valve. This device has the disadvantage of a small flow cross section, especially for high flow rates.

なぜならば、健全な回路がまだ充填されていなくても、
圧力調整器の遮断値以上の圧力が供給導管に生ずるから
である。この欠点をなくすため、絞りの絞り作用を少な
くすると、絞りにより生じる動圧が低下するので、あふ
れ弁の設定公差を狭くせねばならない。しかし設定公差
のこの減少は、最初に述べたようにほとんど不可能であ
る。多回路保護弁のあふれ弁の弁閉鎖部材に円錐状のピ
ン突起を設け、圧縮機からの供給導管にある穴とこのピ
ン突起とにより、弁閉鎖部材の行程に.関係する可変絞
りを形成することは、ドイツ連邦共和国特許出願公開第
2143733号明細書から公知である。
Because even if a healthy circuit is not yet filled,
This is because a pressure is created in the supply conduit which is greater than the cut-off value of the pressure regulator. In order to eliminate this drawback, the setting tolerances of the overflow valve must be narrowed, since if the throttling action of the throttle is reduced, the dynamic pressure generated by the throttle is reduced. However, this reduction in the setting tolerance is almost impossible, as mentioned at the beginning. A conical pin protrusion is provided on the valve closing member of the overflow valve of the multi-circuit protection valve, and the pin protrusion and the hole in the supply conduit from the compressor allow the stroke of the valve closing member. The formation of a related variable diaphragm is known from DE 21 43 733 A1.

すなわち4回路保護弁を示す第5図において、制動回路
1および■に属する圧縮空気だめ接続部112および1
12″から、逆止め弁115および115″を介して中
央接続導管部116が分岐し、制動回路■および■に属
するあふれ弁117,118へ通じている。中央接続導
管116に接続される2つの側方通路119,119″
の端部には、それぞれ1つの中央弁座120また・は1
2『がある。各弁座120または12『の後には、可動
壁としての弁ピストン123または123″により区画
される環状空間121または12「が設けられている。
各弁ピストン123または123″はその端面1こ弁閉
鎖部材122または122″をもつている。ねじ124
または124″により調節可能なばね125または12
5″の力により、弁閉鎖部材122または122″は弁
座120または12『へ押付けられる。流れの方向にお
いて弁座120または12『の前に中心穴126または
126″があり、弁閉鎖部材122または122″の円
錐状ピン突起127または127″がこの中心穴へ入り
込んで、中”心穴と共に可変絞り130または13『を
形成している。したがつて絞り130または13『と弁
座120または12『との間には環状空間131または
13「が形成され、あふれ弁が閉じていると、圧縮機か
らの一次圧力を受けているピン突起127または127
″も常に一次圧力を受けている。さて制動回路1,■へ
ー次圧力が供給されると、逆止め弁115,115″、
中央接続導管116および側方通路119,119″を
経て、絞り130,13『を通つて環状空間131,1
3「へ入り、ばね125,125″の力に抗してあふれ
弁117,118を開いて制動回路■および■へ達する
That is, in FIG. 5 showing the four-circuit protection valve, the compressed air reservoir connections 112 and 1 belonging to braking circuit 1 and
12'', a central connecting conduit section 116 branches off via non-return valves 115 and 115'' and leads to overflow valves 117, 118 belonging to brake circuits (1) and (2). Two side passages 119, 119″ connected to the central connecting conduit 116
At the end of each one central valve seat 120 or one
2 ``There is. Behind each valve seat 120 or 12'' there is an annular space 121 or 12'' delimited by a valve piston 123 or 123'' as a movable wall.
Each valve piston 123 or 123'' has a valve closing member 122 or 122'' on its end face. screw 124
or 124″ adjustable spring 125 or 12
A force of 5'' forces the valve closing member 122 or 122'' onto the valve seat 120 or 12''. In front of the valve seat 120 or 12'' in the direction of flow there is a central hole 126 or 126'' into which the conical pin protrusion 127 or 127'' of the valve closing member 122 or 122'' enters. Together, they form a variable aperture 130 or 13'. Therefore, an annular space 131 or 13'' is formed between the throttle 130 or 13'' and the valve seat 120 or 12'', and when the overflow valve is closed, the pin protrusion receives the primary pressure from the compressor. 127 or 127
'' is also always receiving primary pressure. Now, when the secondary pressure is supplied to the brake circuit 1, ■, the check valves 115, 115'',
Via the central connecting conduit 116 and the side passages 119, 119'' through the aperture 130, 13'' into the annular space 131, 1.
3" and opens the overflow valves 117, 118 against the force of springs 125, 125" to reach the brake circuits (1) and (3).

この多回路保護弁では、環状空間131,131″に属
する弁閉鎖部材122,122″の環状面とピン突起1
27,12丁の一次圧力を受ける面とを、充分な機能を
果たし得るように互いに整合させることがきわめて困難
である。
In this multi-circuit protection valve, the annular surfaces of the valve closing members 122, 122'' belonging to the annular spaces 131, 131'' and the pin protrusion 1
It is extremely difficult to align the surfaces receiving the primary pressure of the 27 and 12 guns with each other in a manner that allows them to function satisfactorily.

さらに絞り130,13『の必要な小さい流通断面は、
絞りとして環状面を使用するため、充分精確に維持する
ことも不可能である。本発明の目的は、圧縮空気供給回
路が故障した場合、残つている健全な圧縮空気供給回路
が大気圧まで排気されていても、この健全な回路の充填
が精確に行なわれるようにすることにある。
Furthermore, the necessary small flow cross section of the apertures 130, 13' is
Due to the use of an annular surface as the diaphragm, it is also impossible to maintain it with sufficient precision. It is an object of the present invention to ensure that, in the event of a failure of a compressed air supply circuit, the remaining healthy compressed air supply circuit is refilled accurately even if this circuit is evacuated to atmospheric pressure. be.

このため多回路保護弁が1つの空気圧縮機と複数の圧縮
空気供給回路との間に接続されて、各圧縮空気供給回路
に対し弁座と弁閉鎖部材とをもつあふれ弁を含み、調節
可能な圧力形成ばねの力ど圧縮空気供給回路の圧力とに
より決定されるあふれ圧力において、弁閉鎖部材が弁座
から離れることにより、あふれ弁が空気圧縮機ど圧縮空
気供給回路とを接続し、あふれ圧力の高さが圧縮空気供
給回路の圧力に対して逆の関係にあり、弁閉鎖部材が開
放方向に空気圧縮機の圧力を受けることのできる面をも
ち、圧縮空気供給回路に圧力がない場合あふれ弁のあふ
れ圧力が、公差下限圧力と公差上限圧力との間の公差帯
域内にあるものにおいて、本発明によれば、あふれ弁の
弁閉鎖部材または弁座が、互いに同心的に配置された2
つの環状ひれをもち、これらのひれが空気圧縮機圧力を
受けることのできる弁閉鎖部材の面を2つの同心的な作
用面に分割し、外側環状ひれが内側環状ひれよりわずか
短く、少なくとも内側環状ひれまたはその対向面が弾性
変形可能に形成され、外側作用面が内側環状ひれにある
割れ目を介して内側作用面に接続され、両作用面の和と
内側作用面との比が、少なくとも公差上限圧力と公差下
限圧力との比に等しく、外側環状ひれのみが弁座から離
れているとき、空気圧縮機の吐出量がわすかでも、割れ
目が空気圧縮機と圧縮空気供給回路との接続を絞る。
For this purpose, a multi-circuit protection valve is connected between an air compressor and a plurality of compressed air supply circuits and includes an adjustable overflow valve having a valve seat and a valve closing member for each compressed air supply circuit. At an overflow pressure determined by the force of the pressure forming spring and the pressure of the compressed air supply circuit, the valve closing member separates from the valve seat, causing the overflow valve to connect with the compressed air supply circuit such as the air compressor, and prevent overflow. When the pressure height is inversely related to the pressure in the compressed air supply circuit, the valve closing member has a surface that can receive the pressure of the air compressor in the opening direction, and there is no pressure in the compressed air supply circuit. Where the overflow pressure of the overflow valve is within a tolerance band between a lower tolerance limit pressure and an upper tolerance limit pressure, the invention provides that the valve closing members or valve seats of the overflow valve are arranged concentrically with respect to each other. 2
having two annular fins, these fins dividing the face of the valve closing member capable of receiving air compressor pressure into two concentric working surfaces, the outer annular fin being slightly shorter than the inner annular fin and at least as long as the inner annular fin. The fin or its opposing surface is configured to be elastically deformable, the outer working surface is connected to the inner working surface via a crack in the inner annular fin, and the ratio of the sum of both working surfaces to the inner working surface is at least within the upper tolerance limit. Equal to the ratio between the pressure and the lower tolerance limit pressure, when only the outer annular fin is away from the valve seat, the crack will throttle the connection between the air compressor and the compressed air supply circuit, even if the air compressor discharge volume is low. .

本発明の実施例を以下図面によつて説明する。第1図に
示された2回路保護弁は接続部11および12をもつて
いる。接続部11は圧縮空気供給回路としての制動回路
に、また接続部12は別の圧縮空気供給回路としての制
動回路に属している。図示してない1つの空気圧縮機は
圧力形成室13,14へ通じている。圧力形成室13,
14は2つのあふれ弁1,11によつて、接続部11,
12をもつ接続室19,21から遮断可能である。
Embodiments of the present invention will be described below with reference to the drawings. The two-circuit protection valve shown in FIG. 1 has connections 11 and 12. The connection 11 belongs to a brake circuit as a compressed air supply circuit, and the connection 12 belongs to a brake circuit as a further compressed air supply circuit. One air compressor, not shown, leads to the pressure-forming chambers 13, 14. pressure forming chamber 13,
14 is connected by two overflow valves 1, 11 to the connecting portion 11,
It can be isolated from the connection chambers 19, 21 with 12.

ハウジング部材22,23,24の間にダイヤフラム2
5,26が張られており、これらのダイヤフラム25,
26の一方の側にあふれ弁1,11の弁閉鎖部材15,
17が支えられ、また他方の側にこれら弁閉鎖部材15
,17と共同作用する圧力形成ばね27,28が支えら
れ、これらのばね27,28の初応力はねじ29,31
によつて調節可能である。圧力形成ばね27,28の選
定された初応力は、圧力形成室13,14内におけるあ
ふれ弁1,11のあふれ圧力(開放圧力)を決定する。
さらにまた弁閉鎖部材15,17は、閉鎖方向に働くそ
れぞれ1つの閉鎖ばね32,33の作用を受ける。この
閉鎖ばね32,33は本発明によつて重要ではなく、こ
れを省略することもできる。この種のあふれ弁1,11
の一般的な性質として、そのあふれ圧力(開放圧力)は
、圧力形成ばね27,28によつてだけではなく、あふ
れ弁1,11に接続される圧縮空気供給回路1,11(
付属するあふれ弁に対応して符号1,11をつける)内
に形成される圧力によつても決定される。すなわち弁閉
鎖部材15,17は、圧力形成ばね27,28によりあ
ふれ弁の閉鎖方向の力を受ける。一方あふれ弁の開放方
向には、弁閉鎖部材15,17の作用面に圧力形成室1
3,14の圧力(流入側)を、またダイヤフラム25,
26の作用面に圧縮空気供給回路1,11(流出側)の
圧力を受ける。弁閉鎖部材15,17はその背面に同様
に流出側圧力を受けるので、ダイヤフラム25,26の
作用面は、全ダイヤフラム面と弁閉鎖部材15,17の
作用面との差として得られる。したがつてあふれ弁1,
11のあふれ圧力は、圧縮空気供給回路1,11に圧力
がないときは、圧力形成ばね27,28の初応力により
決定されるが、圧縮空気供給回路1,11内に圧力が形
成されるにつれて、このあふれ圧力は小さくなる。この
ように圧縮空気供給回路1,11に形成される圧力が大
きいほど、圧力形成ばね27,28の力に打勝つてあふ
れ弁を開くために必要な圧力形成室13,14内の圧力
は小さい。すなわちあふれ圧力の高さは圧縮空気供給回
路の圧力に対して逆の関係にある。あふれ弁1および1
1は同じに形成されている。
Diaphragm 2 between housing members 22, 23, 24
5, 26 are stretched, and these diaphragms 25,
Valve closing member 15 of overflow valve 1, 11 on one side of 26,
17 are supported and on the other side these valve closing members 15
, 17 are supported, the initial stress of these springs 27, 28 is equal to the screws 29, 31
Adjustable by. The selected initial stress of the pressure-building springs 27, 28 determines the overflow pressure (opening pressure) of the overflow valves 1, 11 in the pressure-building chambers 13, 14.
Furthermore, the valve closing elements 15, 17 are each acted upon by a closing spring 32, 33 which acts in the closing direction. These closing springs 32, 33 are not critical according to the invention and can also be omitted. This kind of overflow valve 1, 11
As a general property of
It is also determined by the pressure built up in the associated overflow valve (marked 1, 11 correspondingly). That is, the valve closing members 15, 17 are subjected to a force in the direction of closing the overflow valve by the pressure-forming springs 27, 28. On the other hand, in the opening direction of the overflow valve, a pressure forming chamber 1 is provided on the working surface of the valve closing members 15 and 17.
3, 14 pressure (inflow side), and diaphragm 25,
The working surface of 26 receives the pressure of the compressed air supply circuits 1 and 11 (outflow side). Since the valve closing elements 15, 17 are likewise subjected to the outflow pressure on their rear surfaces, the active surface of the diaphragms 25, 26 is obtained as the difference between the total diaphragm surface and the active surface of the valve closing elements 15, 17. Therefore, overflow valve 1,
The overflow pressure of 11 is determined by the initial stress of the pressure forming springs 27, 28 when there is no pressure in the compressed air supply circuits 1, 11, but as pressure is built up in the compressed air supply circuits 1, 11, , this overflow pressure becomes smaller. The greater the pressure created in the compressed air supply circuits 1, 11 in this way, the smaller the pressure in the pressure creation chambers 13, 14 required to overcome the force of the pressure creation springs 27, 28 and open the overflow valve. . That is, the height of the overflow pressure has an inverse relationship to the pressure of the compressed air supply circuit. Overflow valve 1 and 1
1 are formed in the same way.

弁閉鎖部材15,17は、ハウジング22内”に設けら
れた弁座16,18へ押付けられる。弁閉鎖部材15,
17の閉鎖面34,35(第2図ないし第4図参照)へ
弾性弁環36,37が挿入され、これらの弁環34,3
5は互いに同心的に配置された三角形断面の環状ひれ3
8および39,41および42をそれぞれもつている。
これらのひれは、空気圧縮機の圧力を受けることのでき
る弁閉鎖部材の面を2つの同心的な作用面に分割し、外
側および内側の両作用面の和と内側作用面との比が、あ
ふれ弁の公差上限圧力と公差下限ノ圧力との比に等しい
か、これより大きくなつている。外側の環状ひれ39,
42は内側環状ひれ38,41よりわずかに低く形成さ
れている。実際の実験において0.1W$Lだけ低い外
側環状ひれ39,42がよいことがわかつた。内側環状
ひれ38,41は、絞りとして作用する割れ目43,4
4をもつている。この2回路保護弁の作用を以下に説明
する。
The valve closing members 15, 17 are pressed against valve seats 16, 18 provided within the housing 22. The valve closing members 15,
Elastic valve rings 36, 37 are inserted into the closing surfaces 34, 35 (see FIGS. 2 to 4) of 17, and these valve rings 34, 3
5 is an annular fin 3 with a triangular cross section arranged concentrically with each other.
8 and 39, 41 and 42, respectively.
These fins divide the surface of the valve closing member that can receive the pressure of the air compressor into two concentric working surfaces, such that the ratio of the sum of both the outer and inner working surfaces to the inner working surface is It is equal to or greater than the ratio of the upper tolerance limit pressure and the lower tolerance limit pressure of the overflow valve. outer annular fin 39,
42 is formed slightly lower than the inner annular fins 38, 41. In actual experiments, it was found that outer annular fins 39, 42 that are lower by 0.1 W$L are better. The inner annular fins 38, 41 have cracks 43, 4 that act as apertures.
It has 4. The operation of this two-circuit protection valve will be explained below.

空気圧縮機からの圧縮空気供給により圧力形成室13に
圧力が形成されると、この圧力は内側作用面から、割れ
目43を通つて外側作用面へ達する。したがつてこの圧
力は内側作用面と外側作用面との和すなわち全作用面へ
作用する。この全作用面に作用する圧力によつて生ずる
力が、圧力形成ばね27の力に打勝つのに充分な大きさ
になると、弁閉鎖部材15がもち上げられ、外側環状ひ
れ39が弁座16から離される。このときの圧力が、圧
縮空気供給回路1に圧力がないときのあふれ弁1のあふ
れ圧力である。弁閉鎖部材15は、外側環状ひれ39が
弁座16から離れかつ内側環状ひれ38がまだ弁座16
から離れていない位置に短時間留まる。
When a pressure is built up in the pressure-building chamber 13 by the supply of compressed air from the air compressor, this pressure reaches the outer working surface from the inner working surface through the crack 43. This pressure therefore acts on the sum of the inner working surface and the outer working surface, ie on the total working surface. When the force generated by the pressure acting on this entire active surface is large enough to overcome the force of the pressure-building spring 27, the valve closing member 15 is lifted and the outer annular fin 39 is moved against the valve seat 16. be separated from The pressure at this time is the overflow pressure of the overflow valve 1 when there is no pressure in the compressed air supply circuit 1. The valve closing member 15 has an outer annular fin 39 separated from the valve seat 16 and an inner annular fin 38 still attached to the valve seat 16.
remain for a short period of time in a position not far from the

その際これまで外側作用面に作用していたあふれ圧力は
、もち上げられた外側環状ひれ39と弁座16との間に
形成される環状間隙を通つて逃げる。この状態て絞りと
して作用する割れ43を通して、内側作用面かられずか
な空気しか補給されないので、この状態では外側作用面
の下には大した圧力は保たれない。したがつて大体にお
いて内側作用面のみが有効であるにすぎない。しかしあ
ふれ圧力は、この小さい面を介して弁閉鎖部材15の前
記の位置を維持することはできず、弁閉鎖部材15は弁
座16へ向かつて押し戻されて、外側環状ひれ39が再
び閉じる。今やあふれ圧力が再び全作用面に作用し、弁
閉鎖部材15は、外側環状ひれ.39が離れかつ内側環
状ひれ38が閉じる位置へ再び移行し、前述したサイク
ルが繰返される。したがつて弁閉鎖部材15はフラツタ
段階に入る。このフラツタ段階では、外側環状ひれ39
が離れるたびに、若干の空気が圧力形成室13から圧縮
.空気供給回路1へ流入する。それによりこの圧縮空気
供給回路1には次第に圧力が形成されて、圧力形成ばね
27に抗してダイヤフラム25へ上向きに作用し、それ
により弁閉鎖部材15を介する圧力形成室13内の圧力
の作用が援助される。空・気圧縮機の吐出量が適当な大
きさであると、圧力形成室13内したがつて弁閉鎖部材
15の全作用面または内側作用面に加わる圧力も上昇す
る。圧縮空気供給回路1内の圧力形成またはこれと圧力
形成室13内の圧力との影響により、最初のうち弁閉鎖
部材15は、外側環状ひれ39が開きかつ品=^こ1:
;′嫡〃?鹸=ニ38も弁座16から離れ、割れ目43
の絞り作用が解消される。
The overflow pressure that hitherto acted on the outer active surface then escapes through the annular gap formed between the raised outer annular fin 39 and the valve seat 16. In this state, only a small amount of air is supplied from the inner working surface through the crack 43 which acts as a throttle, so that in this state no significant pressure is maintained under the outer working surface. Therefore, to a large extent only the inner working surface is effective. However, the overflow pressure cannot maintain said position of the valve closing member 15 through this small surface, and the valve closing member 15 is pushed back towards the valve seat 16 and the outer annular fin 39 closes again. The overflow pressure now acts again on all working surfaces, and the valve closing member 15 is forced into the outer annular fin. 39 is released and the inner annular fin 38 moves back into the closed position and the cycle described above is repeated. The valve closing member 15 therefore enters a flutter phase. In this flutter stage, the outer annular fin 39
Each time the air is removed, some air is compressed from the pressure-forming chamber 13. It flows into the air supply circuit 1. As a result, a pressure gradually builds up in this compressed air supply circuit 1 and acts upwardly against the pressure-building spring 27 on the diaphragm 25 , thereby exerting an effect on the pressure in the pressure-building chamber 13 via the valve closing element 15 . will be assisted. If the output of the pneumatic compressor is of a suitable magnitude, the pressure within the pressure-forming chamber 13 and thus on the entire or inner working surface of the valve closing member 15 also increases. Due to the pressure build-up in the compressed air supply circuit 1 or its influence on the pressure in the pressure build-up chamber 13, the valve closing member 15 initially opens with the outer annular fin 39 open and the product =^ko1:
;′Heir〃? Ken-ni 38 also separates from the valve seat 16, and the crack 43
The throttling effect of is eliminated.

空気圧縮機の吐出が続行するため、閉鎖ばね32により
規定されるわずかな圧力差を考慮外におくと、圧力形成
室13内の圧力と圧縮空気供給回路1の圧力とが接近し
てくる。閉j鎖ばね32は圧縮空気供給回路からの逆流
を防止するもので、本発明にとつては重要でなく、なく
てもよい。圧力形成室13および圧縮空気供給回路1の
圧力が増大するにつれて、ダイヤフラム25は圧力形成
ばね27の力に抗してますます上方へ撓み、このばね2
7が圧縮される。弁閉鎖部材15は、図示しないばね受
がハウジング部分23の図示しないストッパに当るため
ダイヤフラム25の撓みが限定されるまで、このダイヤ
フラムの撓みに追従する。その際ダイヤフラム25の可
能な最大撓みであふれ弁1が完全に開かれるまで、内側
環状ひれ38と弁座16との間に増大する弁断面が開か
れる。前述した両圧力の接近後、圧力形成室13および
圧縮空気供給回路1において、空気圧縮機の全圧力まで
さらに圧力上昇が行なわれる。前述したフラツタ段階の
持続時間は、空気圧縮機の吐出量の大きさに関係する。
Since the air compressor continues to discharge, the pressure in the pressure-forming chamber 13 and the pressure in the compressed air supply circuit 1 approach each other, excluding the slight pressure difference defined by the closing spring 32. The closing spring 32 prevents backflow from the compressed air supply circuit and is not important to the invention and may be omitted. As the pressure in the pressure-building chamber 13 and the compressed air supply circuit 1 increases, the diaphragm 25 deflects more and more upwards against the force of the pressure-building spring 27 .
7 is compressed. The valve closing member 15 follows the deflection of the diaphragm 25 until the deflection of the diaphragm 25 is limited because a spring catch (not shown) abuts a stop (not shown) on the housing part 23 . An increasing valve cross section is then opened between the inner annular fin 38 and the valve seat 16 until the overflow valve 1 is completely opened with the maximum possible deflection of the diaphragm 25. After the above-mentioned pressures approach each other, the pressure is further increased in the pressure generation chamber 13 and the compressed air supply circuit 1 to the full pressure of the air compressor. The duration of the aforementioned flutter phase is related to the magnitude of the air compressor output.

大きい吐出量では弁閉鎖部材15のフラツタ段階は短い
か、または全く生じない。なぜならば、圧力形成室13
内の圧力は急速にあふれ圧力を越えて特定の値へ、すな
わち弁閉鎖部材15の内側作用面が圧縮空気供給回路1
の圧力による援助なしでも内側環状ひれ38を弁座16
から離すのに充分であるような値へ、上昇するからであ
る。以上の説明かられかるように、あふれ弁1が閉じて
いるとき、圧縮空気供給回路1に圧力があると、ダイヤ
フラム25を介して作用するこの圧力の援助のため、弁
閉鎖部材15のフラツタ段階が低いあふれ圧力で始まる
At large delivery volumes, the flutter phase of the valve closing member 15 is short or does not occur at all. Because the pressure formation chamber 13
The pressure within the compressed air supply circuit 1 rapidly exceeds the overflow pressure and reaches a certain value, i.e. when the inner working surface of the valve closing member 15
The inner annular fin 38 can be pressed against the valve seat 16 without the aid of pressure.
This is because it rises to a value that is sufficient to move it away from. As can be seen from the above description, when the overflow valve 1 is closed, if there is pressure in the compressed air supply circuit 1, due to the assistance of this pressure acting through the diaphragm 25, the valve closing member 15 undergoes a flutter phase. starts at low overflow pressure.

上述した作用は、多回路保護弁の他方のあふれ弁11に
ついても同じように行なわれる。
The above-mentioned action is performed in the same way for the other overflow valve 11 of the multi-circuit protection valve.

次にあふれ弁1と11の共同作用について説明する。Next, the cooperative action of overflow valves 1 and 11 will be explained.

まず空気圧縮機の全圧力が10barであり、圧縮空気
供給回路1,11が排気されて圧力なしのとき、あふれ
弁1が7.0barのあふれ圧力をもち、あふれ弁11
が7.3barのあふれ圧力をもつているものと仮定す
る。したがつて両あふれ弁1,11のあふれ圧力の公差
帯域は7.0barと7.3barの間にあり、公差下
限圧力が7.0bar1公差上限圧力が7.3barで
ある。さらに弁閉鎖部材15,17の全作用面と内側作
用面との比が(公差上限圧力と公差下限圧力との比最小
比7.3:7.0より大きい)7.5:7.0すなわち
1.0714:1であると仮定する。ます両圧縮空気供
給回路1,11が健全であるものと仮定する。あふれ弁
1の前述した作用は互いに連通する圧力形成室13,1
4内の7.0barの圧力で始まる。遅くとも圧力形成
室13と圧縮空気供給回路1とが同じ圧力になつた後、
圧力形成室13,14内の圧力は7.3barに上昇し
、それによりあふれ弁1について前述した作用があふれ
弁11でも同じように開始される。したがつて両方の圧
縮空気供給回路1,11が健全であると、両あふれ弁1
,11のあふれ圧力の差は問題とならない。さて圧縮空
気供給回路1したがつてあふれ圧力として公差下限圧力
7.0barの回路1が欠陥をもち、この欠陥部から空
気が漏れてしまうものとする。
First, when the total pressure of the air compressor is 10 bar and the compressed air supply circuits 1 and 11 are evacuated and have no pressure, the overflow valve 1 has an overflow pressure of 7.0 bar, and the overflow valve 11 has an overflow pressure of 7.0 bar.
Assume that has an overflow pressure of 7.3 bar. The tolerance range of the overflow pressures of both overflow valves 1, 11 therefore lies between 7.0 bar and 7.3 bar, with a lower tolerance pressure of 7.0 bar and an upper tolerance pressure of 7.3 bar. Furthermore, the ratio of the total working surface to the inner working surface of the valve closing members 15, 17 is 7.5:7.0 (greater than the minimum ratio of 7.3:7.0 between the upper tolerance limit pressure and the lower tolerance limit pressure), i.e. Assume 1.0714:1. It is assumed that both compressed air supply circuits 1 and 11 are healthy. The above-mentioned function of the overflow valve 1 is realized by the pressure-forming chambers 13, 1 communicating with each other.
Starting at a pressure of 7.0 bar within 4. At the latest, after the pressure forming chamber 13 and the compressed air supply circuit 1 reach the same pressure,
The pressure in the pressure-forming chambers 13, 14 rises to 7.3 bar, so that the action described above for the overflow valve 1 also begins on the overflow valve 11. Therefore, if both compressed air supply circuits 1 and 11 are healthy, both overflow valves 1
, 11 is not a problem. Now, it is assumed that the compressed air supply circuit 1, which has a lower tolerance limit pressure of 7.0 bar as an overflow pressure, has a defect, and air leaks from this defect.

一般に以前の走行運転により圧縮空気供給回路11には
残留圧力が存在するが、欠陥のある圧縮空気供給回路1
はこの欠陥部のため圧力なしになつている。この場合圧
縮空気供給回路11の残留圧力があふれ弁11のあふれ
圧力を0.7bar以下に減少するのに充分である限り
、この欠陥は問題とならない。しかし圧縮空気供給回路
11がこのような残留圧力をもたず、最悪の場合圧力な
しであると、問題となる。すなわちこの場合空気圧縮機
の吐出量が小さいと、従来の装置では、あふれ弁11を
開いて圧縮空気供給回路11に圧縮空気を充填すること
はできない。この場合本発明では、圧力形成室13,1
4内における7.0barの圧力で弁閉鎖部材15がそ
のフラツタ段階に入つて、少量の空気が圧縮空気供給回
路1へ流入するのを可能にするが、この空気は欠陥部を
通して流出してしまうので、この圧縮空気供給回路1に
は、圧力形成室13内の圧力を援助するような圧力は形
成されない。しかし本発明により割れ目43が絞りとし
て構成されているので、例えば車両用機関のアイドリン
グにおける空気圧縮機のわずかな吐出量でも、割れ目4
3を通つて圧縮空気供給回路1へ流入する空気量よりは
多い。本発明により弁閉鎖部材15の外側および内側の
作用面の和と内側作用面との比が少なくとも公差上限圧
力と公差下限圧力との比に等しいため、圧力形成室13
,14内の圧力が7.5barの値をとるまで、弁閉鎖
部材15はそのフラツタ段階に留まる。しかし7.3b
arの公差上限圧力から、あふれ弁11の弁閉鎖部材1
7が前述したように作用し始めるので、このあふれ弁1
1も結局その安定な全開位置へ達するので、健全な圧縮
空気供給回路11の圧縮空気充填が保証される。これは
前述したように7.3:7.0=1.0429:1の最
小面積比すなわち公差上限圧力と公差下限圧力との比で
も既に現われる。こうして本発明によれば、例えば圧縮
空気供給回路1が故障した場合、この回路1のあふれ弁
1より大きいあふれ圧力に設定されたあふれ弁11をも
つ健全な圧縮空気供給回路11に圧力がなくても、この
回路11を確実に充填することができる。
Generally, there is residual pressure in the compressed air supply circuit 11 due to previous driving operation, but the defective compressed air supply circuit 1
There is no pressure due to this defect. In this case, this defect is not a problem as long as the residual pressure in the compressed air supply circuit 11 is sufficient to reduce the overflow pressure in the overflow valve 11 to below 0.7 bar. However, if the compressed air supply circuit 11 does not have such residual pressure, and in the worst case, there is no pressure, a problem will arise. That is, in this case, if the discharge amount of the air compressor is small, the conventional device cannot open the overflow valve 11 and fill the compressed air supply circuit 11 with compressed air. In this case, in the present invention, the pressure forming chambers 13, 1
At a pressure of 7.0 bar in 4, the valve closing member 15 enters its flutter phase, allowing a small amount of air to enter the compressed air supply circuit 1, which air escapes through the defect. Therefore, no pressure is generated in the compressed air supply circuit 1 to support the pressure in the pressure forming chamber 13. However, according to the present invention, the crack 43 is configured as a throttle, so even if the air compressor discharges only a small amount during idling of a vehicle engine, the crack 43
This amount is larger than the amount of air flowing into the compressed air supply circuit 1 through 3. According to the invention, the ratio of the sum of the outer and inner working surfaces of the valve closing member 15 to the inner working surface is at least equal to the ratio of the upper tolerance limit pressure and the lower tolerance limit pressure, so that the pressure-forming chamber 13
, 14 assumes a value of 7.5 bar, the valve closing member 15 remains in its flutter phase. But 7.3b
From the tolerance upper limit pressure of ar, the valve closing member 1 of the overflow valve 11
7 begins to operate as described above, this overflow valve 1
1 eventually reaches its stable fully open position, so that a healthy compressed air filling of the compressed air supply circuit 11 is guaranteed. As mentioned above, this already appears at the minimum area ratio of 7.3:7.0=1.0429:1, that is, the ratio of the upper tolerance limit pressure to the lower tolerance limit pressure. Thus, according to the present invention, if the compressed air supply circuit 1 fails, for example, a healthy compressed air supply circuit 11 having an overflow valve 11 set to a higher overflow pressure than the overflow valve 1 of this circuit 1 has no pressure. This circuit 11 can also be reliably filled.

しかも絞りとしての割れ目43,44を使用しているの
で、その流通断面を充分精確に維持することもできる。
なお弁閉鎖部材15,17を段付きピストンとして形成
し、これがハウジング部材23,24内に密封されて圧
力形成ばね27,28に抗して移動できるようにすれば
、ダイヤフラム25,26を省略することができる。
Moreover, since the cracks 43 and 44 are used as apertures, the flow cross section can be maintained with sufficient accuracy.
It should be noted that the diaphragms 25, 26 can be omitted if the valve closing members 15, 17 are designed as stepped pistons, which are sealed in the housing parts 23, 24 and can be moved against the pressure-forming springs 27, 28. be able to.

【図面の簡単な説明】 第1図は本発明により形成されたあふれ弁をもつ2回路
保護弁の断面図、第2図は弁閉鎖部材の底面図、第3図
は第2図による弁閉鎖部材の縦断面図、第4図は第1図
の■の部分を拡大して示す図、第5図は従来の多回路保
護弁の断面図である。 1,11・・・・・・あふれ弁、15,17・・・・・
弁閉鎖部材、16,18・・・・・弁座、27,28・
・・・・・圧力形成ばね、38,39,41,42・・
・・・・環状ひれ、43,44・・・・・・害1れ目。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a two-circuit protection valve with an overflow valve formed according to the present invention, FIG. 2 is a bottom view of a valve closing member, and FIG. 3 is a valve closing according to FIG. FIG. 4 is a longitudinal sectional view of the member, and FIG. 4 is an enlarged view of the part marked ■ in FIG. 1. FIG. 5 is a sectional view of a conventional multi-circuit protection valve. 1, 11... Overflow valve, 15, 17...
Valve closing member, 16, 18...Valve seat, 27, 28...
...Pressure formation spring, 38, 39, 41, 42...
...Annular fin, 43,44...1st damage.

Claims (1)

【特許請求の範囲】[Claims] 1 多回路保護弁が1つの空気圧縮機と複数の圧縮空気
供給回路との間に接続されて、各圧縮空気供給回路に対
し弁座16、18と弁閉鎖部材15、17とをもつあふ
れ弁を含み、調節可能な圧力形成ばね27、28の力と
圧縮空気供給回路の圧力とにより決定されるあふれ圧力
において、弁閉鎖部材15、17が弁座16、18から
離れることにより、あふれ弁が空気圧縮機と圧縮空気供
給回路とを接続し、あふれ圧力の高さが圧縮空気供給回
路の圧力に対して逆の関係にあり、弁閉鎖部材15、1
7が開放方向に空気圧縮機の圧力を受けることのできる
面をもち、圧縮空気供給回路に圧力がない場合あふれ弁
のあふれ圧力が、公差下限圧力と公差上限圧力との間の
公差帯域内にあるものにおいて、あふれ弁の弁閉鎖部材
15、17または弁座16、18が、互いに同心的に配
置された2つの環状ひれ38、39、41、42をもち
、これらのひれが空気圧縮機圧力を受けることのできる
弁閉鎖部材15、17の面を2つの同心的な作用面に分
割し、外側環状ひれ39、42が内側環状ひれ38、4
1よりわずか短く、少なくとも内側環状ひれ38、41
またはその対向面が弾性変形可能に形成され、外側作用
面が内側環状ひれ38、41にある割れ目43、44を
介して内側作用面に接続され、両作用面の和と内側作用
面との比が、少なくとも公差上限圧力と公差下限圧力と
の比に等しく、外側環状ひれ39、42のみが弁座16
、18から離れているとき、空気圧縮機の吐出量がわず
かでも、割れ目43、44が空気圧縮機と圧縮空気供給
回路との接続を絞ることを特徴とする、空気圧縮機と複
数の圧縮空気供給回路をもつ車両用圧縮空気装置用多回
路保護弁。
1 A multi-circuit protection valve is connected between an air compressor and a plurality of compressed air supply circuits, an overflow valve having a valve seat 16, 18 and a valve closing member 15, 17 for each compressed air supply circuit. and at an overflow pressure determined by the force of the adjustable pressure-forming springs 27, 28 and the pressure of the compressed air supply circuit, the valve closing member 15, 17 moves away from the valve seat 16, 18, causing the overflow valve to open. The air compressor and the compressed air supply circuit are connected, the height of the overflow pressure has an inverse relationship to the pressure of the compressed air supply circuit, and the valve closing member 15,1
7 has a surface that can receive the pressure of the air compressor in the opening direction, and when there is no pressure in the compressed air supply circuit, the overflow pressure of the overflow valve is within the tolerance band between the tolerance lower limit pressure and the tolerance upper limit pressure. In some, the valve closing member 15, 17 or the valve seat 16, 18 of the overflow valve has two annular fins 38, 39, 41, 42 arranged concentrically with respect to each other, which fins are connected to the air compressor pressure. The surface of the valve closure member 15, 17 that can receive the valve closure member 15, 17 is divided into two concentric working surfaces, the outer annular fin 39, 42 intersecting the inner annular fin 38, 4.
1 and at least the inner annular fins 38, 41
Alternatively, the opposing surfaces thereof are formed to be elastically deformable, and the outer working surface is connected to the inner working surface via cracks 43 and 44 in the inner annular fins 38 and 41, and the ratio of the sum of both working surfaces and the inner working surface is is at least equal to the ratio of the upper tolerance limit pressure and the lower tolerance limit pressure, and only the outer annular fins 39, 42 are in contact with the valve seat 16.
, 18, the cracks 43, 44 throttle the connection between the air compressor and the compressed air supply circuit, even if the discharge amount of the air compressor is small. Multi-circuit protection valve for vehicle compressed air equipment with a supply circuit.
JP49102168A 1973-11-06 1974-09-06 Multi-circuit protection valve for compressed air equipment Expired JPS6044174B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2355456A DE2355456C3 (en) 1973-11-06 1973-11-06 Multi-circuit protection valve for compressed air systems for vehicles, in particular compressed air brake systems for road vehicles
DE235545.6 1973-11-06

Publications (2)

Publication Number Publication Date
JPS5074078A JPS5074078A (en) 1975-06-18
JPS6044174B2 true JPS6044174B2 (en) 1985-10-02

Family

ID=5897333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49102168A Expired JPS6044174B2 (en) 1973-11-06 1974-09-06 Multi-circuit protection valve for compressed air equipment

Country Status (10)

Country Link
JP (1) JPS6044174B2 (en)
DE (1) DE2355456C3 (en)
ES (1) ES429348A1 (en)
FR (1) FR2250053B1 (en)
GB (1) GB1481969A (en)
IT (1) IT1020691B (en)
PL (1) PL95771B1 (en)
SE (1) SE393340B (en)
SU (1) SU639433A3 (en)
YU (1) YU35534B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564837B2 (en) * 1988-11-17 1993-09-16 Kubota Kk

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000806B1 (en) * 1977-08-12 1982-09-29 Bendix Limited Fluid pressure circuit protection valves
US4682759A (en) * 1983-10-20 1987-07-28 Outboard Marine Corporation Relief valve for hydraulic systems
DE3407350A1 (en) * 1984-02-29 1985-08-29 Alfred Teves Gmbh, 6000 Frankfurt VACUUM-POWERED BRAKE-AMPLIFIER
JPS629093A (en) * 1985-07-03 1987-01-17 井▲たに▼ 順 Marine shellfish and seaweed antisticking device
DE4219448A1 (en) * 1992-06-13 1993-12-16 Wabco Westinghouse Fahrzeug Protection system for a pressure medium system
SE9502621L (en) * 1995-07-17 1996-12-23 Scania Cv Ab Valve arrangement for vehicles
JP5392499B2 (en) 2010-03-16 2014-01-22 Smc株式会社 Valve structure of fluid pressure equipment
DE102012107830A1 (en) * 2012-08-24 2014-05-15 Karl Dungs Gmbh & Co. Kg Double seat valve with safe closing function
DE102017008556A1 (en) * 2017-09-12 2019-03-14 Wabco Gmbh Overflow valve and compressed air device for motor vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191512667A (en) 1915-09-03 1916-04-13 R L Ross And Company Ltd Improvements in and relating to Safety Valves.
US3087760A (en) * 1960-07-14 1963-04-30 Bendix Westinghouse Automotive Multiple brake system
AT227366B (en) * 1961-05-20 1963-05-10 Hans Dipl Ing Dr Techn List Pressure regulators, in particular for compressors
US3166358A (en) * 1963-03-21 1965-01-19 Bendix Westinghouse Automotive Fluid pressure system and control valve
FR1400811A (en) * 1964-07-02 1965-05-28 Lucas Industries Ltd Pressure relief valve for pressurized fluid
DE1505594A1 (en) * 1968-06-07 1968-12-12 Bosch Gmbh Robert Pressure safety valve
SE335501B (en) * 1968-09-26 1971-05-24 G Eriksson
DE2143733B2 (en) * 1971-09-01 1975-10-09 7000 Stuttgart Multi-circuit protection valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564837B2 (en) * 1988-11-17 1993-09-16 Kubota Kk

Also Published As

Publication number Publication date
YU35534B (en) 1981-04-30
JPS5074078A (en) 1975-06-18
IT1020691B (en) 1977-12-30
DE2355456C3 (en) 1981-09-10
PL95771B1 (en) 1977-11-30
DE2355456B2 (en) 1976-10-28
FR2250053A1 (en) 1975-05-30
FR2250053B1 (en) 1982-04-02
ES429348A1 (en) 1976-08-16
SE7409637L (en) 1975-05-07
SU639433A3 (en) 1978-12-25
GB1481969A (en) 1977-08-03
DE2355456A1 (en) 1975-05-15
YU220774A (en) 1980-10-31
SE393340B (en) 1977-05-09

Similar Documents

Publication Publication Date Title
US3659625A (en) Drain valve device
JPS6044174B2 (en) Multi-circuit protection valve for compressed air equipment
GB1490808A (en) Brake-force regulator in or for a dual-circuit brake system
US3848620A (en) Fluid pressure modulator and system
JP3328793B2 (en) Pressure limiting device
US1029464A (en) Valve.
JPS6363420B2 (en)
US4678241A (en) Equalizer discharge valve for a railroad car air brake system
US5526731A (en) Hydraulic booster
US4382636A (en) Deceleration-sensitive brake pressure control device
US3273582A (en) Dual circuit protection valve
JPH11105699A (en) Brake-stroke simulator
US3044268A (en) High pumping efficiency master cylinder
JP2001527484A (en) Vehicle hydraulic brake system with wheel slip control and valve for such brake system
US5975655A (en) Hydraulic braking pressure control system for an automotive vehicle
US4478460A (en) Interlock valve for railway braking system valve assembly
JPH05502839A (en) brake pressure control device
JPS6145421Y2 (en)
JPS6231681Y2 (en)
US2562353A (en) Vent valve for power transmissions
JP2612916B2 (en) Pressure medium operated valve device
JPH0729237B2 (en) Overload prevention device for 2-point press
JPS5840989Y2 (en) Pipe upsetter clamping device
GB2160277A (en) A motor vehicle hydraulic servo brake system
JPH0451268Y2 (en)