JPS6043896B2 - Direct solar heat absorbing material and manufacturing method thereof - Google Patents

Direct solar heat absorbing material and manufacturing method thereof

Info

Publication number
JPS6043896B2
JPS6043896B2 JP53050797A JP5079778A JPS6043896B2 JP S6043896 B2 JPS6043896 B2 JP S6043896B2 JP 53050797 A JP53050797 A JP 53050797A JP 5079778 A JP5079778 A JP 5079778A JP S6043896 B2 JPS6043896 B2 JP S6043896B2
Authority
JP
Japan
Prior art keywords
amorphous
metal
solar heat
temperature
heat absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53050797A
Other languages
Japanese (ja)
Other versions
JPS54142122A (en
Inventor
道彦 南雲
徹夫 新井
二郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP53050797A priority Critical patent/JPS6043896B2/en
Publication of JPS54142122A publication Critical patent/JPS54142122A/en
Publication of JPS6043896B2 publication Critical patent/JPS6043896B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/12Details of absorbing elements characterised by the absorbing material made of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は太陽の放射熱エネルギーの吸収特性にすぐれ
た太陽熱の直接吸収材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct solar heat absorbing material that has excellent absorption properties for solar radiant heat energy.

太陽エネルギーは石油の代替エネルギーとしてその利
用技術の開発が行われている。
Techniques for utilizing solar energy are being developed as an alternative energy to oil.

それらの技術を大別すると冷暖房などの太陽エネルギー
を熱の形態て直接利用する方法と、太陽電池や風力、潮
汐発電などのように太陽エネルギーを別のエネルギー形
態に変換して利用する間接的な方法とがある。本発明は
主として前者の太陽熱の直接利用を目的とするもので、
太陽の放射熱エネルギーの効率的な吸収を行う材料を使
用した装置である。 太陽の放射熱エネルギーは波長が
0.2〜4.0μmの間に集中しているが、エネルギー
密度がピークの波長は0.425μmで、1.5μm以
下の波長のエネルギーが大部分を占める。したがつて太
陽エネルギーを効率よく吸収するためには1.5μm以
下の可視光波長領域の吸収率が大きい必要がある。太゜
陽エネルギーの吸収特性を改善する方法として従来行わ
れている方法はおもに金属の表面処理である。たとえば
アルミニウム板の表面にゲルマニウム、シリコン、硫化
鉛などの半導体を蒸着あるいは塗布して半導体の選択吸
収特性を利用する方法がある。またステンレス鋼や銅板
の表面に化成処理を行つてFe2O3やCuOなどの酸
化物皮膜を生成する方法、アルミニウム板や銅板の表面
にニッケルあるいはクロムをメッキして黒化する方法、
アルミニウム板に黒色塗料を塗布する方法などがある。
これらの方法は経済性、材料の耐久性あるいは性能その
ものなどの点で必ずしも十分ではない。太陽エネルギー
の吸収特性を改善する方法としてはさらに金属板表面を
粗くし、表面積を増加させる方法があるが粗さの制御は
一般に困難であり、太陽エネルギーの吸収特性にたいし
て適切な粗さの程度およびその制御方法は確立されてい
ない。本発明は太陽の放射熱エネルギーを効率よく吸収
する材料として従来の金属材料およびこれに表面処理を
施した材料とは全く異なる材料およびそれを使用した装
置を提供するものである。
These technologies can be roughly divided into methods that directly use solar energy in the form of heat, such as air conditioning, and indirect methods that convert solar energy into another form of energy, such as solar cells, wind power, and tidal power generation. There is a method. The present invention is primarily aimed at the former, direct use of solar heat.
This device uses materials that efficiently absorb the sun's radiant heat energy. The sun's radiant thermal energy is concentrated between wavelengths of 0.2 to 4.0 μm, but the wavelength at which the energy density peaks is 0.425 μm, with energy at wavelengths of 1.5 μm or less accounting for most of the energy. Therefore, in order to efficiently absorb solar energy, it is necessary to have a high absorption rate in the visible light wavelength region of 1.5 μm or less. The conventional method for improving the absorption characteristics of solar energy is mainly surface treatment of metals. For example, there is a method of depositing or coating a semiconductor such as germanium, silicon, or lead sulfide on the surface of an aluminum plate and utilizing the selective absorption characteristics of the semiconductor. There are also methods of chemical conversion treatment on the surface of stainless steel and copper plates to form oxide films such as Fe2O3 and CuO, methods of blackening the surfaces of aluminum and copper plates by plating them with nickel or chromium,
There is a method of applying black paint to an aluminum plate.
These methods are not necessarily sufficient in terms of economy, material durability, or performance itself. Another way to improve the solar energy absorption characteristics is to roughen the surface of the metal plate and increase its surface area, but it is generally difficult to control the roughness, and it is difficult to control the roughness and the degree of roughness that is appropriate for the solar energy absorption characteristics. Its control method has not been established. The present invention provides a material that efficiently absorbs solar radiant heat energy, which is completely different from conventional metal materials and surface-treated materials, and a device using the same.

金属の光吸収は遠赤外領域ては伝導電子に起因すること
が知られており、吸収率は電気抵抗の増加に伴つて増大
するが、可視光領域では光吸収の機構は複雑てあり、金
属の種類によつて異なる挙動を示しその定量的な法則性
は解明されていない。太陽熱の吸収基板としてよく用い
られる銅板では可視光域での短波長側で吸収率が暫増す
るが、0.45μmの波長での吸収率は60%程度であ
り吸収材料としては不十分である。またアルミニウムも
0.2μm以上の波長領域では吸収率は10%程度しか
ない。金属表面の処理によつて生成される各種の物質は
いろいろな特性を持たせることが出来、たとえばCU2
Oが0.63μmに吸収端が認められているがごく薄い
板状結晶の形で得られるように、工業的に有効に使用す
ることは従来の技術では困難である。本発明者らは金属
元素と半金属元素の組合せからなる非晶質金属が従来の
金属とは異なる太陽エネルギーの吸収特性を示すことを
見出し、これを.太陽熱の吸収材として使用することに
よつて太陽熱吸収効率のすぐれた装置を考案した。
It is known that light absorption in metals is caused by conduction electrons in the far-infrared region, and the absorption rate increases as the electrical resistance increases, but in the visible light region, the mechanism of light absorption is complex. It behaves differently depending on the type of metal, and its quantitative rules have not been elucidated. Copper plates, which are often used as solar heat absorbing substrates, have a temporary increase in absorption on the short wavelength side in the visible light range, but the absorption rate at a wavelength of 0.45 μm is about 60%, making it insufficient as an absorption material. . Furthermore, aluminum also has an absorption rate of only about 10% in a wavelength range of 0.2 μm or more. Various substances produced by treating metal surfaces can have various properties; for example, CU2
Although O has an absorption edge at 0.63 μm, it is difficult to use it industrially effectively using conventional techniques, as it can be obtained in the form of extremely thin plate-like crystals. The present inventors have discovered that an amorphous metal consisting of a combination of metallic elements and metalloid elements exhibits solar energy absorption characteristics that are different from those of conventional metals. We have devised a device with excellent solar heat absorption efficiency by using it as a solar heat absorbing material.

こ)に非晶質金属とは通常のX線または電子線回折で結
晶に特有な回折パターンが得られず、巾広いハローパタ
ーンが得られる状態の物質をいう。非晶質金一属の原子
配列は現在解明されていないが、たとえば溶融状態から
急冷した非晶質Fe8Opl3c7成分の比電気抵抗が
室温で135μΩ・oというように純鉄の托倍もあり、
金属とよばれるが原子の結合状態は結晶状態の金属結合
とはかなり異なつていることが予想される。本発明者等
は金属の光学特性が金属原子の電子状態に支配されると
ころから、非晶質金属は太陽エネルギーの吸収特性に従
来の金属材料よりもすずれた性質を持ち得ることに注目
し、非晶質金属を使用することによつて効率的な太陽熱
吸収材を開発したものである。次に本発明の詳細な説明
する。
Amorphous metal refers to a substance in which a diffraction pattern characteristic of crystals cannot be obtained by ordinary X-ray or electron beam diffraction, but a wide halo pattern is obtained. Although the atomic arrangement of amorphous metal metal is currently unknown, for example, the specific electrical resistance of amorphous Fe8Opl3c7 component rapidly cooled from a molten state is 135 μΩ・o at room temperature, which is about twice that of pure iron.
Although it is called a metal, the bonding state of the atoms is expected to be quite different from the metallic bonding in the crystalline state. The present inventors noted that since the optical properties of metals are controlled by the electronic states of metal atoms, amorphous metals can have properties that are different from those of conventional metal materials in their solar energy absorption properties. , developed an efficient solar heat absorbing material by using amorphous metals. Next, the present invention will be explained in detail.

非晶質金属の製造法は液体状態からの急冷、蒸”着、メ
ッキなどいろいろあるが、非晶質状態は熱的に不安定で
あるので結晶化を防止するために材料の製造過程で材料
の温度を低下させる必要がある。
There are various methods for manufacturing amorphous metals, such as rapid cooling from a liquid state, vapor deposition, and plating, but since the amorphous state is thermally unstable, the material is manufactured during the material manufacturing process to prevent crystallization. It is necessary to lower the temperature of

そのために材料の形態は薄片が普通である。その厚さは
材料の成分によつて異なり、Pd8OSi2Oの成分で
は液体からの急冷法で1TnIn程度の厚さでも非晶質
状態にすることが可能であるが、鉄、ニッケルなどを主
元素とする成分系では数+Pmの厚さが普通てある。非
晶質金属の製造条件、とくに冷却速度によつて材料全体
が結晶化する場合と、部分的に結晶状態の領域が混合す
る場合があり、それにともなつて諸物性が変化する。非
晶質状態と結晶状態との移り変りの区別は必ずしも明瞭
ではないが、結晶状態の混入によて通常はX線回折像の
ハローパターンに結晶特有の斑点あるいは縞が共存して
くる。本発明では非晶質材料の電子状態が結晶の電子状
態と異なることを利用するのが特徴であり、100%非
晶質状態の材料を用いる必要はない。太陽熱の吸収効率
や耐食性、さらに経済性などを考慮して最適の成分系お
よび非晶質状態を選択することが出来、非晶質金属の特
徴を生かすためにはX線回折像においてハローパターン
の占める面積が30%以上あればよい。したがつて本発
明においては太陽熱吸収効材に必要な非晶質の程度を原
子数で30%以上とした。非晶質金属の成分系は従来か
ら多くの報告がある。本発明の非晶質金属としては太陽
熱の吸収に伴う温度上昇に耐えることが重要であつて成
分系にとくに限定されるものではないが、経済性および
工業的に溶融状態から大量に得られやすい成分系として
は以下のものが好ましい。すなわち、B,C,Si,,
Al,P,S,Seなどの元素を5ないし30原子パー
セントをふくむFe,CO,Ni,Crなどの遷移金属
の組合せは溶融状態から1(1f′〜1Cf′℃/秒の
冷却速度で非晶質化しやすい成分系である。この中でC
r,Niはとくに耐食性を向上する効果をもち、太陽熱
吸収材料として長期間使用するのに適しているが、さら
にCr,Cu,MO,W,Ti,の群から選択される元
素を2〜40原子パーセントむくむと耐食性は一層向上
する。2%以下ではその効果が少なく、また40%以上
では延性が失われて取り扱いが困難になる。
For this reason, the material is usually in the form of a thin piece. The thickness varies depending on the composition of the material, and with the composition of Pd8OSi2O, it is possible to make it into an amorphous state with a thickness of about 1TnIn by rapid cooling from a liquid, but when the main elements are iron, nickel, etc. In component systems, the thickness is usually several + Pm. Depending on the manufacturing conditions of amorphous metals, particularly the cooling rate, there are cases where the entire material is crystallized, and cases where regions in a partially crystalline state are mixed, and various physical properties change accordingly. Although the transition between the amorphous state and the crystalline state is not always clearly distinguished, the inclusion of the crystalline state usually causes spots or stripes peculiar to crystals to coexist in the halo pattern of the X-ray diffraction image. The present invention is characterized by utilizing the fact that the electronic state of an amorphous material is different from that of a crystal, and there is no need to use a material that is 100% amorphous. The optimal component system and amorphous state can be selected by considering solar heat absorption efficiency, corrosion resistance, and economic efficiency.In order to take advantage of the characteristics of amorphous metals, it is possible to It is sufficient if the area occupied is 30% or more. Therefore, in the present invention, the degree of amorphousness required for the solar heat absorbing material is set to 30% or more in terms of the number of atoms. There have been many reports on the component systems of amorphous metals. It is important for the amorphous metal of the present invention to withstand temperature rises due to absorption of solar heat, and the composition is not particularly limited, but it is economically and industrially easy to obtain in large quantities from a molten state. The following components are preferable. That is, B, C, Si,,
Combinations of transition metals such as Fe, CO, Ni, and Cr containing 5 to 30 atomic percent of elements such as Al, P, S, and Se can be cooled from the molten state to a non-thermal state at a cooling rate of 1 (1 f' to 1 Cf' C/sec). It is a component system that easily crystallizes.Among these, C
r, Ni has the effect of particularly improving corrosion resistance and is suitable for long-term use as a solar heat absorbing material. Corrosion resistance is further improved by swelling by atomic percent. If it is less than 2%, the effect is small, and if it is more than 40%, ductility is lost and handling becomes difficult.

さらにFeを基本成分としてCr,MO,Wなどを15
%以上添加した成分では非晶質化が容易になる。非晶質
金属は温度の上昇にともなつて結晶状態に転化する。そ
の温度は材料の組成によつて異なるが、通常比熱の測定
において試料温度を上昇させていくと発熱ピークが生じ
、この温度を結晶化温度としている。太陽熱吸収材料で
は材料の温度が上昇するので結晶化温度が低い材料、あ
るいは太陽熱の吸収に伴う温度上昇て材質が大巾に変化
する材料は不適当てある。基準温度としては材料の熱を
回収する媒体、通常は水の沸とう温度である。そこで本
発明では結晶化温度が100℃上の非晶質金属を対象と
するが、本発明の一つは非晶質金属を加熱し、部分的に
結晶状態あるいはそれに近い状態に変化させる処理を加
えることにある。本発明における非晶質金属は、B,C
,Si,Al,S,Se,Pなどのいわゆる半金属元素
を含む。そのために非晶質状態から結晶状態に転化する
過程において金属元素と半金属元素との間、あるいは半
金属原子の間に通常の金属結合とは異なる電子状態が生
じ、その結果として太陽エネルギーの吸収特性に通常の
金属とは異なる特徴が生ずる。本発明において非晶質金
属に加熱処理を加える.場合に加熱温度を130゜C以
上にしたのは、それ以下の温度の加熱で状態変化がいち
じるしいものは太陽熱の吸収に伴う温度上昇で使用中に
経時変化をおこすために本発明の目的には不適当だから
である。
Furthermore, with Fe as the basic component, Cr, MO, W, etc.
% or more of the component will easily become amorphous. Amorphous metals convert to a crystalline state as the temperature increases. Although the temperature varies depending on the composition of the material, when the sample temperature is increased in the measurement of specific heat, an exothermic peak occurs, and this temperature is taken as the crystallization temperature. For solar heat absorbing materials, the temperature of the material increases, so materials with a low crystallization temperature or materials whose properties change drastically as the temperature rises as they absorb solar heat are unsuitable. The reference temperature is the boiling temperature of the medium for recovering heat from the material, usually water. Therefore, the present invention targets amorphous metals with a crystallization temperature of 100°C, but one aspect of the present invention is to heat amorphous metals and partially transform them into a crystalline state or a state close to it. It's about adding. The amorphous metal in the present invention is B, C
, Si, Al, S, Se, P, and other so-called metalloid elements. Therefore, in the process of converting from an amorphous state to a crystalline state, an electronic state different from that of normal metallic bonds is created between metal elements and metalloid elements or between metalloid atoms, resulting in the absorption of solar energy. Characteristics that differ from those of ordinary metals arise. In the present invention, heat treatment is applied to the amorphous metal. In this case, the heating temperature was set to 130°C or higher because if heating at a temperature lower than that causes a noticeable change in state, the temperature rises due to absorption of solar heat and changes over time during use. This is because it is inappropriate.

また加熱温度が高すぎると結晶化が進行.し、非晶質と
しての特徴が失われる。そこで本発明では加熱温度の上
限を結晶化温度プラス500℃が実用的であることを見
出した。加熱温度での適正な保持時間は温度および材料
の組成によつて異なる。それはさきにのべたように、非
晶質状態か−ら結晶状態への変化は局部的な核生成と成
長の過程を伴うので、結晶状態あるいは半結晶状態の領
域の大きさは処理温度と時間によつて制御し得るからで
ある。この条件は材料の種類によつて異なり、温度と時
間との関係は複雑なので一般的な定量的表現は困難であ
るが、それは本発明の本質的な点ではない。なお非晶質
金属材料は電気抵抗が結晶状態の金属より大きいために
一般には赤外領域の放射率は結晶状態の金属よりも大き
いことが予想される。
Also, if the heating temperature is too high, crystallization will progress. However, the amorphous characteristics are lost. Therefore, in the present invention, it has been found that it is practical to set the upper limit of the heating temperature to the crystallization temperature plus 500°C. The appropriate holding time at the heating temperature varies depending on the temperature and material composition. As mentioned earlier, the change from the amorphous state to the crystalline state involves local nucleation and growth processes, so the size of the region in the crystalline or semi-crystalline state depends on the processing temperature and time. This is because it can be controlled by This condition varies depending on the type of material, and the relationship between temperature and time is complex, so general quantitative expression is difficult, but this is not the essential point of the present invention. Note that since an amorphous metal material has a higher electrical resistance than a crystalline metal, it is generally expected that its emissivity in the infrared region is higher than that of a crystalline metal.

しかし本発明者はたとえばNl75B8Sil7の非晶
質金属を150℃に加熱した時の放射率として5μmの
波長で0.20という値を得た。この値は太陽熱吸収材
として十分許容されるものであり、さらに材料の表面に
SiOなどの反射防止材料をコーティングすることによ
つて放射率を減少させることが可能である。次に本発明
の実施例を表−1に示す。
However, the present inventor obtained a value of 0.20 as the emissivity at a wavelength of 5 μm when an amorphous metal such as Nl75B8Sil7 is heated to 150° C. This value is sufficiently acceptable for a solar heat absorbing material, and the emissivity can be further reduced by coating the surface of the material with an antireflection material such as SiO. Next, examples of the present invention are shown in Table-1.

本発明て非晶質金属を太陽熱吸収材として使用する装置
の具体的構造はとくに限定されるものではないが、材料
の温度が300℃をこえないような使い方がのぞましい
Although the specific structure of the device using an amorphous metal as a solar heat absorbing material in the present invention is not particularly limited, it is preferable to use the device in such a way that the temperature of the material does not exceed 300°C.

たとえば第1図に示すよう非晶質リボン1を収納したス
テンレス鋼箱2に水3を流す構造(図中4はカバーガラ
ス)、又は第2図に示すような水3を流通せしめる銅、
アルミニウム、ステンレス鋼のバイブ5表面に非晶質金
属薄片6を接着させた構造の装置が有効である。このよ
うな装置に使用する本発明材料の特性の実例を説明する
と、Ni75Sil7B8の溶融状態から急冷ま)の非
晶質金属は0.45μmの可視光波長領域での吸収率が
0.80で通常のステンレス鋼の約3分の1以下のすぐ
れた値である。またこの材料の8μmの赤外領域での放
射率は150℃で0.19でありステンレス鋼と同程度
であり、太陽熱吸収材として特徴つけられる可視光域吸
収率と赤外域放射率との比ではステンレス鋼にくらべは
るかにすぐれた特性である。またこの材料を400℃で
1000紛時効後冷却した材料は可視光域吸収率が0.
70〜0.82てあり、赤外域での放射率は0.15〜
0.10ときわめてすぐれている。さらにFe72cr
8pl3c7の組成の溶融状態から急冷ま)の材料は可
視光領域での吸収率は0.76〜0.85であり、赤外
域での放射率は0.20〜0.15であつた。
For example, as shown in FIG. 1, there is a structure in which water 3 is passed through a stainless steel box 2 containing an amorphous ribbon 1 (4 in the figure is a cover glass), or a structure in which water 3 is allowed to flow as shown in FIG.
A device having a structure in which an amorphous metal thin piece 6 is adhered to the surface of a vibrator 5 made of aluminum or stainless steel is effective. To give an example of the characteristics of the material of the present invention used in such a device, an amorphous metal such as Ni75Sil7B8 (quenched from a molten state) has an absorption rate of 0.80 in the visible wavelength region of 0.45 μm, which is normal. This is an excellent value of less than one-third that of stainless steel. In addition, the emissivity of this material in the infrared region of 8 μm is 0.19 at 150°C, which is comparable to stainless steel, and the ratio of visible light absorption rate to infrared emissivity, which is characterized as a solar heat absorbing material. It has far superior properties compared to stainless steel. In addition, the material obtained by aging this material at 400°C for 1000 particles and cooling it has a visible light absorption rate of 0.
70 to 0.82, and the emissivity in the infrared region is 0.15 to 0.82.
It is extremely excellent at 0.10. Furthermore, Fe72cr
The material (quenched from the molten state) having the composition of 8pl3c7 had an absorption rate of 0.76 to 0.85 in the visible light region and an emissivity of 0.20 to 0.15 in the infrared region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質金属リボン太陽熱吸収材とし、流水を熱
回収媒体とする本発明装置の模式図、第2図はアルミニ
ウムバイブの外面に非晶質金属を接着し、バイブ内面に
熱回収媒体である水を通過させるようにした本発明装置
の模式図である。 1・・・・・・非晶質リボン、2・・・・・・ステンレ
ス鋼箱、3・・・・・・水、4・・・・・・ガラスカバ
ー、5・・・・・・アルミニウムバイブ、6・・・・・
・非晶質金属薄片。
Fig. 1 is a schematic diagram of the device of the present invention using an amorphous metal ribbon solar heat absorbing material and running water as a heat recovery medium. Fig. 2 shows an amorphous metal bonded to the outer surface of an aluminum vibrator and heat recovery on the inner surface of the vibrator. FIG. 1 is a schematic diagram of an apparatus of the present invention in which water as a medium is allowed to pass through. 1...Amorphous ribbon, 2...Stainless steel box, 3...Water, 4...Glass cover, 5...Aluminum Vibrator, 6...
・Amorphous metal flakes.

Claims (1)

【特許請求の範囲】 1 B、C、P、Ci、Al、S、Seの一種または2
種以上を原子パーセントで5〜30%と残部Fe、Co
、Ni、Crの1種または2種以上および不可避不純物
からなり、原子数で少くとも30%が非晶質状態の金属
である太陽熱の直接吸収材。 2 B、C、P、Ci、Al、S、Seの一種または2
種以上を原子パーセントで5〜30%、Cr、Cu、T
i、Mo、Wの1種またか2種以上を2〜40%と残部
Fe、Co、Niの1種または2種以上および不可避不
純物からなり、原子数で少くとも30%が非晶質状態の
金属である太陽燃の直接吸収材。 3 B、C、P、Ci、Al、S、Seの一種または2
種以上を原子パーセントで5〜30%、残部Fe、Co
、Ni、Crの1種または2種以上および不可避不純物
からなる金属、またはB、C、P、Ci、Al、S、S
eの一種または2種以上を原子パーセントで5〜30%
、Cr、Cu、Ti、Mo、Wの1種または2種以上を
2〜40%と残部Fe、Co、Niの1種または2種以
上と不可避不純物からなる金属を130℃以上、当該非
晶質金属の結晶化温度プラス500℃以下の温度に加熱
してただちに、あるいは保持後冷却する処理を施すこと
を特徴とする太陽熱の直接吸収材の製造方法。
[Claims] 1 or 2 of B, C, P, Ci, Al, S, Se
5 to 30% of the species or more in atomic percent, and the balance Fe, Co
, Ni, Cr, and unavoidable impurities, and is a metal in which at least 30% of atoms are in an amorphous state. 2 One or two of B, C, P, Ci, Al, S, Se
5 to 30% in atomic percent of species or more, Cr, Cu, T
Consisting of 2 to 40% of one or more of i, Mo, and W, and the balance of one or more of Fe, Co, and Ni and unavoidable impurities, and at least 30% of the atoms are in an amorphous state. A direct absorber of solar combustion, which is a metal. 3 One or two of B, C, P, Ci, Al, S, Se
5 to 30% in atomic percent of species or more, balance Fe, Co
, Ni, Cr, or a metal consisting of one or more of Cr and unavoidable impurities, or B, C, P, Ci, Al, S, S
5 to 30% by atomic percent of one or more types of e
, 2 to 40% of one or more of Cr, Cu, Ti, Mo, and W and the balance of one or more of Fe, Co, and Ni and unavoidable impurities at 130°C or higher, and the amorphous 1. A method for producing a direct solar heat absorbing material, which comprises heating the material to a temperature of 500° C. or less above the crystallization temperature of a quality metal and cooling it immediately or after holding.
JP53050797A 1978-04-28 1978-04-28 Direct solar heat absorbing material and manufacturing method thereof Expired JPS6043896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53050797A JPS6043896B2 (en) 1978-04-28 1978-04-28 Direct solar heat absorbing material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53050797A JPS6043896B2 (en) 1978-04-28 1978-04-28 Direct solar heat absorbing material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS54142122A JPS54142122A (en) 1979-11-06
JPS6043896B2 true JPS6043896B2 (en) 1985-10-01

Family

ID=12868775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53050797A Expired JPS6043896B2 (en) 1978-04-28 1978-04-28 Direct solar heat absorbing material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPS6043896B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3853190T2 (en) * 1987-05-07 1995-08-24 Mitsubishi Materials Corp HIGH CORROSION-RESISTANT AMORPHOUS ALLOY.
US5634989A (en) * 1987-05-07 1997-06-03 Mitsubishi Materials Corporation Amorphous nickel alloy having high corrosion resistance

Also Published As

Publication number Publication date
JPS54142122A (en) 1979-11-06

Similar Documents

Publication Publication Date Title
Gittleman et al. Optical properties and selective solar absorption of composite material films
Ezugwu et al. Synthesis and characterization of ternary CuSbS 2 thin films: effect of deposition time
US9546801B2 (en) Solar-thermal conversion member, solar-thermal conversion device, and solar thermal power generation device comprising a β-FeSi2 phase material
Kondo et al. Amorphization-induced strong localization of electronic states in CsPbBr 3 and CsPbCl 3 studied by optical absorption measurements
Bini et al. Preparation of CuInS2 thin films using CBD CuxS films
JPS6043896B2 (en) Direct solar heat absorbing material and manufacturing method thereof
JPS5950031B2 (en) Material with excellent solar radiant energy absorption characteristics and method for producing the same
El-Sayad et al. Effect of heat treatment on the structural and optical properties of amorphous Sb2Se3 and Sb2Se2S thin films
JPS5924341B2 (en) Electromagnetic energy absorbing material
CN104697210B (en) The solar spectrum selective absorbing film of a kind of in-situ self-grown and its preparation method
Masterson Selective surfaces for solar-thermal conversion
Rodríguez-Guadarrama et al. Novel SnSb2S4 thin films obtained by chemical bath deposition using tartaric acid as complexing agent for their application as absorber in solar cells
US4071659A (en) Solar absorption surface panel
Tripathi et al. Influence of thermal annealing on structural and optical properties of Se85In12Bi3 thin chalcogenide films
JPH02228434A (en) Manufacture of hydrogen storage alloy
CN112011777B (en) High-temperature solar energy absorption coating with spinel structure
JPH0118343B2 (en)
Dwivedi et al. Effect of thermal annealing on structure and optical band gap of amorphous Se 72 Te 25 Sb 3 thin films
JPS608283Y2 (en) solar collector
JPH0244149A (en) Solar heat selective absorption plate and its manufacturing method
JPH1161490A (en) Solar heat absorption plate
RU2109229C1 (en) Method for manufacture of selective surface structure on products adapted for efficient absorption of solar radiation
EP3410031B1 (en) Solar heat collection tube
TWI593804B (en) Light-absorbing device fabrication method
Malhotra et al. Selective Coatings for Photothermal Conversion