JPS62188615A - Machining method for scroll component - Google Patents

Machining method for scroll component

Info

Publication number
JPS62188615A
JPS62188615A JP2594786A JP2594786A JPS62188615A JP S62188615 A JPS62188615 A JP S62188615A JP 2594786 A JP2594786 A JP 2594786A JP 2594786 A JP2594786 A JP 2594786A JP S62188615 A JPS62188615 A JP S62188615A
Authority
JP
Japan
Prior art keywords
tool
scroll
component
scroll component
involute curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2594786A
Other languages
Japanese (ja)
Inventor
Takuro Yamada
山田 卓郎
Akira Watanabe
亮 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2594786A priority Critical patent/JPS62188615A/en
Publication of JPS62188615A publication Critical patent/JPS62188615A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/10Manufacture by removing material

Landscapes

  • Milling Processes (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To machine a scroll component at high speed and that in a highly accurate manner, by keeping moving paths of a tool constant in rectilinear form when the scroll component being used for a compressor of a refrigerator or the like is machined, and synchronizing the tool movement with rotation of the component mechanically. CONSTITUTION:When the outside of a wall 2 of a scroll component 1 is machined, an outer wall surface 14 is of an involute curve, and a tool 3 in use is, for example, an end mill. And, a turning center of this tool 3 is designed to be shiftable on a tangent (d) line offsetting a radius portion of a base circle of the involute curve. In addition, the scroll component 1 is set up to be rotatable with a center (a) point of the base circle as the center. These movements are carried out by a numerically controlled machine tool. Rectilinear motion in an arrow direction of the tool 3 and rotational motion of the component 1 come to simple proportion, and it is offset as far as the radius portion of the tool 3 in the arrow direction from the involute curve of the outer wall surface 14, whereby if movement of the tool 3 and rotation of the component 1 are carried out, the outer wall surface 14 is machinable. In this connection, an inner wall surface 16 is also machinable.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は冷凍機等の圧縮機に使用されるスクロール部品
の加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for processing scroll parts used in compressors such as refrigerators.

〈従来の技術〉 冷凍機等の圧lii機に使用されるスクロール部品の壁
面をエンドミル等の工具で加工するに際し、従来はスク
ロール部品のインボリュート曲線の関係式をコンピュー
タにより計算して直交座標系の座標値に置き換え、この
座標値を点から点への移動指令として直交したx−Y座
標系のマシニングセンタのNC装置に入力し、工具とス
クロール部品との相対遊動を行なわせて加工を行なって
いた。
<Prior art> When machining the wall surface of a scroll component used in a compressor such as a refrigerator with a tool such as an end mill, the relational expression of the involute curve of the scroll component was conventionally calculated by a computer and converted into an orthogonal coordinate system. These coordinate values were then input into the NC device of the machining center in the orthogonal x-y coordinate system as movement commands from point to point, and machining was performed by allowing the tool and scroll component to move relative to each other. .

したがって、工具の運動軌跡は5間巻状となる。Therefore, the motion locus of the tool has a 5-wound shape.

〈発明が解決しようとする問題点〉 従来のスクロール部品の加工では次の欠点を有している
<Problems to be Solved by the Invention> The conventional processing of scroll parts has the following drawbacks.

■ 工具の現在点より次の点までの距離を移動する時間
が、NC装置の一ブロックの演算処理による時間に限定
され、工具の送り速度の上限が定まり高速加工ができな
い。
(2) The time it takes for the tool to move the distance from the current point to the next point is limited to the time required for calculation processing in one block of the NC device, and the upper limit of the tool feed rate is determined, making high-speed machining impossible.

■ NC装置のサーボの追従遅れにより、X +、 Y
補間を行なった場合スクロール部品の中央部に近づくに
従って工具の移動軌跡の誤差が大きくなり、工具の送り
速度を上げることができない。
■ Due to the tracking delay of the NC device's servo, X +, Y
When interpolation is performed, the error in the movement trajectory of the tool increases as it approaches the center of the scroll component, making it impossible to increase the feed rate of the tool.

■ 工具の移動軌跡をX−Y座標値に置き換えるための
コンピュータ処理が必要となる0本発明は上記欠点を有
効に解決するためになされたもので、スクロール部品を
高速でしかも高精度に加工できるスクロール部品の加工
方法を提供することを目的とする。
■ Computer processing is required to convert the tool movement locus into X-Y coordinate values.The present invention was made to effectively solve the above drawbacks, and allows scroll parts to be machined at high speed and with high precision. The purpose of this invention is to provide a method for processing scroll parts.

く問題点を解決するための手段〉 上記目的を達成するための本発明の要旨は、スクロール
部品のインボリュート曲線の渦巻状の壁を加工するスク
ロール部品の加工方法であって、前記インボリュート曲
線の基礎円に接する直線上で加工用工具の中心位置を移
動させる一方、前記スクロール部品をインボリュート曲
線の基礎円の中心を回転中心として回転させ、前記工具
の直線移動と該スクロール部品の回転とを一定比で機械
的に同期させることを特徴とするスクロール部品の加工
方法に存する。
Means for Solving the Problems> The gist of the present invention to achieve the above object is a scroll component processing method for processing a spiral wall of an involute curve of a scroll component, the method comprising: While moving the center position of the processing tool on a straight line tangent to the circle, the scroll part is rotated about the center of the base circle of the involute curve, and the linear movement of the tool and the rotation of the scroll part are kept at a constant ratio. The present invention resides in a method of processing a scroll component, which is characterized by mechanically synchronizing the scroll parts.

く作   用〉 工具の移動軌跡を直線状に一定とし、工具の直線移動と
スクロール部品の回転とを機械的に同期させて行なう。
Function: The locus of movement of the tool is kept constant in a straight line, and the linear movement of the tool and the rotation of the scroll parts are mechanically synchronized.

く実 施 例〉 第1図(a)にはスクロール部品の平面、第1図(b)
には第1図(a)中のI−I線断面を示しである0図示
のスクロール部品1は冷凍機等の圧縮機として使用され
る主要部品であり、インボリュート曲線の壁2で相手部
品(渦巻が逆のスクロール部品)と噛み合い、流体を外
周部から中心に向って圧縮する。このため壁2の内外の
壁面の精度は、気密性が要求されるため高精度に維持す
る必要がある。
Example of implementation> Fig. 1(a) shows the plane of the scroll part, Fig. 1(b) shows the plane of the scroll part.
The scroll part 1 shown in the figure is a main part used as a compressor of a refrigerator, etc., and the wall 2 of the involute curve connects the other part ( (Scroll parts with opposite spirals) and compress the fluid from the outer periphery toward the center. For this reason, the accuracy of the inner and outer wall surfaces of the wall 2 must be maintained at a high level of accuracy since airtightness is required.

第2図には、スクロール部品lを加工する工作機械を示
してあり、工具3を装着した主軸4と、これらを回転駆
動させる主軸頭5と、主軸頭5を上下(Z軸)に移動さ
せる送り駆動装置6及びコラム7と、スクロール部品1
を把握するチャック8と、これらを回転させる回転テー
ブル9 (C軸)、左右方向(X軸)に移動させる移動
テーブル101前後方向(Y軸)に移動させるサドル1
1およびベッド12とから成り、X、Y、Zの直交した
3軸と回転軸C軸とをNCC装車13らの指令で制御す
る。
Fig. 2 shows a machine tool for processing a scroll part 1, which includes a spindle 4 equipped with a tool 3, a spindle head 5 that rotationally drives these, and a spindle head 5 that moves the spindle head 5 up and down (Z-axis). Feed drive device 6, column 7, and scroll component 1
a chuck 8 that grasps the chuck 8, a rotary table 9 that rotates these (C axis), a moving table 101 that moves in the left and right direction (X axis), and a saddle 1 that moves in the front and rear direction (Y axis).
1 and a bed 12, and the three perpendicular axes of X, Y, and Z and the rotation axis C-axis are controlled by commands from the NCC vehicle 13 and others.

第3図にはスクロール部品1と工具3との関係を示し、
スクロール部品1の壁2の外側を加工する場合である。
FIG. 3 shows the relationship between the scroll part 1 and the tool 3,
This is a case where the outside of the wall 2 of the scroll component 1 is processed.

外壁面!4は半径R8の基礎円15で定義されるインボ
リュート曲線であり、工具3は例えばエンドミルである
Outer wall surface! 4 is an involute curve defined by a base circle 15 with a radius R8, and the tool 3 is, for example, an end mill.

そして工具3の回転中心す点は基礎円15の半径8g分
オフセットした接線d線上を移動可能となっており、ま
たスクロール部品lは基礎円15の中心a点を中心とし
て回転可能に配置されている。これらの運動は第2図に
示したNC工作機械によって行なわせる。半径80分の
オフセットをY袖(またはX軸)、d線上の移動をX軸
(またはY軸)、a点を中心とする回転運動をC軸でそ
れぞれ行い、Z軸は工具の長さ方向(加工深さ)を決定
する。
The rotation center point of the tool 3 is movable on a tangent line d offset by a radius of 8 g from the base circle 15, and the scroll part 1 is arranged so as to be rotatable about the center point a of the base circle 15. There is. These movements are performed by the NC machine tool shown in FIG. An offset of 80 minutes in radius is performed on the Y arm (or (machining depth).

ここで、インボリュート曲線の始点S点と、d線と基礎
円13との接点e点との角度をψ、インボリュート曲線
とd線との交点C点と5点との角度θ、0点とe点の角
度をφ、a点と0点の距離をr、e点と0点の距離をX
aとすると次の関係式が成り立つ。
Here, the angle between the starting point S of the involute curve and the tangent point e between the d line and the base circle 13 is ψ, the angle θ between the intersection point C of the involute curve and the d line and point 5, and the angle between the 0 point and e The angle of the point is φ, the distance between point a and point 0 is r, and the distance between point e and point 0 is X
When a is set, the following relational expression holds true.

θ。m tanΦ。−φ。(インボリュート関鄭0  
   ・・・(1)(1) (3)式より となりXoとψは単純比例となる。
θ. m tanΦ. −φ. (Involute Kanzheng 0
...(1) (1) From equation (3), Xo and ψ are simply proportional.

工A3は、外壁14と接すると、工具3の半径r。とじ
て次の関係式が成り立つ。
When the tool A3 contacts the outer wall 14, the radius of the tool 3 is r. The following relational expression holds true.

0o−tanφ。−φ。         ・・・(5
)ここでψC″:ψ0+α       ・・・(9)
xo=xo+ψ。      ・・・αGであるから(
8)式は となり、工具3のX方向の直線移動とスクロール部品l
の回転動とは単純比例となり、X方向に工具半径分子c
、回転角度でαだけ外壁面14のインボリュート曲線よ
りオフセットしα9式の比で工具3の移動とスクロール
部品1の回転とを行なわせれば外壁面14の加工が行え
る。内壁面16も同様に加工できる。
0o-tanφ. −φ. ...(5
) Here ψC″: ψ0+α ... (9)
xo=xo+ψ. ...Because it is αG (
8) The equation becomes, and the linear movement of the tool 3 in the X direction and the scroll part l
The rotational movement of is simply proportional, and the tool radius numerator c in the X direction
The outer wall surface 14 can be machined by offsetting the involute curve of the outer wall surface 14 by a rotation angle α and moving the tool 3 and rotating the scroll part 1 according to the ratio α9. The inner wall surface 16 can also be processed in the same manner.

この同期を表わしたのが第4図(a)、(b)である。This synchronization is shown in FIGS. 4(a) and 4(b).

第5図(a)には回転テ、−プル9と移動テーブルlO
とを同期させる機構を展開した状態を表わしである0回
転電動機18はカップリング19によって歯車20及び
ウオーム21の軸を回転させ、ウオーム21はウオーム
ホイール22と噛み合い回転テーブル9を回転させる。
FIG. 5(a) shows the rotating table, -pull 9 and the moving table lO.
The 0-rotation electric motor 18 rotates the shafts of the gear 20 and the worm 21 by the coupling 19, and the worm 21 meshes with the worm wheel 22 to rotate the rotary table 9.

歯車20は歯車23と噛み合い、歯車23と同軸にある
歯車24は歯車25と噛み合い、歯車25と同軸にある
歯車26は歯車27と噛み合って歯車27と結合された
送りナツト28を回転させる。送りナツト28の回転に
よって送りねじ29に対して移動テーブル10を直線移
動させる。送りねじ29はカップリング32により送り
電動機33に結合され、送り電動機33の回転によって
移動テーブルlOの加工直前直後の位置決めを行なう、
加工中は送り電%機33を停止させる。
A gear 20 meshes with a gear 23, a gear 24 coaxial with the gear 23 meshes with a gear 25, and a gear 26 coaxial with the gear 25 meshes with a gear 27 to rotate a feed nut 28 coupled to the gear 27. The rotation of the feed nut 28 causes the moving table 10 to move linearly relative to the feed screw 29. The feed screw 29 is coupled to a feed motor 33 by a coupling 32, and the rotation of the feed motor 33 positions the moving table IO immediately before and after machining.
During processing, the power feeding percentage machine 33 is stopped.

ここで回転テーブル9の回転角をψ、回転電動機18の
回転角をψ。、ウオーム21の条数をN□、ウオームホ
イール22の歯数をN2歯車20、23.24.25.
28.27の歯数をそれぞれN 3 、 N a 、 
N s 、 N a 、 N 7 、 N a 、送り
ナツト28の一回転当りの進み量をL、移動テーブル1
0の位置をX、)、とすれば次の関係式が成り立つ。
Here, the rotation angle of the rotary table 9 is ψ, and the rotation angle of the rotary motor 18 is ψ. , the number of threads of the worm 21 is N□, the number of teeth of the worm wheel 22 is N2 gears 20, 23.24.25.
The number of teeth of 28.27 is N 3 , Na ,
N s , Na , N 7 , Na , the amount of advance per revolution of the feed nut 28 is L, the moving table 1
Letting the position of 0 be X, ), the following relational expression holds true.

(転)、03式より (4)、04式より ・・・αり となり、N 3 、 N a 、 N s 、 N a
の組合せで略π(円周率)を許容誤差内に消去する。
(conversion), from formula 03, (4), from formula 04...α, N 3 , Na , N s , Na
The combination eliminates approximately π (pi) within the allowable error.

以上の機構により(4)式に相当する回転、直線運動の
同期が可能となり、工具3の相対送り速度を高速にする
ことができる。
The above mechanism enables synchronization of rotation and linear motion corresponding to equation (4), and allows the relative feed speed of the tool 3 to be increased.

第5図(b)には回転テーブル9と移動テーブル10の
断面状態を表わしてあり、回転テーブル9はウオームホ
イール22と結合し移動テーブルlO上で回転する。移
動テーブル10は直線ガイド38.37に案内され送り
ねじ29と送りナツト28によってサドルll上を直線
移動する。
FIG. 5(b) shows a cross-sectional view of the rotary table 9 and the movable table 10. The rotary table 9 is coupled to the worm wheel 22 and rotates on the movable table IO. The moving table 10 is guided by linear guides 38, 37 and moved linearly on the saddle 11 by means of a feed screw 29 and a feed nut 28.

従って、回転テーブル9の回転と移動テーブルlOの移
動(工具3の直線移動)は機械的に同期し、複雑な制御
を行なうことなく送り速度を高速にすることが可能とな
る。
Therefore, the rotation of rotary table 9 and the movement of movable table 10 (linear movement of tool 3) are mechanically synchronized, making it possible to increase the feed rate without performing complicated control.

〈発明の効果〉 本発明のスクロール部品の加工方法は、スクロール部品
のインボリュート曲線の基礎円の中心を中心にスクロー
ル部品を回転させ、工具を基礎円に接する直線上を移動
させ、スクロール部品の回転と工具の移動を一定比で機
械的に同期させるので、同期のための複雑な制御を必要
とせずにスクロール部品を高速でしかも高精度に加工す
ることができる。その結果、数値制御等による加工上の
制限が無くなる。
<Effects of the Invention> The scroll component processing method of the present invention rotates the scroll component around the center of the base circle of the involute curve of the scroll component, moves the tool on a straight line tangent to the base circle, and rotates the scroll component. Since the movement of the tool and the tool are mechanically synchronized at a fixed ratio, scroll parts can be machined at high speed and with high accuracy without the need for complex control for synchronization. As a result, there are no restrictions on processing due to numerical control or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はスクロール部品の平面図、第1図(b)
は第1図(尋中のIII線断面図、第2図は本発明方法
を実施する工作機械の斜視図、第3図は工具とスクロー
ル部品の関係を表わす概念図、第4図(a)は加工開始
状態の工具とスクロール部品の関係を表わす概念図、第
4図(b)は加工終了状態の工具とスクロール部品の関
係を表わす概念図、第5図(a)は回転テーブルと移動
テーブルとの同期機構を表わす展開概念図、第5図(b
)は回転テーブルと移動テーブルの断面図である。 図  面  中、 1はスクロール部品、 3は工具、 9は回転テーブル。 1Gは移動テーブルである。 第1図 (a) 第5図(a) 第5図(b) 21   jt>
Figure 1(a) is a plan view of the scroll parts, Figure 1(b)
Figure 1 is a sectional view taken along the line III in the bottom, Figure 2 is a perspective view of a machine tool that implements the method of the present invention, Figure 3 is a conceptual diagram showing the relationship between tools and scroll parts, and Figure 4 (a). 4(b) is a conceptual diagram showing the relationship between the tool and the scroll part in the machining start state, FIG. 4(b) is a conceptual diagram showing the relationship between the tool and the scroll part in the machining completed state, and FIG. 5(a) is the rotary table and the moving table. Figure 5 (b) is an expanded conceptual diagram showing the synchronization mechanism with
) is a sectional view of the rotating table and the moving table. In the drawing, 1 is a scroll part, 3 is a tool, and 9 is a rotary table. 1G is a moving table. Figure 1 (a) Figure 5 (a) Figure 5 (b) 21 jt>

Claims (1)

【特許請求の範囲】[Claims]  スクロール部品のインボリュート曲線の渦巻状の壁を
加工するスクロール部品の加工方法であって、前記イン
ボリュート曲線の基礎円に接する直線上で加工用工具の
中心位置を移動させる一方、前記スクロール部品をイン
ボリュート曲線の基礎円の中心を回転中心として回転さ
せ、前記工具の直線移動と該スクロール部品の回転とを
一定比で機械的に同期させることを特徴とするスクロー
ル部品の加工方法。
A method of machining a scroll component in which a spiral wall of an involute curve of the scroll component is machined, the center position of a machining tool being moved on a straight line tangent to a base circle of the involute curve, while the scroll component is machined along the involute curve. A method for processing a scroll component, characterized in that the tool is rotated about the center of a base circle as the rotation center, and the linear movement of the tool and the rotation of the scroll component are mechanically synchronized at a constant ratio.
JP2594786A 1986-02-10 1986-02-10 Machining method for scroll component Pending JPS62188615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2594786A JPS62188615A (en) 1986-02-10 1986-02-10 Machining method for scroll component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2594786A JPS62188615A (en) 1986-02-10 1986-02-10 Machining method for scroll component

Publications (1)

Publication Number Publication Date
JPS62188615A true JPS62188615A (en) 1987-08-18

Family

ID=12179950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2594786A Pending JPS62188615A (en) 1986-02-10 1986-02-10 Machining method for scroll component

Country Status (1)

Country Link
JP (1) JPS62188615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188210A (en) * 1988-01-20 1989-07-27 Mazda Motor Corp Scroll shaped working machine
CN103252337A (en) * 2012-09-13 2013-08-21 四川长虹电器股份有限公司 Reusable compressor shell opening and disassembling equipment and realization method
CN108856733A (en) * 2018-08-17 2018-11-23 安徽纽威吉新能源汽车技术有限公司 A kind of air compressor processing unit (plant)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188210A (en) * 1988-01-20 1989-07-27 Mazda Motor Corp Scroll shaped working machine
CN103252337A (en) * 2012-09-13 2013-08-21 四川长虹电器股份有限公司 Reusable compressor shell opening and disassembling equipment and realization method
CN108856733A (en) * 2018-08-17 2018-11-23 安徽纽威吉新能源汽车技术有限公司 A kind of air compressor processing unit (plant)

Similar Documents

Publication Publication Date Title
JP4316850B2 (en) Machining method in complex machine tool
US5205806A (en) Composite-machining machine tool
CN114226868B (en) Gear grinding machine tool for forming grinding wheel
JP6128640B2 (en) Gear cutting method and apparatus for bevel gear
JPH01206406A (en) Numerical controller for non-cylindrical work machining
JPH01177618A (en) Involute interpolation system
JPH01159126A (en) Skiving machine
KR100310814B1 (en) Method and apparatus for processing scrolled workpiece
JP2531964B2 (en) Processing method of scroll shape
JP2022084107A (en) Gear grinding method and gear grinding device
JPS58171229A (en) Structure of table for machining center
JP2004249368A (en) Computer numerical control tooth cutting machine tool by means of five simultaneous working spindles for surface envelope type toroidal worm
JPS62188615A (en) Machining method for scroll component
JP2022092395A (en) Gear processing method and gear processing device
JPS62163109A (en) Numerical controller
JPS6288507A (en) Machining method for scroll parts
Zheng et al. Avoidance of cutter retracting interference in noncircular gear shaping through 4-linkage model
JPS6080520A (en) Helical crowning control method in gear hobbing machine
Tan Face gearing with a conical involute pinion: Part 2—The face gear: Meshing with the pinion, tooth geometry and generation
JPH01177617A (en) Involute interpolation system
CN108445841B (en) Device and method for machining screw of single-screw compressor
JPH1190773A (en) Processing of scroll plate and processing device
JP7521392B2 (en) Gear machining method and gear machining device
CN221474189U (en) Vertical multi-axis machining center
JPH02198712A (en) Gearing machine with toothed wheel measuring function