JPS6043422B2 - Ni-based heat-resistant alloy - Google Patents

Ni-based heat-resistant alloy

Info

Publication number
JPS6043422B2
JPS6043422B2 JP16846782A JP16846782A JPS6043422B2 JP S6043422 B2 JPS6043422 B2 JP S6043422B2 JP 16846782 A JP16846782 A JP 16846782A JP 16846782 A JP16846782 A JP 16846782A JP S6043422 B2 JPS6043422 B2 JP S6043422B2
Authority
JP
Japan
Prior art keywords
alloy
creep rupture
phase
amount
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16846782A
Other languages
Japanese (ja)
Other versions
JPS5959854A (en
Inventor
道夫 山崎
広史 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP16846782A priority Critical patent/JPS6043422B2/en
Publication of JPS5959854A publication Critical patent/JPS5959854A/en
Publication of JPS6043422B2 publication Critical patent/JPS6043422B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はクリープ破断強度と高温延性の両方に優れたN
i基耐熱合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a N
This invention relates to an i-based heat-resistant alloy.

ジェットエンジンや発電設備などに用いられるガスター
ビンの出力、熱効率を上げるには、燃焼ガス温度を上昇
させるのが最も有効である。
The most effective way to increase the output and thermal efficiency of gas turbines used in jet engines, power generation equipment, etc. is to increase the combustion gas temperature.

そのためには、クリープ破断強度の大きい動翼材が必要
である。また、動翼材はガスタービンの起動・停止にと
もなう熱疲労に耐える必要がある。そのためには高温で
延性が優れていなくてはならない。現在、発電用大型ガ
スタービン動翼材には因−7輝℃(ィンコ社製、組成後
記)が使用されており、またジェットエンジンの動翼材
にはMarM200(マーチンマリエタ社製、組成後記
)が優れたものとして使用され、また、MarM247
(マーチンマリエタ社製、組成後記)の実用化が検討さ
れている。
For this purpose, a moving blade material with high creep rupture strength is required. Additionally, the rotor blade material needs to withstand thermal fatigue associated with starting and stopping the gas turbine. For this purpose, it must have excellent ductility at high temperatures. Currently, -7 brightness degree Celsius (manufactured by Inco Corporation, composition listed below) is used for large gas turbine rotor blade materials for power generation, and MarM200 (manufactured by Martin Murrieta Corporation, composition listed below) is used for jet engine rotor blade materials. ) is used as an excellent one, and also MarM247
(manufactured by Martin Murrieta, composition listed below) is being considered for practical use.

しかし、これらの合金はクリープ破断強度が優れないた
め、出力や熱効率を上げるのに限度があ′る。
However, since these alloys do not have excellent creep rupture strength, there is a limit to their ability to increase output and thermal efficiency.

優れたクリープ破断強度を持つ既存合金としてはNAS
A■−A合金(米国NASA製、組成後記)がある。
NAS is an existing alloy with excellent creep rupture strength.
There is an A■-A alloy (manufactured by NASA, USA, composition listed below).

しかし、この合金は高温引張延性が極めて小さいため、
熱疲労に対して弱いという欠点をもつている。また、高
価なReを使用するため合金が高価となる問題点がある
。本発明は、NASA■−A合金における如きJReを
使用することなくクリープ破断強度に優れ、しかも同時
に高温延性にも優れたNi基耐熱合金を堤供するにある
。本発明のNi基耐熱合金は、重量%にて、C05〜1
2%、Cr7〜9%、Wll、5%〜15%、A14.
2〜5.8%、Ti0.1〜1.5%、Ta4〜6%、
Hf0.5〜1.5%、C0.05〜0.15%、B0
.005〜0.02%、Zr0.01〜0.15%を含
み残部は実質的にNiよりなり、同時に、に+Ti<6
.5%W+Ta■16〜19% を満たすNi基耐熱合金である。
However, this alloy has extremely low high temperature tensile ductility;
It has the disadvantage of being weak against thermal fatigue. Furthermore, since expensive Re is used, there is a problem that the alloy is expensive. The object of the present invention is to provide a Ni-based heat-resistant alloy that has excellent creep rupture strength and high-temperature ductility without using JRe as in the NASA ■-A alloy. The Ni-based heat-resistant alloy of the present invention has C05 to 1
2%, Cr7-9%, Wll, 5%-15%, A14.
2-5.8%, Ti 0.1-1.5%, Ta 4-6%,
Hf0.5-1.5%, C0.05-0.15%, B0
.. 005 to 0.02%, Zr0.01 to 0.15%, and the remainder substantially consists of Ni, and at the same time, +Ti<6
.. It is a Ni-based heat-resistant alloy that satisfies the following: 5% W + Ta 16-19%.

本発明のNi基耐熱合金の組成成分の作用ならびに組成
割合の限定理由は次の通りである。
The effects of the compositional components of the Ni-based heat-resistant alloy of the present invention and the reason for limiting the composition ratio are as follows.

Coはγ相および化学量論的にNi、Alで表わされる
γ′相中に固溶して、これらの相の固溶化に寄与すると
共に、γ相中におけるγ′相の析出量を増加して析出強
化を助長する作用をする。その量が5%に満たない場合
は、前記効果が十分得られない。また、その量が12%
をこえると、σ相などの有害析出物が現れてクリープ破
断強度が低下する欠点を生じる。Crは合金の耐硫化腐
食性を良好にする作用をするものてある。
Co dissolves in the γ phase and the γ' phase stoichiometrically represented by Ni and Al, contributing to the solid solution of these phases and increasing the amount of γ' phase precipitated in the γ phase. This acts to promote precipitation strengthening. If the amount is less than 5%, the above effects cannot be sufficiently obtained. Also, the amount is 12%
If it exceeds this, harmful precipitates such as σ phase appear, resulting in a decrease in creep rupture strength. Cr has the effect of improving the sulfide corrosion resistance of the alloy.

しかしその量が9%を超えるとσ相やμ相などの有害相
が板上に生成して、クリープ破断強度が低下する欠点を
生ずる。7%より少なくなると、前記作用が十分に得ら
れなくなる。
However, if the amount exceeds 9%, harmful phases such as σ phase and μ phase are formed on the plate, resulting in a disadvantage that the creep rupture strength decreases. If it is less than 7%, the above effect cannot be obtained sufficiently.

Wはγ相およびγ″相中に固溶して、これらの相を著し
く強化する。
W forms a solid solution in the γ and γ″ phases and significantly strengthens these phases.

そのためには11.5%以上含有させる必要があるが、
15%を超えると、μ相など有害析出物を生成し、クリ
ープ破断寿命が低下する欠点を生じる。A1はγ″相を
生成するために必要な元素であり、γ″相を十分に析出
させるためには、4.2%以上含有させることが必要で
ある。
For that purpose, it is necessary to contain 11.5% or more,
If it exceeds 15%, harmful precipitates such as μ phase are produced, resulting in a shortened creep rupture life. A1 is an element necessary to generate the γ'' phase, and in order to sufficiently precipitate the γ'' phase, it must be contained in an amount of 4.2% or more.

しかし、5.8%を超えると共晶γ″と呼ばれる粗大な
γ″相の量が過多となり、クリープ破断強度が低下する
欠点を生ずる。Tiはその大部分がγ″相に固溶し、γ
″相を強化に寄与する。
However, if it exceeds 5.8%, the amount of coarse γ'' phase called eutectic γ″ becomes too large, resulting in a disadvantage that the creep rupture strength decreases. Most of Ti is dissolved in the γ″ phase, and the γ
“Contributes to strengthening the phase.

この効果を得るには少くとも0.1%が必要である。し
かし、1.5%を超えるとn相を生じてクリープ破断強
度を低下せる欠へを生ずる。Taはその大部分がγ″相
に固溶して著しく固溶強化すると共に、γ″相の量を増
加させて析出強化に寄与する。
At least 0.1% is required to obtain this effect. However, if it exceeds 1.5%, an n-phase is formed, resulting in cracks that reduce creep rupture strength. Most of Ta dissolves in the γ'' phase and significantly strengthens the steel as a solid solution, and also increases the amount of the γ'' phase to contribute to precipitation strengthening.

その効果を本発明合金で得るためには4%以上必要であ
る。しかし、6%をこえると、σ相などの有害析出物が
生じてクリープ破断寿命が低下したり、高温延性が低下
したりする。Cは、よく知られているようにMC型、M
23C6型、M6C型の3種類の炭化物を作つて、主と
して合金の結晶の粒界を強化する。その効果を得るには
Cが0.05%以上必要である。しかし、0.15%を
超えると粗大な炭化物を多量に晶出し、かえつてクリー
プ破断強度を低下させる。Bは粒界に偏析して高温での
粒界強度を向上させ、クリープ破断強度と破断のびを増
加させる作用をする。
In order to obtain this effect with the alloy of the present invention, a content of 4% or more is required. However, when it exceeds 6%, harmful precipitates such as σ phase are generated, resulting in a decrease in creep rupture life and a decrease in high-temperature ductility. As is well known, C is MC type, M
Three types of carbides, 23C6 type and M6C type, are made to mainly strengthen the grain boundaries of the alloy crystals. To obtain this effect, 0.05% or more of C is required. However, if it exceeds 0.15%, a large amount of coarse carbides will crystallize, which will actually reduce the creep rupture strength. B segregates at grain boundaries, improves grain boundary strength at high temperatures, and functions to increase creep rupture strength and fracture elongation.

この効果を得るためには0.005%以上斗2“必要で
ある。しかし、0.02%を超えると粒界に低融点の共
晶を生成し、合金の溶融損傷を起こし易くなる欠点を生
ずる。ZrもB同様粒界強化の作用をする。
In order to obtain this effect, 0.005% or more is required. However, if it exceeds 0.02%, a low melting point eutectic is generated at the grain boundaries, resulting in the disadvantage that the alloy is more likely to be damaged by melting. Like B, Zr also acts to strengthen grain boundaries.

その効果を得るには0.01%以上必要である。しかし
、0.15%をこえると粒界に金属間化合物が生じ、か
えつてクリープ破断強度を低下させる欠点を生じる。H
fは粒界強化の作用をする。この効果を得るには0.5
%以上必要である。しかし、1.5%をこえると有害な
金属間化合物が生成し、クリープ破断寿命が低下する。
以上、各元素の組成割合について説明したが、クリープ
破断強度と高温延性の両方に優れた合金を得るには、複
数の元素に関連した条件が必要である。
To obtain this effect, 0.01% or more is required. However, if it exceeds 0.15%, intermetallic compounds are formed at the grain boundaries, resulting in a disadvantage of lowering the creep rupture strength. H
f acts to strengthen grain boundaries. To get this effect, 0.5
% or more is required. However, if the content exceeds 1.5%, harmful intermetallic compounds will be produced and the creep rupture life will be reduced.
The composition ratios of each element have been explained above, but in order to obtain an alloy that is excellent in both creep rupture strength and high-temperature ductility, conditions related to a plurality of elements are required.

即ち、本発明合金の場合γ相またはγ″相の固溶強化に
有効な元素であるW.5Taの合計量が16%以上であ
ることが必要である。
That is, in the case of the alloy of the present invention, the total amount of W.5Ta, which is an element effective for solid solution strengthening of the γ phase or γ'' phase, must be 16% or more.

W+Taが16%未満であると、固溶強化量が不足し、
十分なりソーブ破断強度が得られない。逆にその合計量
が19%を超えると、σ相、μ相などの有害析出物が生
成し、クリープ破断強度が低下する欠点を生する。また
、本発明合金の場合、A1+Tiが6.5%以上になる
とγ″量が過多となり、高温延性が低下する。よつてN
+Tiは6.5未満でなくてはならない。望ましくは6
%以下である。以下実施例を挙げるとともに従来のN1
基耐熱合金との比較を示す。
When W+Ta is less than 16%, the amount of solid solution strengthening is insufficient,
If the sorb strength is insufficient, it will not be possible to obtain sufficient sorb rupture strength. On the other hand, if the total amount exceeds 19%, harmful precipitates such as σ phase and μ phase are formed, resulting in a disadvantage that the creep rupture strength decreases. In addition, in the case of the alloy of the present invention, when A1+Ti is 6.5% or more, the amount of γ'' becomes excessive and the high temperature ductility decreases.
+Ti must be less than 6.5. Preferably 6
% or less. Examples are given below, and conventional N1
A comparison with base heat-resistant alloys is shown.

実施例 本発明合金4種と既存合金4種を溶解鋳造しクリープ破
断試験を行つた。
EXAMPLE Four types of alloys of the present invention and four types of existing alloys were melted and cast, and creep rupture tests were conducted.

溶解は高周波真空溶解炉で行い、800℃に保温した6
W!Lφクリープ破断試験片1鉢どりの口ストワックス
型に鋳込んだ。試験片は、1080′C×4時間、空冷
+870℃×20時;間、空冷の熱処理を行つたのち、
クリープ破断試験(JISZ−2272)および高温引
張試験(JISG−0567)に供した。試験結果は表
1に示すとおりであつた。これを図に表わして既存合金
と本発明合金の性能を比較したのが第1図である。図か
ら明らかなように、本発明合金のクリープ破断寿命は、
IN−738LC..MarM20へ■RM247の現
在最強合金とされている合金よりも大きいことが分かる
Melting was carried out in a high frequency vacuum melting furnace, and the temperature was kept at 800°C.
W! One Lφ creep rupture test piece was cast into a potted Stowwax mold. The test piece was heat treated at 1080'C x 4 hours, air-cooled + 870°C x 20 hours;
It was subjected to a creep rupture test (JISZ-2272) and a high temperature tensile test (JISG-0567). The test results were as shown in Table 1. This is illustrated in Figure 1, which compares the performance of the existing alloy and the alloy of the present invention. As is clear from the figure, the creep rupture life of the alloy of the present invention is
IN-738LC. .. To MarM20 ■ It can be seen that it is larger than RM247, which is currently considered the strongest alloy.

この原因は主として固溶強化量(W+MO+Ta+Nb
)によつて説明することができる。(ここにMO(5N
bは1%当りWNTaと同等の固溶強化の効果をもつの
で、W+MO+Ta+Nbを固溶強化量とみてよい。)
表1に示すように、囚−738LCは固溶強化量が本発
明合金に比べ大巾に少なく、またW量も少なく、Crが
多い。MarM2OO@−金とMarM247合金も本
発明合金に比べてW+MO+Ta+Nb量が少なく、C
r量が多い。
This is mainly due to the amount of solid solution strengthening (W+MO+Ta+Nb
) can be explained by (MO here (5N
Since b has the same solid solution strengthening effect as WNTa per 1%, W+MO+Ta+Nb can be regarded as the solid solution strengthening amount. )
As shown in Table 1, the amount of solid solution strengthening of KO-738LC is significantly smaller than that of the alloy of the present invention, and the amount of W is also small, and the amount of Cr is large. MarM2OO@-gold and MarM247 alloy also have a smaller amount of W+MO+Ta+Nb than the alloy of the present invention, and C
The amount of r is large.

そのため、以上の3種合金は本発明合金に比べてクリー
プ破断強度が小さい。NASA■−A合金は本発明合金
と同等以上のクリープ破断寿命を示している。しかし、
高温引張延性が小さい。これは、Criが5.8%と低
いことと]゛aが9%と多いことによる。これら既存合
金に比べ、本発明合金は、クリープ破断強度と高温延性
の両者に優れた合金であり、極めて実用価値の高いもの
である。さらに、NASA■−A合金はTaによるγ″
相の固溶強化とReの添加による粒界強化とを利用した
ものであるのに対し、本発明合金は高価なReを使用せ
ず、またTaの使用量も少ないものであり、主として安
価なWの固溶強化を利用したものである。従つて、本発
明合金はNASA■−A合金に比べて極めて安価に製造
し得られる。しかも、工場での製造の生産管理において
、例えばスクラップの他合金への転用等においても本発
明合金の方が有利である等の優れた効果を有する。本発
明合金はこれを動翼材として用いることによつて、ジェ
ットエンジンや発電設備などの各種ガスタービンの高能
率化が可能となる。
Therefore, the above three types of alloys have lower creep rupture strength than the alloy of the present invention. The NASA ■-A alloy exhibits a creep rupture life equal to or better than that of the alloy of the present invention. but,
Low high temperature tensile ductility. This is because Cri is low at 5.8% and ]a is high at 9%. Compared to these existing alloys, the alloy of the present invention is an alloy superior in both creep rupture strength and high-temperature ductility, and has extremely high practical value. Furthermore, the NASA ■-A alloy has γ″ due to Ta.
In contrast, the alloy of the present invention does not use expensive Re and uses only a small amount of Ta, and is mainly an inexpensive alloy. This utilizes the solid solution strengthening of W. Therefore, the alloy of the present invention can be produced at a much lower cost than the NASA 1-A alloy. In addition, the alloy of the present invention has excellent effects such as being more advantageous in the production control of manufacturing in factories, for example in the conversion of scrap to other alloys. By using the alloy of the present invention as a rotor blade material, it is possible to improve the efficiency of various gas turbines such as jet engines and power generation equipment.

同時に、熱疲労に対しても十分信頼性の高いガスタービ
ンが得られる。
At the same time, a gas turbine with sufficiently high reliability against thermal fatigue can be obtained.

この合金は耐酸化あるいは耐硫化コーティングを行つて
使用することも可能である。
This alloy can also be used with oxidation-resistant or sulfur-resistant coatings.

更に一方向凝固材あるいは単結晶材としての使用も可能
でり、これによつて高温での強度と延性の向上が得られ
る。このほか粒子分散強化合金の基地としての使用も可
能である。
Furthermore, it can be used as a directionally solidified material or a single crystal material, which provides improved strength and ductility at high temperatures. In addition, it can also be used as a base for particle dispersion strengthened alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は既知合金と本発明合金との引張り破断のびとク
リープ破断寿命の比較図を示す。
FIG. 1 shows a comparison diagram of the tensile rupture elongation and creep rupture life of a known alloy and an alloy of the present invention.

Claims (1)

【特許請求の範囲】 1 重量%にて、Co5〜12%、Cr7〜9%、W1
1.5%〜15%、Al4.2〜5.8%、Ti0.1
〜1.5%、Ta4〜6%、Hf0.5〜1.5%、C
0.05〜0.15%、B0.005〜0.002%、
Zr0.01〜0.15%を含み残部は実質的にNiよ
りなり、同時に、Al+Ti<6.5% W+Ta=16〜19% を満たすNi基耐熱合金。
[Claims] 1% by weight: Co5-12%, Cr7-9%, W1
1.5% to 15%, Al4.2 to 5.8%, Ti0.1
~1.5%, Ta4~6%, Hf0.5~1.5%, C
0.05-0.15%, B0.005-0.002%,
A Ni-based heat-resistant alloy containing 0.01 to 0.15% of Zr, the remainder substantially consisting of Ni, and at the same time satisfying the following conditions: Al+Ti<6.5% W+Ta=16 to 19%.
JP16846782A 1982-09-29 1982-09-29 Ni-based heat-resistant alloy Expired JPS6043422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16846782A JPS6043422B2 (en) 1982-09-29 1982-09-29 Ni-based heat-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16846782A JPS6043422B2 (en) 1982-09-29 1982-09-29 Ni-based heat-resistant alloy

Publications (2)

Publication Number Publication Date
JPS5959854A JPS5959854A (en) 1984-04-05
JPS6043422B2 true JPS6043422B2 (en) 1985-09-27

Family

ID=15868647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16846782A Expired JPS6043422B2 (en) 1982-09-29 1982-09-29 Ni-based heat-resistant alloy

Country Status (1)

Country Link
JP (1) JPS6043422B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2579580B (en) * 2018-12-04 2022-07-13 Alloyed Ltd A nickel-based alloy

Also Published As

Publication number Publication date
JPS5959854A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
US9322089B2 (en) Nickel-base alloy for gas turbine applications
JP5299899B2 (en) Ni-base superalloy and manufacturing method thereof
JP5467306B2 (en) Ni-based single crystal superalloy and alloy member based thereon
JP3814662B2 (en) Ni-based single crystal superalloy
CA2680650C (en) Ni-based single crystal superalloy and turbine blade incorporating the same
JP5467307B2 (en) Ni-based single crystal superalloy and alloy member obtained therefrom
US7473326B2 (en) Ni-base directionally solidified superalloy and Ni-base single crystal superalloy
JP5252348B2 (en) Ni-base superalloy, manufacturing method thereof, and turbine blade or turbine vane component
US9816161B2 (en) Ni-based single crystal superalloy
JP2009114501A (en) Nickel-based single-crystal alloy
JP2005097649A (en) Ni-BASED SUPERALLOY
WO2010082632A1 (en) Ni-based single crystal superalloy
JP2015030915A (en) Ni-BASED CASTING SUPER ALLOY AND CASTING MADE OF THE Ni-BASED CASTING SUPER ALLOY
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JPS6043422B2 (en) Ni-based heat-resistant alloy
WO2013031916A1 (en) Ni-BASED SUPERALLOY
JPS5839760A (en) Heat resistant ni alloy
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts
JP2011174123A (en) Nickel-base alloy and gas turbine component for land using the same
US4519979A (en) Nickel-chromium-cobalt base alloys and castings thereof
JPS5839761A (en) Heat resistant ni alloy
JPH0310039A (en) Ni-base single crystal superalloy having excellent high temperature strength and high temperature corrosion resistance
JPS6152339A (en) Heat resistant ni alloy
JPS5839762A (en) Heat resistant ni alloy