JPS6042989A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6042989A
JPS6042989A JP58151897A JP15189783A JPS6042989A JP S6042989 A JPS6042989 A JP S6042989A JP 58151897 A JP58151897 A JP 58151897A JP 15189783 A JP15189783 A JP 15189783A JP S6042989 A JPS6042989 A JP S6042989A
Authority
JP
Japan
Prior art keywords
photoconductive film
solid
region
semiconductor region
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58151897A
Other languages
Japanese (ja)
Inventor
Satoshi Hirose
広瀬 諭
Masafumi Ueno
雅史 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58151897A priority Critical patent/JPS6042989A/en
Publication of JPS6042989A publication Critical patent/JPS6042989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To obtain high sensitivity over an entire visual region and a characteristic of high dark resistance by surrounding a region made of a material having narrow forbidden band width and sensitivity over a wide wavelength region with a material having high dark resistance and the wide forbidden band width in the photoconductive film of a solid-state image pickup device. CONSTITUTION:The 2nd photoconductive film 15 is >=0.5mum in thickness and transduces >90% of visual light into an electron-positive hole pair. The generated electron-positive hole pairs are attracted respetively to an electrode, recombined with the electron-positive hole pair stored in the junction capacitance between a p channel semiconductor substrate 1 and an n channel semiconductor region and the stored charge is decreased. Then the gate 7 of an MOS transistor is turned on at signal read, a current flows between an n channel semiconductor region 2 and an n channel semiconductor region 3 being a drain and its current value represents a photo signal amount. In this case, since the 2nd photoconductive film 15 having the narrow forbidden band width is used, the sufficient sensitivity to incident light is attained, and the dark current and crosstalk between picture elements are decreased remarkably by the photoconductive film 9 of high dark resistance.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は固体撮像装置に関し、特に、光11FI電効
果を利用した固体撮像装置の構造に関づるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a solid-state imaging device, and particularly to the structure of a solid-state imaging device that utilizes the optical 11FI electric effect.

[従来技術] 第1図は従来の光導電効果を利用した固体撮像装置の一
例を示す断面図である。
[Prior Art] FIG. 1 is a sectional view showing an example of a conventional solid-state imaging device using the photoconductive effect.

まず、第1図を参照し・て従来の固体撮像装置の構成に
ついて説明する。第1図において、p型半導体基板1上
に、MOS)−ランジスタのソースとなる11型半導体
領域2およびM OS l−ランジスクのドレインとな
るn型半S体領II!I83が形成される。
First, the configuration of a conventional solid-state imaging device will be described with reference to FIG. In FIG. 1, on a p-type semiconductor substrate 1, an 11-type semiconductor region 2 which becomes a source of a MOS)-transistor and an n-type semi-S-type semiconductor region II which becomes a drain of a MOS transistor! I83 is formed.

さらに、n型半導体領11jl+2および3の間の領域
Fにゲート7が設けられ、n型半導体領域2および3と
ともにM OS I−ランジスタを構成する。また、n
型半導体領域3に接して画素分離11化腸13および絶
縁膜8が設けられ、隣接1”る画素を分離する役目を果
たしている。さらに、ゲートシ1]型半導体領域3上に
形成された一店配線4および絶縁膜8の上に絶縁膜5が
形成される。次に、r11型半導領域2上に形成された
一層配線4および上述の絶縁膜5の上に二層配線6が形
成され、この二層配線6はさらにその上に形成された光
導電膜9に電界をかける正電極の役割りを果たす。光導
電膜9の上に形成された透明電極10は、上’rLの二
層配線6とともに光S電11!9に電界をかける負電極
である。透明電極10上には透明平坦化膜11が形成さ
れ、さらにその上に番よ入射光を分光する光フィルタ1
2が設けられている。
Further, a gate 7 is provided in a region F between n-type semiconductor regions 11jl+2 and 3, and together with n-type semiconductor regions 2 and 3 constitutes a MOS I-transistor. Also, n
A pixel isolation layer 13 and an insulating film 8 are provided in contact with the gate type semiconductor region 3, and serve to isolate adjacent pixels. An insulating film 5 is formed on the wiring 4 and the insulating film 8. Next, a double-layer wiring 6 is formed on the single-layer wiring 4 formed on the r11 type semiconductor region 2 and the above-mentioned insulating film 5. , this two-layer wiring 6 further serves as a positive electrode that applies an electric field to the photoconductive film 9 formed on it.The transparent electrode 10 formed on the photoconductive film 9 It is a negative electrode that applies an electric field to the optical S-electrode 11!9 together with the layer wiring 6.A transparent flattening film 11 is formed on the transparent electrode 10, and an optical filter 1 that separates the incident light is further disposed on the transparent flattening film 11.
2 is provided.

次に、第1図に示す従来の光導電効果を利用した固体撮
像装置の動作について説明する。入射された光は光フィ
ルタ12で分光され、さらに透明平坦化膜11および透
明電極10を透過した後、光導電m9で吸収される。こ
の光の吸収によって、電子−正孔対が光導電膜9に発生
する。光導電膜9には前述の二層配線6および透明電極
10によって電界がかけられており、そのため、上述の
発生した電子−正孔対は加速され、電子は正電極である
二層配WA6に、正孔は負N極である透明N極10に引
き寄せられる。二層配ta6の電位は一層配l1I4を
介してMOS t−ランジスタのソースであるn型半導
体領域2に接続される。ここで、上述の負電極である透
明電tカの電位を固定しておくと、光が照射されて光導
電膜9に電子−正孔対が発生したときには、n型半導体
領域2の電位はフローティングになる。そして、信号続
出時には、M OSトランジスタのゲート7がオンされ
て、ソースであるn型半導体領域2とドレインであるn
型半導体領域3とは同電位どなる。づ゛なわも、照射さ
れる光信号mに対応してn型半導体領域2のソース電位
は変化するので、信号続出時に11型半導体領域2に流
れる電流値か光イ評1を表わしでいる。
Next, the operation of the conventional solid-state imaging device using the photoconductive effect shown in FIG. 1 will be explained. The incident light is separated by the optical filter 12, further transmitted through the transparent flattening film 11 and the transparent electrode 10, and then absorbed by the photoconductor m9. By absorbing this light, electron-hole pairs are generated in the photoconductive film 9. An electric field is applied to the photoconductive film 9 by the two-layer wiring 6 and the transparent electrode 10, so that the generated electron-hole pairs are accelerated and the electrons are transferred to the two-layer wiring WA6, which is the positive electrode. , holes are attracted to the transparent N-pole 10, which is a negative N-pole. The potential of the two-layer interconnect ta6 is connected to the n-type semiconductor region 2, which is the source of the MOS t-transistor, via the first-layer interconnect I1I4. Here, if the potential of the transparent electrode t, which is the above-mentioned negative electrode, is fixed, when light is irradiated and electron-hole pairs are generated in the photoconductive film 9, the potential of the n-type semiconductor region 2 will be becomes floating. Then, when the signal continues, the gate 7 of the MOS transistor is turned on, and the n-type semiconductor region 2, which is the source, and the n-type semiconductor region, which is the drain, are turned on.
The potential is the same as that of the type semiconductor region 3. Since the source potential of the n-type semiconductor region 2 changes in response to the irradiated optical signal m, the value of the current flowing through the 11-type semiconductor region 2 when the signal is continuously applied represents the optical evaluation 1.

しかしながら、上述のように信成された従来の固体撮像
装置では、光導電膜に暗電流が発生したり、画素間にク
ロストークが生じるという問題点があった。この問題点
を解決覆るには、光導電膜9の暗抵抗が十分大きくなt
フればならず、通常1Q 10Ω・am以上の抵抗率が
必要とされている。明抵抗を増大さすためには、不Il
i物を混入して移動度を小さくするか、あるいは禁制帯
の幅を広くし、キャリア密度を減らすことが有効であり
、そのため、光導電膜9として窒素を混入した水素化ア
モルファスシリコン等が用いられている。
However, the conventional solid-state imaging device constructed as described above has problems in that dark current occurs in the photoconductive film and crosstalk occurs between pixels. In order to overcome this problem, the dark resistance of the photoconductive film 9 must be sufficiently large.
Generally, a resistivity of 1Q 10Ω·am or more is required. In order to increase the light resistance,
It is effective to reduce the carrier density by mixing an i substance or by widening the width of the forbidden band. Therefore, hydrogenated amorphous silicon mixed with nitrogen or the like is used as the photoconductive film 9. It is being

しかしながら、上述の移動度を小さくする散乱中心(不
純物)の存在は、半導体中の深いトラップ順位の原因と
なり、残留電荷を誘起するので望ましくない。また、禁
制帯幅を大きくすると、光導N膜が光に対して感度を持
ち始める波長が短波長側へ移動する。
However, the presence of scattering centers (impurities) that reduce the mobility described above is undesirable because it causes a deep trap order in the semiconductor and induces residual charges. Furthermore, when the forbidden band width is increased, the wavelength at which the light-guiding N film becomes sensitive to light shifts to the shorter wavelength side.

第2図は、光導電膜材料の光電変換特性を示すグラフで
あり、横軸は入射光の波長、縦軸は吸収係数を表わす。
FIG. 2 is a graph showing the photoelectric conversion characteristics of the photoconductive film material, where the horizontal axis represents the wavelength of incident light and the vertical axis represents the absorption coefficient.

第2図の実線は、高暗抵抗材料として有望な真性アモル
ファスシリコンの光電変換特性であり、その吸収係数は
禁制帯幅の1.95eV(波長では630 nmに相当
)より低エネルギ側では急激に低下する。第2図の実線
について言えば、630nmより長い波長の入射光に対
しては、光電変換特性は劣化する。カラー固体撮像装置
は、全可視域に感度を持つことを要求しており、したが
って上述の真性アルモファスシリコンでは、その要求を
十分に満たしてはいない。一方、光に対する感度を有す
る′J!L長領域を拡けるために、禁制帯の狭い光導電
膜材料を用いると前述のように暗抵抗は低くなり、雑音
が増加する。
The solid line in Figure 2 shows the photoelectric conversion characteristics of intrinsic amorphous silicon, which is promising as a high dark resistance material, and its absorption coefficient sharply increases on the energy side lower than the forbidden band width of 1.95 eV (corresponding to a wavelength of 630 nm). descend. Regarding the solid line in FIG. 2, the photoelectric conversion characteristics deteriorate for incident light with a wavelength longer than 630 nm. Color solid-state imaging devices are required to have sensitivity in the entire visible range, and therefore the above-mentioned intrinsic amorphous silicon does not fully satisfy this requirement. On the other hand, 'J! has sensitivity to light! If a photoconductive film material with a narrow forbidden band is used in order to expand the L-length region, the dark resistance will decrease as described above, and noise will increase.

[発明の(既要] それゆえに、この発明の主たる目的は、上述の欠点を解
消し、高感度かつ高ua低抗の固体lff1像装置を提
供することである。
[Summary of the Invention] Therefore, the main object of the present invention is to eliminate the above-mentioned drawbacks and provide a solid-state lff1 imaging device with high sensitivity and high ua and low resistance.

この発明は、要約ブれば、光導電膜の光入射側の一部領
域を前述のようなM制帯幅の狭い材料どすることによっ
て十分な感度を有する広い波長領域を確保し、同時に、
この一部の領域を凹む部分に禁制帯幅の広い材料を用い
ることによって高昭抵抗が得られるよう、に椙成したも
のである。
To summarize, this invention secures a wide wavelength range with sufficient sensitivity by making a part of the light incident side of the photoconductive film a material with a narrow M band width as described above, and at the same time,
By using a material with a wide forbidden band width in the concave portion of this part of the region, a high resistance can be obtained.

この発明の上述の目的およびその他の目的ど特徴は以下
に図面を参照して行なう詳Mdな説明から一層明らかと
なろう。 − [発明の実施例] 第3図はこの発明の一実施例を示TJ断面図である。第
3図に示す例は、以下の点を除いて前述の第1図に示し
た断面図と同じである。すなわら、光導電膜9の光入射
側の一部領域に、光S電膜9より禁制帯幅が狭い、非晶
質S’ y、 Ge +−x (0≦×≦1〉等の材料
からなる第2光導電膜15が設けられている。
The above-mentioned objects and other objects and other features of the present invention will become more apparent from the detailed description given below with reference to the drawings. - [Embodiment of the Invention] FIG. 3 is a TJ sectional view showing an embodiment of the invention. The example shown in FIG. 3 is the same as the cross-sectional view shown in FIG. 1 above, except for the following points. That is, in a part of the light incident side of the photoconductive film 9, an amorphous S′ y, Ge +−x (0≦x≦1〉, etc.) whose forbidden band width is narrower than that of the photoconductive film 9 is formed. A second photoconductive film 15 made of a material is provided.

次に、第3図に示す実施例の動作について説明する。第
2光導電膜15は第2図の点線で示す光電変換特性を有
しており、またその厚みは0.5μm以下であり、可視
光の90%以上を電子−正孔対に変換する。光導電膜9
および第2光導電膜15には、第1図の例と同様に、正
電極である二層配線6および負電極である透明電極10
とによって電界がかけられる。その結果、発生した電子
−正孔対はそれぞれ電極へ引き寄せられ、p型半導体基
板1とn型半導体領域との間の接合容量に蓄えられた電
子−正孔対と再結合し、蓄積電荷を減少させる。次に、
信号読出時にはMOS t−ランジスタのゲート7がオ
ンされて、MOS t−ランジスタのソースであるn型
半導体領域2とドレインであるn型半導体領域3との間
に電流が流れ、その電流値が光信号量を表わす。この場
合、禁制帯幅が狭い第2光導電饅15を用いるため、入
射光に対し充分な感度を確保し、さらに高暗抵抗の光導
電!!9によって暗電流や画素間のクロストークを著し
く減少させることができる。
Next, the operation of the embodiment shown in FIG. 3 will be explained. The second photoconductive film 15 has photoelectric conversion characteristics shown by the dotted line in FIG. 2, has a thickness of 0.5 μm or less, and converts more than 90% of visible light into electron-hole pairs. Photoconductive film 9
Similarly to the example shown in FIG. 1, the second photoconductive film 15 includes a two-layer wiring 6 as a positive electrode and a transparent electrode 10 as a negative electrode
An electric field is applied by As a result, the generated electron-hole pairs are attracted to the electrodes, recombine with the electron-hole pairs stored in the junction capacitance between the p-type semiconductor substrate 1 and the n-type semiconductor region, and release the accumulated charge. reduce next,
When reading a signal, the gate 7 of the MOS t-transistor is turned on, and a current flows between the n-type semiconductor region 2, which is the source, and the n-type semiconductor region 3, which is the drain, of the MOS t-transistor. Represents the amount of signal. In this case, since the second photoconductive rice cake 15 with a narrow forbidden band width is used, sufficient sensitivity to incident light is ensured, and a photoconductive rice cake with high dark resistance is also used. ! 9 can significantly reduce dark current and crosstalk between pixels.

なお、この実施例では基板の導電性をp型、走査回路M
O8I−ランジスタを11型MO8l−ランシスタとし
たが、基板をp型、走査回路MOSトランジスタをp型
としても同様の効果がIQられる。
In this example, the conductivity of the substrate is p-type, and the scanning circuit M
Although the O8I-transistor is an 11-type MO8l-transistor, the same effect can be obtained even if the substrate is a p-type and the scanning circuit MOS transistor is a p-type.

[発明の効果] 以上のように、この発明では、固体搬像装置の光S電膜
において、広い波長領域にわたって感度を有する禁制帯
幅の狭い材料からなる領域を、高暗抵抗の禁flilJ
帯幅の広い材料で凹むように4fl成したので、従来の
固体撮像装置に比べて、全回?31城に対して高@度で
あり、かつ高暗抵抗の特性を、i’Jることができる。
[Effects of the Invention] As described above, in the present invention, in the photo-S dielectric film of a solid-state image transfer device, a region made of a material with a narrow bandgap that is sensitive over a wide wavelength range is used as a material with a high dark resistance.
Since it is made of a material with a wide band width and has a concave 4 fl, it is possible to use it all times compared to a conventional solid-state imaging device. It has a high @ degree with respect to 31 castles, and can have characteristics of high dark resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光導電効果を利用した固体L■象装置の
断面図である。第2図は光導電膜材料の光電変換特性を
示すグラフぐある。第3図はこの発明の一実施例を示す
断面図である。 図において、1はp型半導体W板、2.3は0型半導体
領域、4,14は一層配線、5.8は絶縁膜、6は二層
配線、7はゲート、9は光wJ電膜、10は透明電極、
11は透明平坦化膜1.12は光フィルタ、13は画素
分wm化膜、15は第2光導電膜を示す。 代理人 大 岩 増 雄
FIG. 1 is a sectional view of a conventional solid-state L-image device utilizing the photoconductive effect. FIG. 2 is a graph showing the photoelectric conversion characteristics of photoconductive film materials. FIG. 3 is a sectional view showing an embodiment of the present invention. In the figure, 1 is a p-type semiconductor W board, 2.3 is a 0-type semiconductor region, 4 and 14 are single-layer wiring, 5.8 is an insulating film, 6 is a double-layer wiring, 7 is a gate, and 9 is an optical WJ electric film. , 10 is a transparent electrode,
Reference numeral 11 indicates a transparent flattening film, 12 indicates an optical filter, 13 indicates a pixel portion wm conversion film, and 15 indicates a second photoconductive film. Agent Masuo Oiwa

Claims (2)

【特許請求の範囲】[Claims] (1) 光導電効果を用いる固体撮像装置であって、 入射してくる光信号を電気信号に変換する光電変換手段
を備え、 前記光電変換手段は、 高暗抵抗値を有する材料からなる第1の光導電膜と、 前記第1の光S電膜に囲まれて設けられ、光に対する広
い感度波長域を有する、前記第1の光電肋膜よりも禁制
帯幅が狭い材料からなる第2の光導電膜とからなる、固
体撮像装置。
(1) A solid-state imaging device using a photoconductive effect, comprising a photoelectric conversion means for converting an incident optical signal into an electric signal, the photoelectric conversion means comprising a first layer made of a material having a high dark resistance value. a second photoconductive film, which is provided surrounded by the first photoconductive film and is made of a material having a wide wavelength range of sensitivity to light and whose forbidden band width is narrower than that of the first photoconductive film. A solid-state imaging device consisting of a conductive film.
(2) 前記第1の光導電膜はアモルファスシリコンで
あり、前記第2の光導電膜は非晶質SIX Ge j−
): (0≦×≦1)である、固体撮像装置。
(2) The first photoconductive film is amorphous silicon, and the second photoconductive film is amorphous SIX Ge j-
): A solid-state imaging device where (0≦×≦1).
JP58151897A 1983-08-18 1983-08-18 Solid-state image pickup device Pending JPS6042989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58151897A JPS6042989A (en) 1983-08-18 1983-08-18 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151897A JPS6042989A (en) 1983-08-18 1983-08-18 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6042989A true JPS6042989A (en) 1985-03-07

Family

ID=15528576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151897A Pending JPS6042989A (en) 1983-08-18 1983-08-18 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6042989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647659A (en) * 1987-06-30 1989-01-11 Canon Kk Photoelectric converter
US7920189B2 (en) 2007-03-16 2011-04-05 Fujifilm Corporation Solid-state imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647659A (en) * 1987-06-30 1989-01-11 Canon Kk Photoelectric converter
US7920189B2 (en) 2007-03-16 2011-04-05 Fujifilm Corporation Solid-state imaging device

Similar Documents

Publication Publication Date Title
US6552320B1 (en) Image sensor structure
JP3645585B2 (en) Charge coupled device type solid-state imaging device having overflow drain structure
US6188056B1 (en) Solid state optical imaging pixel with resistive load
Teranishi et al. Smear reduction in the interline CCD image sensor
TW201539728A (en) Image sensor with dielectric charge trapping device
JPS58138187A (en) Solid-state image sensor
JPH0414543B2 (en)
US6163030A (en) MOS imaging device
JPH06181302A (en) Ccd imaging device
JPS6042989A (en) Solid-state image pickup device
Takasaki et al. Avalanche multiplication of photo-generated carriers in amorphous semiconductor, and its application to imaging device
JPH05235317A (en) Solid-state image pickup element
JPH0430192B2 (en)
JPS6064467A (en) Solid-state image sensor
JP3303571B2 (en) Infrared detector and infrared detector array
JPS6170874A (en) Solid-state image pickup element
Chikamura et al. A 1/2-in. CCD image sensor overlaid with a hydrogenated amorphous silicon
JPH11233807A (en) Depletion-gate photo sensor
JPS58123760A (en) Solid-state image pickup device
JP3375389B2 (en) Charge detection element
Chikamura et al. A half inch size CCD image sensor overlaid with a hydrogenated amorphous silicon
JPS59108456A (en) Solid-state image pickup element
JPH0287573A (en) Solid-state image sensing device
JPH0237746B2 (en)
JPH05343729A (en) Arrangement type infrared detector