JPS6043523B2 - High precision trajectory control device - Google Patents

High precision trajectory control device

Info

Publication number
JPS6043523B2
JPS6043523B2 JP50131853A JP13185375A JPS6043523B2 JP S6043523 B2 JPS6043523 B2 JP S6043523B2 JP 50131853 A JP50131853 A JP 50131853A JP 13185375 A JP13185375 A JP 13185375A JP S6043523 B2 JPS6043523 B2 JP S6043523B2
Authority
JP
Japan
Prior art keywords
base material
digital
calculation
differential analyzer
digital differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50131853A
Other languages
Japanese (ja)
Other versions
JPS5256290A (en
Inventor
隆 伊藤
多加夫 和田
武 前波
立雄 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK, Yaskawa Electric Manufacturing Co Ltd filed Critical Kawasaki Jukogyo KK
Priority to JP50131853A priority Critical patent/JPS6043523B2/en
Publication of JPS5256290A publication Critical patent/JPS5256290A/en
Publication of JPS6043523B2 publication Critical patent/JPS6043523B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Description

【発明の詳細な説明】 本発明は回転軸のまわりに回転する3次元母材の表面
に沿つて作動し、該回転する母材の表面に罫書き、線条
部材の巻装、溶接、切断、切削等の作業を行なう作業具
を精度良く位置決めする装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention operates along the surface of a three-dimensional base material rotating around a rotation axis, and performs marking, wrapping, welding, and cutting of a linear member on the surface of the rotating base material. , relates to a device for accurately positioning a work tool for cutting or other work.

従来、作業具を用いて母材の表面にそつてある種の加
工を行なう場合、もつぱら、加工されるべ・き母材を回
転せしめると共に、そのその回転軸を軸方向に横移動せ
しめ、しかも作業具を母材の軸方向に固定する方法、又
は母材を一定の位置で回転させ、作業具ね回転する母材
の回転軸方向に横移動させる方法がとられており、いず
れの場合にノおいても、回転体の回転速度に対する横移
動速度の比率は、回転体の回転軸と横移動軸とを歯車て
連結し、この歯車比を変えるか、又は電気パルス指令で
駆動されるディジタル操作装置(例えばステッピングモ
ータ)を回転体の回転軸と横移動軸に取りつけ、両者の
パルス比を変えることによつて調整していた。
Conventionally, when performing some kind of processing along the surface of a base material using a work tool, the base material to be processed is rotated, and its axis of rotation is moved laterally in the axial direction. Moreover, methods are used in which the work tool is fixed in the axial direction of the base material, or the work tool is rotated at a fixed position and the work tool is moved laterally in the direction of the rotational axis of the rotating base material. In this case, the ratio of the lateral movement speed to the rotational speed of the rotating body is determined either by connecting the rotational axis of the rotating body and the lateral movement axis by gears and changing this gear ratio, or by driving with an electric pulse command. Digital operating devices (eg, stepping motors) are attached to the rotating shaft and lateral movement shaft of the rotating body, and adjustments are made by changing the pulse ratio between the two.

従つて、例えば円筒形母材の表面に螺旋状の加工作業を
行う程度の簡単な作業を行なう場合には問題にはならな
いが、母材の回転速度と横移動速度の比率が母材の回転
角度(0)の関数として変化する場合、又は母材の形状
が円筒以外の形状、たとえば球形、その他の形状を有す
る場合においては、作業具を常に正確かつ連続的に位置
決めするには特別の配慮が必要であり、通常NC工作機
械にみられるような複雑な加工プログラムを要する計算
制御が要求されてきた。本出願人等は上述の要求を満足
させるものとして、以前に、回転する母材の形状、作業
内容は定まつているが、作業内容の係数に広範囲にわた
る設定範囲が要求される場合および母材の寸法に広範囲
にわたる設定範囲が要求される場合においても、作業具
を高精度かつ連続的に位置決めする高精度作業装置を提
案した。第1図はその作業装置の全体構成図で、こ)で
は、母材を回転させながら軸方向に移動せしめると共に
、作業具を母材に対し前後移動および旋回させながら母
材に線条部材を巻装する場合の例を示す。図において、
適当な固定台1に直線軌条2が設置され、該軌条2上に
往復台3が載置されている。往復台3にはボールナット
4が取付けられており、該ボールナット4に軌条2と並
行して設置されているボールネジ5が螺合している。ボ
ー.ルネジ5はステッピングモータ6によつて回転され
、この結果、往復台3は軌条2上を走行する。往復台3
上には該往復台に設置された軸受によつて両端を支持さ
れ、その一端においてステッピングモータ7によつて回
転される母材8が設置され!ている。一方、母材8と相
対する空間位置には、母材の回転軸に対して直角方向に
移動する伸縮腕9が用意されており、これはボールネジ
10を介してステッピングモータ11によつて伸縮され
る。この伸縮腕9には該伸縮腕の先端を中心にし・て回
頭する回転腕12が係合している。回転腕12はステッ
ピングモータ13によつて回頭され、回転腕12の先端
に作業具14が固定される。第1図の場合、作業具14
は給糸部材であり、これから線条部材15が繰り出され
て母材8に巻装されることになる。なお、16は伸縮腕
等を適宜支持する支持部材である。本作業装置の動作概
要はステッピングモータ7によつて回転体(母材)8が
回転し、これにステッピングモータ6,11,13によ
る往復台3の移動、伸縮腕9の伸縮、回転腕12の回頭
運動が加味されて、母材8の表面上の定められた径路を
通つて作業具を移動させ、所望の巻装を得るものノてあ
る。
Therefore, it is not a problem when performing a simple process such as machining a spiral shape on the surface of a cylindrical base material, but the ratio of the rotational speed of the base material to the lateral movement speed is Special care must be taken to ensure accurate and continuous positioning of the implement at all times when the workpiece changes as a function of the angle (0) or when the shape of the workpiece has a shape other than a cylinder, e.g. spherical or other shapes. Computational control, which requires complex machining programs such as those normally found in NC machine tools, has been required. In order to satisfy the above-mentioned requirements, the present applicants have previously determined that the shape of the base material to be rotated and the content of the work have been determined, but when a wide range of settings is required for the coefficient of the work content, and when the base material We have proposed a high-precision work device that can accurately and continuously position a work tool even when a wide setting range is required for the dimensions of the workpiece. Figure 1 is an overall configuration diagram of the working device. In this figure, the base material is rotated and moved in the axial direction, and the work tool is moved back and forth and rotated relative to the base material while attaching the wire member to the base material. An example of wrapping is shown below. In the figure,
A straight rail 2 is installed on a suitable fixed base 1, and a carriage 3 is placed on the rail 2. A ball nut 4 is attached to the reciprocating table 3, and a ball screw 5 installed parallel to the rail 2 is screwed into the ball nut 4. baud. The screw 5 is rotated by a stepping motor 6, so that the carriage 3 runs on the rail 2. Shuttle 3
A base material 8 is installed above, which is supported at both ends by bearings installed on the carriage and rotated by a stepping motor 7 at one end! ing. On the other hand, at a spatial position facing the base material 8, there is provided an extendable arm 9 that moves in a direction perpendicular to the rotation axis of the base material. Ru. A rotary arm 12 is engaged with the telescopic arm 9 and rotates around the tip of the telescopic arm. The rotating arm 12 is turned by a stepping motor 13, and a working tool 14 is fixed to the tip of the rotating arm 12. In the case of Fig. 1, the work tool 14
is a yarn feeding member, from which the filament member 15 is fed out and wound around the base material 8. Note that 16 is a support member that appropriately supports the telescopic arm and the like. The outline of the operation of this work device is as follows: a rotating body (base material) 8 is rotated by a stepping motor 7; A pivoting motion is taken into account to move the implement through a defined path on the surface of the base material 8 to obtain the desired winding.

母材8の表面上において定められた径路を介して作業具
14を操作するには、母材8の回転角θを独立変数とし
、θの関数として母材表面に沿う作業具の座標(X,y
,z)を求める。該座標(X,y,z)は3種類の従属
軸の位置、す・なわち往復台3の位置(z)、回転腕1
2の回頭角(ε入および伸縮腕9の伸縮位置(ト))を
回転角(0)の従属変数f(0)、g(0)およびh(
θ)として求める。このようにして、各制御軸の位置決
めを行なえば、作業具14の位置が定゛まる。第1図に
おいて、17は上記関数式を満足する演算回路19,2
0,21を内蔵し、インクレメンタル形式の演算を特長
とするディジタル微分解析機(DDA)てある。回転角
(0)を指令するディジタル信号は母材回転パルス発生
器18により得られ、その出力は母材8の回転用ステッ
ピングモータ7および各従属軸位置の演算を行なう演算
回路19,20,21に供給される。演算回路19では
往復台位置z=f(0)の演算が行なわれ、該演算出力
は往復台3の往復用ステッピングモータ6に供給される
。同様に、演算回路20では回転腕回頭角ε=g(0)
の演算が、また演算回路21では伸縮腕位置1=h(θ
)の演算が夫々行なわれ、それらの出力は回転腕12の
回頭運動用ステッピングモータ13、伸縮腕9の伸縮用
ステッピングモータ11に供給される。演算回路19,
20および21で必要とする各種の定数、初期条件等は
操作盤22から与えられる。このように、ディジタル微
分解析機17は母材8の角度指令(パルス信号)を主軸
ステッピングモータ7に供給すると共に、該主軸ステッ
ピングモータの1ステップに対応する各従属軸の位置Z
,ε,lを算出し、当該従属軸ステッピングモータ6,
13,11を駆動することにより、高精度でしかも連続
的に各制御軸の位置決めを行なうものである。こ)で、
第2図によりディジタル微分解析機の基本構成要素てあ
るDDA積分器の概略を説明する。
To operate the tool 14 through a defined path on the surface of the base material 8, the rotation angle θ of the base material 8 is taken as an independent variable, and the coordinates of the tool 14 along the surface of the base material (X ,y
, z). The coordinates (X, y, z) are the positions of three types of dependent axes, namely the position (z) of the carriage 3, the position of the rotating arm 1
The turning angle of 2 (ε-in and the telescopic position (g) of the telescopic arm 9) is expressed as the dependent variables f(0), g(0) and h(
θ). By positioning each control axis in this way, the position of the work tool 14 is fixed. In FIG. 1, 17 is an arithmetic circuit 19, 2 that satisfies the above functional formula.
This is a digital differential analyzer (DDA) that has built-in 0 and 21 and features incremental calculations. A digital signal that commands the rotation angle (0) is obtained by the base material rotation pulse generator 18, and its output is sent to the stepping motor 7 for rotating the base material 8 and the calculation circuits 19, 20, 21 that calculate the position of each dependent axis. supplied to The calculation circuit 19 calculates the carriage position z=f(0), and the calculation output is supplied to the reciprocating stepping motor 6 of the carriage 3. Similarly, in the arithmetic circuit 20, the rotating arm turning angle ε=g(0)
The arithmetic circuit 21 calculates the telescopic arm position 1=h(θ
) are performed, and their outputs are supplied to the stepping motor 13 for turning the rotary arm 12 and the stepping motor 11 for extending and retracting the telescopic arm 9. Arithmetic circuit 19,
Various constants, initial conditions, etc. required in 20 and 21 are given from the operation panel 22. In this way, the digital differential analyzer 17 supplies the angle command (pulse signal) of the base material 8 to the main shaft stepping motor 7, and also calculates the position Z of each subordinate shaft corresponding to one step of the main shaft stepping motor.
, ε, l, and calculate the corresponding dependent axis stepping motor 6,
By driving 13 and 11, each control axis is positioned with high accuracy and continuously. In this),
An outline of a DDA integrator, which is a basic component of a digital differential analyzer, will be explained with reference to FIG.

周知のように、DDA積分器の積分原理は区分求積法で
あり、第2図aに示す被積分入力Yは最子化された最小
単位ΔYの和Yn(=ΔY+Yn−1)として第2図b
(7)Yレジスタ27に格納されている。このYnと独
立変数Δxとの積Yn・ΔXがRレジスタ26の内容に
加算され、Rレジスタ26内に積分値ΣYn・ΔXが格
納される。このRレジスタ26の内容ΣYn・Δxは量
子化器28で量子化されて量子化パルスΔZとなる。従
つて、このパルスΔZを計数することにより積分値(F
Ydx)を得ることができる。なお、23はゲート回路
、24および25は加算器である。このように、ディジ
タル微分解析機の基本構成要素てあるDDA積分器は、
区分求積法をその積分原理としている。このため、第1
図の作業装置において、作業具14の座標(X,y,z
)を母材8の回転角θの関数として求め、その関数式を
ディジタル微分解析機17によつて繰返し解くと、次第
に誤差が累積され、制御の精度が低下してくる。つまり
、作業具14を母材8に沿つて繰返し同一軌跡を通過す
るように制御しようとしても、作業具14の実際の軌跡
は次第にづれてくることになる。本発明は叙上の事情に
鑑み開発されたもので、回転する母材に沿つて作動する
作業具を繰返し同一軌跡を通過するように制御する場合
、その関数式をディジタル微分解析機によつて繰返し解
くとき、作業具の位置が母材の円筒部から球面部(一般
には曲面部)へ、あるいは球面部から円筒部へ移るのに
対応して演算回路を切り替える毎に、該当DDA演算レ
ジスタの初期設定を行なつて繰返し演算誤差を小さくし
、制御精度の低下を防止するようにした高精度軌跡制御
装置を提供することにある。
As is well known, the integration principle of the DDA integrator is the piecewise quadrature method, and the integrand input Y shown in FIG. Diagram b
(7) Stored in the Y register 27. The product Yn·ΔX of this Yn and the independent variable Δx is added to the contents of the R register 26, and the integral value ΣYn·ΔX is stored in the R register 26. The contents ΣYn·Δx of the R register 26 are quantized by a quantizer 28 to become a quantized pulse ΔZ. Therefore, by counting this pulse ΔZ, the integral value (F
Ydx) can be obtained. Note that 23 is a gate circuit, and 24 and 25 are adders. In this way, the DDA integrator, which is the basic component of a digital differential analyzer, is
Its integration principle is the piecewise quadrature method. For this reason, the first
In the working device shown in the figure, the coordinates (X, y, z
) is determined as a function of the rotation angle θ of the base material 8, and when the functional expression is repeatedly solved by the digital differential analyzer 17, errors gradually accumulate and control accuracy deteriorates. In other words, even if it is attempted to control the working tool 14 so that it repeatedly passes the same trajectory along the base material 8, the actual trajectory of the working tool 14 will gradually deviate. The present invention was developed in view of the above-mentioned circumstances, and when controlling a work tool that operates along a rotating base material so that it repeatedly passes the same trajectory, its functional formula can be calculated using a digital differential analyzer. When solving repeatedly, each time the arithmetic circuit is switched in response to the position of the work tool moving from the cylindrical part of the base material to the spherical part (generally a curved part) or from the spherical part to the cylindrical part, the corresponding DDA calculation register is changed. It is an object of the present invention to provide a high-precision trajectory control device that performs initial settings to reduce repetitive calculation errors and prevent a decrease in control accuracy.

以下、実施例により本発明の内容を詳細に説明すること
にする。
Hereinafter, the content of the present invention will be explained in detail with reference to Examples.

第3図は本発明の一実施例て、第1図の演算回路19に
本発明を適用した場合を示す。
FIG. 3 shows an embodiment of the present invention in which the present invention is applied to the arithmetic circuit 19 of FIG.

図において、18は第1図で説明した母材8の回転角(
θ)を指令する母材回転パルス発生器、30は母材8の
球面部領域ての往復台位置を演算する球面部演算回路、
31は母材8の円筒部領域での往復台位置を演算する円
筒部演算回路、32は球面部演算回路30の初期値を格
納するレジスタ、33は円筒部演算回路31の初期値を
格納するレジスタ、34,36,43,45は単安定回
路、35,44はタイマ、37,38,40,41はア
ンドゲート、39,42はオアゲートである。今、巻装
作業が母材8の球面部領域に入り、球面部演算信号がハ
イレベルになると、アンドゲート38が開き、母材回転
パルス発生器18の演算パルス(θ)はアンドゲート3
8を通り、オアゲート39経由で球面部演算回路30に
入力される。球面部演算回路30は、この演算パルスに
もとづいて球面部領域での往復台位置の演算を行ない、
逐次、その演算結果Zを第1図のステッピングモータ6
に出力する。一方、球面部演算信号がハイレベルになつ
たことで、単安定回路45が動作し、その出力パルスで
円筒部演算回路31の各レジスタを全て零にリセットす
る。これと前後して、球面部演算信号によりタイマ44
が動作を開始し、そのタイムアップ信号で単安定回路4
3が付勢される。この結果、単安定回路43の出力パル
スアンドゲート40が開き、レジスタ33の内容がアン
ドゲート40、オアゲート42経由で円筒部演算回路3
1に書込まれる。即ち、円筒部演算回路31が初期設定
される。巻装作業が進み、球面部領域から外れて円筒部
領域に入ると、円筒部演算信号がハイレベルに、球面部
演算信号がローレベルに切り替る。この結果、母材回転
パルス発生器18の演算パルス(0)はアンドゲート4
1、オアゲート42経由て円筒部演算回路31に取り込
まれ、円筒部領域ての往復台位置の演算が実行される。
この間、球面部演算回路30は、円筒部演算信号により
付勢される単安定回路34の出力でリセットされた後、
タイマ35、単安定回路36により、所定時間経過後、
レジスタ32の内容がアンドゲート37、オアゲート3
9経由で書き込まれ、初期設定が行なわれる。以後、巻
装作業が進み、球面部演算信号および円筒部演算信号が
ハイレベル、ローレベルに切り替る都度、上述の動作が
繰返されることになる。第3図は演算回路が球面部演算
回路と円筒部演算回路との様に二つに分割され、それら
を交互に切り替えて使用する方式に本発明を適用する場
合の例であるが、勿論、これは単なる一実施例にすぎず
、一般に複数の演算回路を互いに切り替えて所望の演算
を繰返し実行する場合に適用し得る。以上の説明から明
らかな如く、本発明によれば、作業具が母材の形状変化
点を通過するのに応じて演算回路を切り替える毎に、該
当演算回路のDDA演算レジスタを初期設定するため、
次第に誤差が累積されることはなく、各繰返し作業工程
を同一条件で行なうことができ、制御精度の向上が更に
期待される。また、初期設定は作業具が母材の形状変化
点を通過するのに応じて演算回路を切り替える時に自動
的に行われるため、作業工程の連続性が損なわれること
もない。
In the figure, 18 is the rotation angle (
30 is a spherical part calculation circuit which calculates the position of the carriage in the spherical part area of the base material 8;
31 is a cylindrical part calculation circuit that calculates the carriage position in the cylindrical area of the base material 8; 32 is a register that stores the initial value of the spherical part calculation circuit 30; and 33 is a register that stores the initial value of the cylindrical part calculation circuit 31. Registers 34, 36, 43, and 45 are monostable circuits, 35, 44 are timers, 37, 38, 40, and 41 are AND gates, and 39, 42 are OR gates. Now, when the winding operation enters the spherical region of the base material 8 and the spherical section calculation signal becomes high level, the AND gate 38 opens and the calculation pulse (θ) of the base material rotation pulse generator 18 changes to the AND gate 3.
8 and is input to the spherical section calculation circuit 30 via the OR gate 39. The spherical part calculation circuit 30 calculates the carriage position in the spherical part area based on this calculation pulse,
Sequentially, the calculation result Z is transferred to the stepping motor 6 in FIG.
Output to. On the other hand, as the spherical part calculation signal becomes high level, the monostable circuit 45 operates, and its output pulse resets all the registers of the cylindrical part calculation circuit 31 to zero. Around this time, the timer 44 is activated by the spherical part calculation signal.
starts operating, and monostable circuit 4 is activated by the time-up signal.
3 is energized. As a result, the output pulse AND gate 40 of the monostable circuit 43 opens, and the contents of the register 33 are transferred to the cylindrical part arithmetic circuit 3 via the AND gate 40 and the OR gate 42.
Written to 1. That is, the cylindrical portion calculation circuit 31 is initialized. As the winding work progresses and the winding moves out of the spherical region and enters the cylindrical region, the cylindrical region calculation signal switches to high level and the spherical region calculation signal switches to low level. As a result, the calculation pulse (0) of the base material rotation pulse generator 18 is
1. The data is taken into the cylindrical section calculation circuit 31 via the OR gate 42, and the calculation of the position of the carriage in the cylindrical section area is executed.
During this time, the spherical part calculation circuit 30 is reset by the output of the monostable circuit 34 energized by the cylindrical part calculation signal, and then
After a predetermined period of time has elapsed, the timer 35 and monostable circuit 36
The contents of register 32 are AND gate 37 and OR gate 3
9 and initial settings are performed. Thereafter, as the winding work progresses, the above-mentioned operation will be repeated each time the spherical part calculation signal and the cylindrical part calculation signal switch between high level and low level. FIG. 3 shows an example in which the present invention is applied to a system in which the arithmetic circuit is divided into two parts, such as a spherical part arithmetic circuit and a cylindrical part arithmetic circuit, and they are used by switching them alternately. This is just one example, and can generally be applied to cases in which a plurality of arithmetic circuits are switched between each other to repeatedly execute a desired operation. As is clear from the above description, according to the present invention, each time the arithmetic circuit is switched in response to the work tool passing through a shape change point of the base material, the DDA operation register of the corresponding arithmetic circuit is initialized.
Errors do not accumulate over time, and each repetitive work process can be performed under the same conditions, which is expected to further improve control accuracy. In addition, since the initial setting is automatically performed when switching the arithmetic circuit as the work tool passes through a shape change point of the base material, the continuity of the work process is not impaired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される作業装置の一実施例の全体
構成図、第2図はDDA積分器の原理図、第3図は本発
明の一実施例のブロック図である。 3・・・往復台、6,7,11,13・・・ステッピン
グモータ、8・・・回転母材、17・・・ディジタル微
分解析機(DDA)、18・・・母材回転パルス発生器
、19,20,21,30,31・・・演算回路、32
,33・・・初期値設定用レジスタ。
FIG. 1 is an overall configuration diagram of an embodiment of a working device to which the present invention is applied, FIG. 2 is a principle diagram of a DDA integrator, and FIG. 3 is a block diagram of an embodiment of the present invention. 3... Carriage table, 6, 7, 11, 13... Stepping motor, 8... Rotating base material, 17... Digital differential analyzer (DDA), 18... Base material rotation pulse generator , 19, 20, 21, 30, 31... arithmetic circuit, 32
, 33... Initial value setting register.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒部と円筒以外の曲面部とを有する母材と、前記
母材に対向して配置され該母材に沿つて作業する作業具
とを具備し、前記母材の回転角を指令するパルス発生器
の出力パルスにより駆動される第1のディジタル操作装
置によつて前記母材を回転せしめると共に、前記パルス
発生器の出力パルスを第1および第2演算回路を有する
ディジタル微分解析機に入力して、前記母材の回転角を
独立変数とし、前記円筒部とそれ以外の曲面部ごとに前
記作業具の座標を決定する従属軸の位置を前記回転角の
関数として前記第1および第2演算回路で各々求め、そ
の求めた関数をディジタル信号の形で該ディジタル微分
解析機から出力し、該ディジタル微分解析機の出力で駆
動される第2のディジタル操作装置によつて前記作業具
を動かし、前記母材に沿つて該作業具を繰返し同一軌跡
を通過するように制御する軌跡制御装置において、前記
ディジタル微分解析機の第1および第2演算回路の演算
で必要とする初期値を格納した初期値格納手段と、前記
作業具の位置が前記母材の円筒部から曲面部へ、あるい
は曲面部から円筒部へ遷移するごとに、前記初期値格納
手段の該当初期値を前記ディジタル微分解析機の第1あ
るいは第2演算回路内の演算レジスタに初期設定する制
御手段とを有することを特徴とする高精度軌跡制御装置
1 A base material having a cylindrical portion and a curved surface portion other than the cylinder, and a working tool disposed facing the base material and working along the base material, and a pulse for commanding the rotation angle of the base material. The base material is rotated by a first digital operation device driven by the output pulses of the generator, and the output pulses of the pulse generator are inputted to a digital differential analyzer having first and second arithmetic circuits. The first and second calculations are performed using the rotation angle of the base material as an independent variable, and the position of the dependent axis that determines the coordinates of the working tool for each of the cylindrical portion and other curved surface portions as a function of the rotation angle. each of which is determined by a circuit, the determined functions are output from the digital differential analyzer in the form of a digital signal, and the working implement is moved by a second digital operating device driven by the output of the digital differential analyzer; In the trajectory control device that controls the work tool so as to repeatedly pass the same trajectory along the base material, an initial value that stores initial values required for calculations of the first and second calculation circuits of the digital differential analyzer is provided. and a value storage means, each time the position of the work tool changes from the cylindrical part to the curved part of the base material, or from the curved part to the cylindrical part, the corresponding initial value of the initial value storage means is stored in the digital differential analyzer. A high-precision trajectory control device comprising: control means for initializing a calculation register in a first or second calculation circuit.
JP50131853A 1975-11-01 1975-11-01 High precision trajectory control device Expired JPS6043523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50131853A JPS6043523B2 (en) 1975-11-01 1975-11-01 High precision trajectory control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50131853A JPS6043523B2 (en) 1975-11-01 1975-11-01 High precision trajectory control device

Publications (2)

Publication Number Publication Date
JPS5256290A JPS5256290A (en) 1977-05-09
JPS6043523B2 true JPS6043523B2 (en) 1985-09-28

Family

ID=15067638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50131853A Expired JPS6043523B2 (en) 1975-11-01 1975-11-01 High precision trajectory control device

Country Status (1)

Country Link
JP (1) JPS6043523B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091405A (en) * 1983-10-24 1985-05-22 Toshiba Mach Co Ltd Numerical controller

Also Published As

Publication number Publication date
JPS5256290A (en) 1977-05-09

Similar Documents

Publication Publication Date Title
KR970005561B1 (en) Numerical control apparatus for machining non-circular workpieces
JPH0785843B2 (en) Multi-axis bevel and hypoid gear creation device
JPS6354512B2 (en)
DE602004002997T2 (en) Numerical control device
JPS6216772B2 (en)
US5050468A (en) Method and apparatus for cutting a circumferential serpentine groove in a workpiece using an engine lathe
US4211512A (en) Rotary table with ballscrew drive
JPS6043523B2 (en) High precision trajectory control device
JPH0628812B2 (en) Processing method for scroll parts
JPS5851284B2 (en) Mandrel Kaitensokudo Kirikae Houshiki
JPH0248393B2 (en)
JPS61193205A (en) Numerical controller
JPS6080520A (en) Helical crowning control method in gear hobbing machine
JPH0716850B2 (en) Axis switching device
WO2022075223A1 (en) Control device
US4031446A (en) Machine tool
JP2723570B2 (en) Three-dimensional laser nozzle control method
Hosoi et al. A five axis computer controlled twist drill grinder
JPS62188615A (en) Machining method for scroll component
JPH01146662A (en) Position controlling method for grinding fluid injection nozzle
JPH0584602A (en) Outside surface machining method and device for oblong piston
JPH0683416A (en) Controller for robot with small graphic machining unit
JP2669641B2 (en) Numerical controller for machining non-round workpieces
JPH0230468A (en) Control method for chopping
JPH06262484A (en) Feed control device for numerically controlled machine tool