JPS6042910B2 - Quantification method of L-amino acid - Google Patents

Quantification method of L-amino acid

Info

Publication number
JPS6042910B2
JPS6042910B2 JP54006357A JP635779A JPS6042910B2 JP S6042910 B2 JPS6042910 B2 JP S6042910B2 JP 54006357 A JP54006357 A JP 54006357A JP 635779 A JP635779 A JP 635779A JP S6042910 B2 JPS6042910 B2 JP S6042910B2
Authority
JP
Japan
Prior art keywords
microbial
electrode
amino acid
treated
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54006357A
Other languages
Japanese (ja)
Other versions
JPS5598348A (en
Inventor
春夫 小花
忠 白川
基彦 引馬
武夫 安田
征夫 軽部
周一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP54006357A priority Critical patent/JPS6042910B2/en
Publication of JPS5598348A publication Critical patent/JPS5598348A/en
Publication of JPS6042910B2 publication Critical patent/JPS6042910B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は微生物電極を用いるL−アミノ酸の定量法に関
し、詳しくは、定量せんとするL−アミノ酸脱炭酸酵素
を有する微生物菌体を有機溶媒および/または界面活性
剤で処理したものを、炭酸−sTEL、仙L童1、LS
−上1■一’゛hj、、ツ!ミノ酸の定量法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantifying L-amino acids using a microbial electrode. The treated ones were carbonic acid-sTEL, Sendou 1, LS
-Top 1■1'゛hj,,tsu! Concerning the quantitative method of amino acids.

L−アミノ酸の定量法としては、従来からかぼちや、エ
シエリヒア・コリ、またはクロストリジウム、ウエルシ
ユ由来のL−グルタミン酸脱炭酸酵素(L−gluta
matedecarboxylase)あるいは、エシ
エリヒア・コリまたはバクテリウム・キヤダベリス由来
のL−リジン脱炭酸酵素(L一Lysinedecar
box−ylase)を用いて、次の式(I)の反応:
L−アミノ L−7S″ 該当するアミン+C02(I
) によつて発生する炭酸ガスの量を、マノメトリーで測定
するワールブルグ検圧法、あるいは発生する炭酸ガスを
比色定量するオートアナライザ法が知られている。
As a method for quantifying L-amino acids, L-glutamic acid decarboxylase (L-glutamate decarboxylase) derived from pumpkin, Escherichia coli, or Clostridium welsh has traditionally been used.
matedecarboxylase) or L-lysine decarboxylase (L-lysine decarboxylase) from Escherichia coli or Bacterium cyadaveris.
box-ylase), the following reaction of formula (I):
L-amino L-7S'' Applicable amine + C02 (I
) The Warburg pressure method, which measures the amount of carbon dioxide gas generated by manometry, and the autoanalyzer method, which colorimetrically determines the amount of carbon dioxide gas generated, are known.

これらは、正確ですぐれた方法であるが、酵素の連続的
使用が困難なため、高価な酵素を測定のたびに新たに使
用しなければならず、経済的でなく、又、オートアナラ
イザー法の場合には装置が複雑で、高価な上、酵素の調
整が必要である。
These are accurate and excellent methods, but because it is difficult to use enzymes continuously, expensive enzymes must be used anew each time a measurement is performed, making them uneconomical, and the autoanalyzer method In some cases, the equipment is complex and expensive, and enzyme adjustments are required.

ここで酵素を固定化して連続的に使用する方法も考えら
れるが、実用化されるに至つていないのが現状である。
以上の解決点に鑑み、本発明者らは簡便で正確なL−ア
ミノ酸の定量法について研究の結果、例えばエシエリヒ
ヤ属、シトロバクター属、クロストリジウム属、バチル
ス属、ストレプトコツカス属、シュードモナス属、バチ
ルス属、ミクソコッカス属、ラクトバチルス属等に属す
る細菌類、アスペルギルス属等に属する子嚢菌類あるい
はロドトルラ属等の属する酵母類に属し、かつ定量せん
とするL−アミノ酸の脱炭酸酵素を有する活性菌体を有
機溶媒および/または界面活性剤で処理した活性処理菌
体を溶存炭酸ガス電極に取りつけた微生物電極を、嫌気
的条件下で該当する上記のL−アミノ酸を含有する被験
液に浸漬、または接触することにより生ずる上記微生物
電極の起電力を測定することによつて、必要な際何時で
も簡単に、しかも正確に目的とするL−アミノ酸を定量
し得ることを発見し、本発明を完成するに至つた。
Although it is possible to immobilize the enzyme and use it continuously, this method has not yet been put to practical use.
In view of the above-mentioned problems, the present inventors conducted research on a simple and accurate method for quantifying L-amino acids, and found that, for example, Escherichia spp., Citrobacter spp., Clostridium spp., Bacillus spp., Streptococcus spp., Pseudomonas spp., Bacillus spp. Active bacteria that belong to the genus Myxococcus, Lactobacillus, etc., ascomycetes such as Aspergillus, or yeasts such as Rhodotorula, and have a decarboxylase for the L-amino acid to be quantified. A microbial electrode, in which activated microbial cells whose bodies have been treated with an organic solvent and/or surfactant are attached to a dissolved carbon dioxide electrode, is immersed in a test solution containing the above-mentioned L-amino acids under anaerobic conditions, or We have discovered that by measuring the electromotive force of the microbial electrode generated by contact with the microorganism, it is possible to easily and accurately quantify the target L-amino acid whenever necessary, and have completed the present invention. It came to this.

本発明の方法の特徴は、上記(1)式の反応を微生物菌
体内の特定の酵素系を利用して行い、生成されるCO2
ガスを炭酸ガス電極で定量する方法において、(1)式
を嫌気的条件下で行い、且つ、有機溶媒および/または
界面活性剤で処理した活性菌体を炭酸ガス電極に取りつ
けた微生物電極を使用することに有る。
The feature of the method of the present invention is that the reaction of formula (1) above is carried out using a specific enzyme system within the microorganism, and the CO2 produced is
In a method for quantifying gas with a carbon dioxide electrode, formula (1) is carried out under anaerobic conditions, and a microbial electrode is used in which active bacterial cells treated with an organic solvent and/or surfactant are attached to the carbon dioxide electrode. There is something to do.

その効果は、未処理菌体を用いる方法(特願昭53−3
5906号特開昭54一128394号公報)に比べ(
1)特定の酵素系以外の有害酵素が失活しているため選
択性が向上することが挙げられる。(例えば、L−グル
タミン酸をエシエリヒヤ・コリの生菌体を用いて測定す
る場合、L−グルタミンが共存するとグルタミナーゼも
共.存するためL−グルタミン酸が生成され、L−グル
タミン酸のみを測定することはできないが、アセトン処
理菌体を用いるとグルタミナーゼが失活するのでL−グ
ルタミンに応答しなくなる。)その他、(2)処理菌体
の場合、菌体膜の性質が改変さ.れ、菌体内外での基質
又は反応性成物の出入が容易になるため測定時間が短か
くなること、さらに、(3)酵素より簡単につくられ、
菌体内の酵素活性の安定性もよく、保存性が改善される
ことが重要な特徴として挙げられる。先行発明のL−グ
ルタミン酸、L−リジンの定量法に関する発明に開示し
た未処理菌体を用いる微生物電極は選択性、保存性、菌
体の種類によつては再現性に問題がある等の問題点があ
つたが、本発明によつて解決された。
The effect can be obtained by using untreated bacterial cells (Japanese Patent Application No. 53-3
5906 (Japanese Unexamined Patent Publication No. 54-128394).
1) Selectivity is improved because harmful enzymes other than the specific enzyme system are inactivated. (For example, when measuring L-glutamic acid using live cells of Escherichia coli, if L-glutamine coexists, glutaminase also coexists, so L-glutamic acid is produced, making it impossible to measure only L-glutamic acid. However, when acetone-treated cells are used, glutaminase is inactivated, so they no longer respond to L-glutamine.) In addition, (2) in the case of treated cells, the properties of the cell membrane are altered. (3) It is easier to produce than enzymes;
Important features include good stability of enzyme activity within the bacterial cells and improved storage stability. The microbial electrode using untreated bacterial cells disclosed in the prior invention relating to the method for quantifying L-glutamic acid and L-lysine has problems such as problems in selectivity, storage stability, and reproducibility depending on the type of bacterial cells. However, this problem was solved by the present invention.

以下本発明を説明する。本発明で使用する微生物は、例
えばL−グルタミン酸を定量するには、L−グルタミン
酸脱炭酸酵素(GlutamatedecarbOxy
Iase)活性の強い菌株として、例えば、エシエリヒ
ア コリ(EscherichiacOll)ATCC
873λシトロバクター フロインデイ(CitrOb
acterfreundii)ATCClO787、ク
ロストリジウム・ウエルシユ・(ClOStridil
]Nlwelchii)ATCCl3l2屯ロドトルラ
●グルチニス(RhOdOtOrlJlaglutin
is)IFOO4l詩が用いられ、L−リジンを定量す
るにはL−リジン脱炭酸酵素(L上Ysinedeca
rbOxylase)活性の強い菌株として、例えばエ
シエリヒア●コリ(EscherichiacOll)
ATCC23226、バクテリウム キヤダベリス(B
acteriumcadaveris)ATCC976
ヘストレプトコツカス フアエカリス(StreptO
cOccusfaecalls)ATCCl2984、
シュードモナス●サツカロフイア(PSeUdOmOr
klSsaccharOphia)ATCCl5946
、バチルス●ズブチリス(Bacillussubtl
lls)ATCCl5O37、ミクソコッカス●ヴイレ
スセンス(MyxOcOccusvirescerls
)ATCC252O3、クロストリジウム ウエルシユ
(ClOstridiunlwelchii)ATCC
l3l27kラクトバチルス◆カセイ(LactOba
cilluscasei)ATCC7469、及びアス
ペルギルス ニゲル(A)Perglllusnige
r)ATCC6278、等が用いられ、また、L−フェ
ニルアラニンを定量するにはL−フェニルアラニン脱炭
酸酵素(L一Phenylalaninedecarb
Oxylase)活性の強い菌株として、例えばストレ
プトコツカス・フアエカリス(StrePtOCOCC
LlSfaecalis)ATCC8O4埒が用いられ
る。
The present invention will be explained below. The microorganism used in the present invention is, for example, used to quantify L-glutamic acid.
As a strain with strong Iase) activity, for example, Escherichia coli ATCC
873λ Citrobacter freundei (CitrOb
ATCClO787, Clostridium welsh (ClOStridil)
]Nlwelchii) ATCCl3l2tun Rhodotorula●glutinis (RhOdOtOrlJlaglutin
is) IFOO4L is used and L-lysine decarboxylase (L-lysine decarboxylase) is used to quantify L-lysine.
As a strain with strong rbOxylase activity, for example, Escherichia coli (Escherichia coli)
ATCC23226, Bacterium chyadabellis (B
acterium cadaveris) ATCC976
Hestreptococcus huaecalis (StreptO
cOccusfaecalls) ATCCl2984,
Pseudomonas ●Satsukarofia (PSeUdOmOr
klSsaccharOphia) ATCCl5946
, Bacillus subtilis
lls) ATCCl5O37, Myxococcus virescerls
) ATCC252O3, Clostridium welchii ATCC
l3l27k Lactobacillus casei (LactOba
cillus casei) ATCC7469, and Aspergillus niger (A) Pergllusnige.
r) ATCC6278, etc. are used, and L-phenylalanine decarboxylase (L-phenylalanine decarboxylase) is used to quantify L-phenylalanine.
Examples of strains with strong oxylase activity include Streptococcus faecalis (StrePtOCOCC).
LlSfaecalis) ATCC8O4 is used.

また、L−アルギニンを定量するためにはL−アルギニ
ン脱炭酸酵素(L−AygininedecarbOx
ylase)活性の強い菌株として、例えばエシエリヒ
ア・コリ(EscherichiacOll)ATCC
lO787等がそれぞれ用いられ、さらに、ここに記載
していないアミノ酸についても該当する脱炭酸酵素の存
在する微生物を用いてそれぞれ定量することが可能であ
る。
In addition, in order to quantify L-arginine, L-arginine decarboxylase (L-Ayginine decarbOx
As a strain with strong ylase activity, for example, Escherichia coli ATCC
IO787, etc. are used, and amino acids not listed here can also be quantified using microorganisms in which the corresponding decarboxylases exist.

本発明で使用する活性処理菌体の調製はそれぞれの菌株
に応じた通常の栄養培地で培養し、純水で2〜3回洗滌
した後、例えばアセトン、エタノール、メタノール、イ
ソプロパノール、n−プロパノール、トルエン、エーテ
ル等の有機溶媒および/またはセチルトリメチルアンモ
ニウム●ブロマイド(Cetyltrimethyla
mmOnillmbrOmide例えば「LissOl
amirleA」(ICI商標))、セチルピリジニウ
ムプロマィド(CetylpyridiniLlmbr
Omide)例えば「FixanOlC」(ICI商標
))、セチルピリジニウムクロラィド(Cetylpy
ridiniumchlOride)等の陽イオン界面
活性剤、ナトリウムー高級アルコール・サルフオート、
例えば「シルピツトSP」(一方社油脂工業K.K.商
標)等の陰イオン界面活性剤、ポリオキシエチレン●ア
ルキル・エーテル(POlyOxyethylene●
Alkyl●Ether)例えば「サンモリン1月(三
洋油脂工業K.K.商標)、ポリオキシエチレン●アル
キル●フェノール●エーテル(POlyOxyeUly
lene●Alkyl◆PherlOI●Ether)
例えば「スコアロール」(花王石鹸K.K.商標)等の
非イオン界面活性剤ならびに、例えばアルキル・ベタイ
ン(Alkylbetairle)等の両性界面活性剤
等の浸透性の強い界面活性剤でL−アミノ酸脱炭酸酵素
活性を阻害しない界面活性剤を用いて浸漬処理した後、
低温にて乾燥粉末とする。
The activated bacterial cells used in the present invention are prepared by culturing them in a normal nutrient medium suitable for each strain, washing them 2 to 3 times with pure water, and then using acetone, ethanol, methanol, isopropanol, n-propanol, etc. Organic solvents such as toluene and ether and/or cetyltrimethylammonium bromide (Cetyltrimethylammonium bromide)
mmOnillmbrOmide For example, “LissOl
amirleA” (ICI trademark)), cetylpyridinium bromide (CetylpyridiniLlmbr)
Omide), e.g. "FixanOlC" (ICI trademark), cetylpyridinium chloride (Cetylpyridinium chloride)
cationic surfactants such as (ridiniumchlOride), sodium-higher alcohols and sulfates,
For example, anionic surfactants such as "Silpit SP" (trademark of Ipposha Yushi Kogyo K.K.), polyoxyethylene alkyl ether (POlyOxyethylene
Alkyl●Ether) For example, Sanmorin January (Sanyo Yushi Kogyo K.K. trademark), polyoxyethylene●alkyl●phenol●ether (POlyOxyeUly
lene●Alkyl◆PherlOI●Ether)
For example, nonionic surfactants such as "Scoreol" (Kao Soap K.K. trademark) and highly permeable surfactants such as amphoteric surfactants such as alkyl betaine can be used to remove L-amino acids. After immersion treatment using a surfactant that does not inhibit carbonic enzyme activity,
Dry powder at low temperature.

この粉末状の活性処理菌体はこれを冷凍庫内て保存すれ
は長期間(2年以上)活性が維持されるこれらの乾燥粉
末中には1Cf個/y程度の生菌を確認することができ
る。本発明の微生物電極は第1図に示すように通常の市
販の溶存炭酸ガス電極の隔膜上に取りつけたもので、上
記微生物の活性処理菌体粉末を水に溶解してペースト状
にしたもの2を、ミリボア・フィルター戸紙片、ナイロ
ン・メッシュ等の担体3に塗布し、これを例えばセロフ
ァン膜等のような微生物を透過しない微細孔を有する膜
4て覆つて第1図の如く隔膜1上に取り付けることによ
つて容易に作成することができる。
If this powdered activated bacteria is stored in the freezer, its activity will be maintained for a long time (2 years or more).About 1 Cf/y of viable bacteria can be confirmed in these dry powders. . The microorganism electrode of the present invention is attached to the diaphragm of a conventional commercially available dissolved carbon dioxide electrode, as shown in Fig. 1, and is made by dissolving activated-treated bacterial cell powder of the above microorganism in water to form a paste. is coated on a carrier 3 such as a millibore filter paper piece or a nylon mesh, and covered with a membrane 4 having micro-pores that are impermeable to microorganisms, such as a cellophane membrane, and placed on the diaphragm 1 as shown in FIG. It can be easily created by attaching it.

また上記のように粉末化した菌体を例えばコラーゲンま
たはアクリルアミド・ゲル等で固定化した固定化微生物
を用いても同様に作成することができる。ここに微生物
の菌体層2を掩うための微細孔を有する薄膜4としては
、本発明で用いる微生物の菌体を通過せず、炭酸ガス等
を自由に通過させる薄膜4であれば何でも良く、例えば
ミリボアフィルター等の多孔性膜、セロファン、動物性
半透膜等の透析膜等の上記の条件を満足するものであれ
ばすべて使用することができる。
Furthermore, it can be similarly prepared using immobilized microorganisms obtained by immobilizing microbial cells powdered as described above with collagen or acrylamide gel, for example. As the thin film 4 having micropores for covering the bacterial cell layer 2 of the microorganisms, any thin film 4 may be used as long as it does not pass through the bacterial cells of the microorganisms used in the present invention but allows carbon dioxide gas etc. to freely pass therethrough. For example, any membrane that satisfies the above conditions can be used, such as a porous membrane such as a millibore filter, a dialysis membrane such as cellophane, or an animal semipermeable membrane.

尚固定化微生物膜を用いた場合は上記の薄膜4は不要で
ある。第1図に於て、1は溶存炭酸ガス電極の隔膜(シ
リコーン膜)、2は微生物層、3は担体、4は透析膜(
セロファン膜)、5はPH電極、6は内部液(NaHC
O−NaCl混液)、7は微生物電極全体を示す。この
微生物電極を酸素の存在下て発酵液などの被験液に接触
させると、隔膜近傍の微生物は被験液中の栄養物(糖、
アミノ酸)を資化及び/または呼吸し多量の炭酸ガスを
放出するため、L−グルタミン酸、L−リジン等のアミ
ノ酸の定量は不可能である。
Note that when an immobilized microbial membrane is used, the above-mentioned thin film 4 is not necessary. In Figure 1, 1 is the diaphragm (silicone membrane) of the dissolved carbon dioxide electrode, 2 is the microorganism layer, 3 is the carrier, and 4 is the dialysis membrane (
cellophane membrane), 5 is the PH electrode, 6 is the internal liquid (NaHC
7 indicates the entire microbial electrode. When this microbial electrode is brought into contact with a test liquid such as a fermentation liquid in the presence of oxygen, the microorganisms near the diaphragm absorb nutrients (sugars, sugars, etc.) in the test liquid.
It is impossible to quantify amino acids such as L-glutamic acid and L-lysine because they assimilate and/or respire amino acids (amino acids) and release a large amount of carbon dioxide gas.

これに対して、本発明者等は微生物電極と被験液を嫌気
的条件下で接触させれば、上記の微生物の生命活動によ
る炭酸ガスの生成が完全に抑制され、従つて(1)式の
反応が定量的に進行するということを発見し、これに基
づいて本発明を完成したものであることは先に述べたと
おりである。第2図に示す定量システムのセットは本発
明の実施態様の1つである、第2図の7は微生物電極、
9はフローセル、8,8″はゴムバッキング、10はN
2ガス吹込口、11はバッファー液注入口、12はサン
プル注入口、13はPH計又はイオンメーター、14は
レコーダを夫々示す。
On the other hand, the present inventors have found that if the microbial electrode and the test solution are brought into contact with each other under anaerobic conditions, the production of carbon dioxide gas due to the life activity of the microorganisms mentioned above is completely suppressed, and therefore, the equation (1) is satisfied. As mentioned above, the present invention was completed based on the discovery that the reaction proceeds quantitatively. The set of quantitative system shown in FIG. 2 is one of the embodiments of the present invention. 7 in FIG. 2 is a microbial electrode;
9 is a flow cell, 8,8″ is a rubber backing, 10 is N
2 gas inlets, 11 a buffer solution inlet, 12 a sample inlet, 13 a PH meter or ion meter, and 14 a recorder.

この第2図のシステムに従つて本発明の測定法を以下に
説明する。まず最初にバッファー注入口11から一定の
流量で、吹込口10からN2ガスを吹込みながらフロー
セル9内に流し、電極の起電力をレコーダー14に記録
する。
The measuring method of the present invention will be explained below according to the system shown in FIG. First, a constant flow rate from the buffer inlet 11 is caused to flow into the flow cell 9 while blowing N2 gas through the inlet 10, and the electromotive force of the electrode is recorded on the recorder 14.

サンプルを12から注入時間0.5〜5分間で1〜30
分間隔を置いて順次注入する。このサンプル液はバッフ
ァー液で適当に希釈されフローセル9内に達する。フロ
ーセル9内ではサンプル中の該当L−アミノ酸が微生物
の酵素により(1)式の反応により分解されCO2ガス
が発生する。このCO2ガスは隔膜1を通つて内部液の
PHを変化させる。PH変化はPH電極5を経てPH計
”又はイオンメーター13によつて測定され、レコーダ
ー14に記録される。=ニ―=―富■=ニ 見られ、ネルンストの式(■)が成立する。
Inject samples from 12 to 1 to 30 with an injection time of 0.5 to 5 minutes.
Inject sequentially at minute intervals. This sample liquid is appropriately diluted with a buffer solution and reaches the flow cell 9. In the flow cell 9, the corresponding L-amino acid in the sample is decomposed by the enzyme of the microorganism by the reaction of formula (1), and CO2 gas is generated. This CO2 gas passes through the diaphragm 1 and changes the pH of the internal liquid. The PH change is measured by the PH meter or ion meter 13 via the PH electrode 5, and recorded on the recorder 14. = Ni = - Wealth ■ = Ni, and the Nernst equation (■) is established.

式中、EOは非対称電位差、Rはガス定数、Tは絶対温
度、Fはファラデー定数を示す。この(■)式を用いて
被験液の基質濃度を求めることができる。
In the formula, EO is the asymmetric potential difference, R is the gas constant, T is the absolute temperature, and F is the Faraday constant. Using this formula (■), the substrate concentration of the test solution can be determined.

測定時の条件については、測定のPHは3.5〜6.\
温度は20〜40℃の範囲が良く、サンプルと電極との
接触時間は0.5〜5分間で充分であり、通常3分てほ
ぼ飽和値に達する。
Regarding the conditions during measurement, the pH of the measurement was 3.5 to 6. \
The temperature is preferably in the range of 20 to 40°C, and the contact time between the sample and the electrode is 0.5 to 5 minutes, and usually reaches the saturation value in 3 minutes.

基質の測定濃度範囲は10−1〜10−4Mであり、広
い範囲の測定が可能で、E(!1.10gCの直線性は
非常に良好である。使用するバッファー液としては、ク
エン酸、フマル酸、コハク酸等の有機酸バッファー、又
はピリジンー塩酸バッファーが用いられる。特にNaC
lとKH2PO4(それぞれ0.5y/dl)及びピリ
ドキサ−ルー5″−リん酸(0.1V/1)を含有した
ピリジンー塩酸バッファーは望ましいものである。
ォ第2図
では嫌気的条件にするためN2ガスを用いているが、別
にN2ガスに限定されず、要は溶存酸素が共存しなけれ
ば良いのであつて、他の不活性ガスで置換しても良く、
又溶存酸素を含まないキャリアーを用いても良い。以上
の条件で使用した場合、連続使用で3週間以上活性が持
続される。本発明の方法は微生物の活性処理菌体を用い
ているため、純酵素を用いる先行技術に比較して定量せ
んとするL−アミノ酸以外のアミノ酸、有機酸、糖等の
不純物の影響を受け易いと考えられるが、例えばL−ア
ミノ酸としてL−グルタミン酸を定量する場合、使用菌
株としてエシエリヒア・コリATCC8739のアセト
ン及びエチルエーテル処理した活性処理菌体を用いてP
H4.4Oで30℃の温度で測定して見たところ、次の
第1表に示すように、L−グルタミン酸を100%とし
た場合、5%以上の起電力を示すものは見当らない。
The measurement concentration range of the substrate is 10-1 to 10-4M, making it possible to measure a wide range, and the linearity of E(!1.10gC is very good. The buffer solution used is citric acid, Organic acid buffers such as fumaric acid and succinic acid, or pyridine-hydrochloric acid buffers are used.In particular, NaC
A pyridine-hydrochloric acid buffer containing KH2PO4 (0.5 y/dl each) and pyridoxal-5''-phosphate (0.1 V/1) is preferred.
In Figure 2, N2 gas is used to create an anaerobic condition, but it is not limited to N2 gas, and in short, it is fine as long as dissolved oxygen does not coexist, and it can be replaced with another inert gas. Also good,
Further, a carrier containing no dissolved oxygen may be used. When used under the above conditions, the activity is maintained for more than 3 weeks with continuous use. Since the method of the present invention uses actively treated microbial cells, it is more susceptible to impurities such as amino acids other than L-amino acids, organic acids, sugars, etc. that are to be quantified compared to prior art techniques that use pure enzymes. However, for example, when quantifying L-glutamic acid as an L-amino acid, P.
When measured using H4.4O at a temperature of 30 DEG C., as shown in Table 1 below, when L-glutamic acid is taken as 100%, no electromotive force was found that was 5% or more.

第1表に示されていない、定量せんとするL−グルタミ
ン酸以外の他のL−アミノ酸、すなわちL−メチオニン
、L−ヒスチジン、L−リジン、L−プロリン、L−セ
リン、L−イソロイシン、L−フェニルアラニン、L−
ロイシン、L−アスパラギン、L−バリン、L−スレオ
ニン、L−オルニチン、L−シトルリン及びりんご酸、
ピルビン酸、グルコース、尿素等は全く影響が見られな
かつた。
Other L-amino acids other than L-glutamic acid to be determined that are not shown in Table 1, namely L-methionine, L-histidine, L-lysine, L-proline, L-serine, L-isoleucine, L- -Phenylalanine, L-
Leucine, L-asparagine, L-valine, L-threonine, L-ornithine, L-citrulline and malic acid,
No effect was observed on pyruvic acid, glucose, urea, etc.

これに対して溶剤や界面活性剤等で処理しない活性菌体
を用いた場合の選択性はL−グルタミン酸100%に対
し、L−グルタミンで108%で27倍選択性が上つて
いた。
On the other hand, when active bacterial cells not treated with a solvent or a surfactant were used, the selectivity was 108% for L-glutamic acid compared to 100% for L-glutamic acid, which was a 27-fold increase in selectivity.

又未処理菌体では活性が全く表われす測定不可能な場合
でも溶剤および/または界面活性剤で処理することによ
り活性化され、定量可能となる例が、例えば、シトロバ
クター・フロインデイ(CitrObacterfre
urldii)ATCClO787の場合トルエン未処
理の菌体では酵素活性がL−グルタミン酸について殆ん
ど発現されずL−グルタミン酸の測定が不可能であるの
にトルエン処理菌体では可能となつた等の例がある。
In addition, even if untreated bacterial cells exhibit no activity and cannot be measured, they can be activated and quantified by treatment with a solvent and/or surfactant, such as Citrobacter freundei (CitrObacter freundei).
urldii) In the case of ATCClO787, enzyme activity was hardly expressed for L-glutamic acid in toluene-untreated bacterial cells, making it impossible to measure L-glutamic acid, but it was possible to measure L-glutamic acid in toluene-treated bacterial cells. be.

又、同じエシエリヒア●コリを用いるワールブルグ検圧
法ではL−グルタミン酸100%に対してL−チロシン
45%、L−アルギニン80%、L−トリプトファン2
5%、りんご酸40%とかなり影響を受ける。
In addition, in the Warburg manometry method using the same Escherichia coli, 45% L-tyrosine, 80% L-arginine, and 2 L-tryptophan were added to 100% L-glutamic acid.
5% and malic acid 40%.

又かぼちや由来の酵素を用いた場合尿素の影響が著しい
ため窒素源として尿素を用いるLーグルタミン酸発酵そ
の他のL−アミノ酸発酵プロスの測定が不可能であり、
これに対して本発明の微生物電極は選択性においても本
発明の方法が非常に優れていると見ることができる。上
述の如く、本発明の方法は従来の酵素法または活性菌体
を使用する方法に比較して(1)選択性が良く、(2)
菌体膜の改変、(3)菌体源の保存性等の点て優れた方
法であり、従来法より簡便でかつ正確に、目的とするL
−アミノ酸を定量する方法を提供するものである。
In addition, when enzymes derived from pumpkin are used, the influence of urea is significant, making it impossible to measure L-glutamic acid fermentation and other L-amino acid fermentation processes that use urea as a nitrogen source.
On the other hand, it can be seen that the method of the present invention is extremely superior in terms of selectivity of the microbial electrode of the present invention. As mentioned above, the method of the present invention has (1) better selectivity and (2) better selectivity than conventional enzyme methods or methods using active bacterial cells.
This method is superior in terms of modification of the bacterial cell membrane, (3) preservation of the bacterial cell source, etc., and is easier and more accurate than conventional methods.
- Provides a method for quantifying amino acids.

実施例中組成を示す%は特記なき限りf/Dt%を示す
In the examples, percentages indicating compositions indicate f/Dt% unless otherwise specified.

実施例1 エシエリヒア●コリ(EscherichiacOll
)ATCC8739を第2表の培地を用いて30℃でフ
ラスコ振盪培養した。
Example 1 Escherichia coli
) ATCC8739 was cultured in a shaking flask at 30°C using the medium shown in Table 2.

2CH1間培養後、培養液50m1を遠心分離して、湿
菌体を得た。
After culturing for 2 CH1, 50 ml of the culture solution was centrifuged to obtain wet bacterial cells.

これを0.1M..KC1溶液で2回洗滌後、5m1の
水に懸濁、アセトンを室温で50m1滴下、5〜10分
攪拌し、冷却遠沈した。これを、アセトンで2回、エー
テルで1回洗滌し、真空デシケ−ター中で乾燥して、0
.6yのアセトン・エーテル処理菌体を得た。上記の1
〜2m9のアセトン・エーテル処理菌体を少量の水に溶
かしペースト状とし、径107wtのナイロン・メッシ
ュに塗りつけ、これをセロファン膜4を用いて、第1図
のように溶存炭酸ガス電極(E5O3曜,ラジオメータ
ー社,デンマーク)のシリコーン膜1上に取りつけた。
Add this to 0.1M. .. After washing twice with KC1 solution, it was suspended in 5 ml of water, 50 ml of acetone was added dropwise at room temperature, stirred for 5 to 10 minutes, and centrifuged under cooling. This was washed twice with acetone and once with ether, dried in a vacuum desiccator, and
.. 6y acetone/ether treated bacterial cells were obtained. 1 above
Dissolve ~2 m9 of acetone/ether-treated bacterial cells in a small amount of water to make a paste, spread it on a nylon mesh with a diameter of 107 wt, and use a cellophane membrane 4 to connect it to a dissolved carbon dioxide electrode (E5O3 diode) as shown in Figure 1. , Radiometer, Denmark).

この微生物電極を用いて、第2図に示すフローセル9(
容量0.5mt)にゴム●バッキング8,8″を介して
挿入し、第2図のような測定システムを組立てた。
Using this microbial electrode, a flow cell 9 (
A measurement system as shown in Fig. 2 was assembled by inserting it into a tube with a capacity of 0.5 mt through a rubber backing 8.8''.

バッファー液としては、PH4.4へ0.1Mピリジン
ー塩酸バッファー(0.5y/d1のNaCl及びKH
2PO4を含む)を第2図の11から57rL1/Mi
nの流量で流入させ、10からN2ガスを0.21/M
inの流量で吹込んでフローセル9内を通し、電極7は
、その起電力を測定するためPH計13、さらに記録計
14に接続した。
As a buffer solution, 0.1M pyridine-hydrochloric acid buffer (0.5y/d1 NaCl and KH
2PO4) from 11 to 57rL1/Mi in Figure 2.
N2 gas is introduced at a flow rate of 10 to 0.21/M.
The electrode 7 was connected to a PH meter 13 and a recorder 14 to measure the electromotive force.

測定中、フローセル9内の温度は30℃に保つた。サン
プルは、4800ppmのL−グルタミン酸水溶液及び
その希釈液を順次1Tnt/Minの速度で、注入時間
3分で12から注入した。このサンプルは、バッファー
により希釈され、フローセル9に流入すると同時に、微
生物電極7は指示をしはじめ、3分後には指示が飽和レ
ベルに達し、第3図のようなピークが記録された。第3
図中、縦軸は、電極の起電力MV、横軸は時間を示す。
第3図中の各ピークの高さとフローセル中のグルタミン
酸濃度10gCの間には第4図の関係が見られ、その傾
き58rnV/PCcHは式(2)におけるネルンスト
項の係数にほとんど一致した。(理論値:60.16n
1V30℃)一方、フレヒバクテリウム・ラクトフエル
メンタムATCCl3869を第3表の培地を用いて3
0℃で通気攪拌培養を行なつた。
During the measurement, the temperature inside the flow cell 9 was maintained at 30°C. For the sample, a 4800 ppm L-glutamic acid aqueous solution and its diluted solution were sequentially injected from 12 at a rate of 1 Tnt/Min for an injection time of 3 minutes. As this sample was diluted with a buffer and flowed into the flow cell 9, the microbial electrode 7 began to give an indication, and after 3 minutes the indication reached a saturation level, and a peak as shown in FIG. 3 was recorded. Third
In the figure, the vertical axis shows the electromotive force MV of the electrode, and the horizontal axis shows time.
The relationship shown in FIG. 4 was observed between the height of each peak in FIG. 3 and the glutamic acid concentration of 10 gC in the flow cell, and its slope of 58rnV/PCcH almost matched the coefficient of the Nernst term in equation (2). (Theoretical value: 60.16n
1 V at 30°C) On the other hand, Frechbacterium lactofermentum ATCCl3869 was incubated at
Aerated agitation culture was performed at 0°C.

得られた培養液を2@希釈しサンプルAとし、これに試
薬のL−グルタミン酸を既知量だけ添加し、サンプルB
,C,Dを調製した。
The obtained culture solution was diluted 2@ to prepare sample A, and a known amount of L-glutamic acid as a reagent was added to this to prepare sample B.
, C, and D were prepared.

これらのサンプルを第2図のシステムに従い、ピーク値
を読み取り標準濃度液で作つた校正直線からL−グルタ
ミン酸の濃度を求めた。
The peak values of these samples were read according to the system shown in FIG. 2, and the concentration of L-glutamic acid was determined from a calibration line prepared using a standard concentration solution.

その結果lは、第4表に示す如くであり、各サンプルに
ついて従来のオートアナライザー法(カボチヤ酵素を使
用)で測定した値と良く一致していた。実施例2 クロストリジウム●ウエルシユ(CIOstridiu
mwelchll)ATCCl3l24を3%力ティン
のトリプシン分解物、2%グルコースに肉片を加えた培
養液で、水素ガスを通して30℃、2叫間フラスコ振盪
培養した。
The results 1 were as shown in Table 4, and were in good agreement with the values measured by the conventional autoanalyzer method (using pumpkin enzyme) for each sample. Example 2 Clostridium Welsh (CIOstridium)
Mwelchll) ATCCl3l24 was cultured in a culture solution containing 3% trypsin-digested triglyceride, 2% glucose, and meat pieces at 30° C. for 2 cycles with shaking in a flask through hydrogen gas.

培養液50m1を実施例1と同様の操作で、0.3f1
のアセトン・エーテル処理菌体を得た後、微生物電極を
構成し、実施例1と同様にして得たL−グルタミン酸発
酵液の経時的なサンプルトルエン未処理の菌体では、酵
素活性がほとんど発現されずL−グルタミン酸の測定は
できなかつた。実施例4 ロドトルラ◆グルチニス(RhOdOtOrula*A
,B,C,Dについてグルタミン酸の濃度を求)めた。
Using 50 ml of culture solution in the same manner as in Example 1, 0.3 f1
After obtaining acetone/ether-treated bacterial cells, a microbial electrode was constructed, and a sample of the L-glutamic acid fermentation liquid obtained in the same manner as in Example 1 was obtained over time.In the toluene-untreated bacterial cells, almost no enzyme activity was expressed. Therefore, it was not possible to measure L-glutamic acid. Example 4 Rhodotorula◆glutinis (RhOdOtOrula*A
, B, C, and D).

その結果は、第5表に示す如くで、各サンラ0ルについ
て、従来のカボチヤ酵素を用いたオートアナライザーー
法で測定した値と良く一致していた。アセトン・エーテ
ル処理をしていない菌体を用いた場合には、いずれも従
来法のオートアナライザー法に比べ相当高い値を示し他
のL−アミノ酸に対する選択性の点で問題があつた。実
施例3 シトロバクター●フロインデイ(CitrObacte
rfreurldll)ATCClO787を、実施例
1と同条件で第2表に示す培地組成を用いて培養した。
The results are shown in Table 5, and were in good agreement with the values measured by the conventional autoanalyzer method using pumpkin enzyme for each Sanra®. When microbial cells that had not been treated with acetone/ether were used, the values were considerably higher than those obtained by the conventional autoanalyzer method, and there was a problem in terms of selectivity for other L-amino acids. Example 3 Citrobacter Freundei
rfreurldll) ATCClO787 was cultured under the same conditions as in Example 1 using the medium composition shown in Table 2.

培養液50m1を遠心分離して湿菌体を得、0.1M.
KC1溶液!で2回洗滌後、5m1の水に懸濁、トルエ
ンを室温で5mt滴下、10〜2吟攪拌し、冷却遠沈し
た。これを真空デシケ−ター中で乾燥して0.5yのト
ルエン処理菌体を得、微生物電極を構成した。実施例2
と同じサンプルのL−グルタミン酸発酵液についてL−
グルタミン酸濃を求め、第6表を得た。培養液50m1
を遠心分離して得た湿菌体を0.1M..KC1溶液で
2回洗滌後、20m9のセチルトリメチルーアンモニウ
ム ブロマイド(Cetyltrimethyl−Am
mOniumbrOmide)を含む水溶液50mtに
懸濁し、5〜10分間攪拌し、さらに、実施例1と同様
のアセトン・エーテル処理をして0.6qの菌体を得た
Centrifuging 50 ml of the culture solution to obtain wet bacterial cells, 0.1 M.
KC1 solution! After washing twice, the suspension was suspended in 5 ml of water, 5 ml of toluene was added dropwise at room temperature, stirred for 10 to 2 minutes, and centrifuged under cooling. This was dried in a vacuum desiccator to obtain 0.5 y of toluene-treated bacterial cells, which constituted a microbial electrode. Example 2
Regarding L-glutamic acid fermentation liquid of the same sample as L-
The glutamic acid concentration was determined and Table 6 was obtained. Culture solution 50ml
The wet bacterial cells obtained by centrifugation were diluted with 0.1 M. .. After washing twice with KC1 solution, 20 m9 of cetyltrimethyl-ammonium bromide (Cetyltrimethyl-Ammonium bromide) was added.
The cells were suspended in 50 mt of an aqueous solution containing mOniumbrOmide), stirred for 5 to 10 minutes, and then treated with acetone and ether in the same manner as in Example 1 to obtain 0.6 q of bacterial cells.

これを用いて微生物電極を構成し、実施例2と同じサン
プルのL−グルタミン酸発酵液についてグルタミン酸濃
度を求めたところ、従来のカボチヤ酵素を用いたオート
アナライザー法で測定した値と良く一致していた。この
場合にも実施例3と同様、界面活性剤未処理の菌体では
酵素活性がほとんど発現されず、L−グルタミン酸の定
量は不可能であつた。実施例5 ラクトバチルス●カゼイ(LactObacillus
casei)ATCC7469<試験NO.l)を脱脂
粉乳10%、L−リジン塩0.5%、ピリドキサール1
00μダ/eからなる培養液で、ストレプトコツカス・
フエカリ ス (Str′EptOcOccusfae
calls)ATCCl2984(NO.2)、シュー
ドモナス・サツカロフイア(PseudOmOnass
accharOphia) ATCCl5946(NO
.3)、バチルス●ズブチリス(Bacillussu
btllls)ATCCl5O37(NO.4)、ミク
ソコッカス●ヴイレスセンス(MyxOcOccusv
irescens)ATCC252O3(NO.5)を
肉工キズ1%、ポリペプトン1%、NaClO.5%、
L−リジン塩酸塩0.5%、ピリドキサール100μf
/eからなる培養液で、さらにアスペルギルス●ニゲル
(AspergiIlusniger)ATCC627
8(NO.6)をグルコース2%、KII2PO4O.
l%、炭酸石灰添加こうじ汁の培地でそれぞれ振盪培養
し、2橋間後、各培養液50m1を遠心分離して湿菌体
を得、それぞれ0.1M,.KCI溶液で2回洗滌後5
mtの水に懸濁してアセトンを室温で5m1滴下し実施
例1と同様の方法によつてそれぞれ0.5〜0.6yの
アセトン・エーテル処理菌体を得た。
A microbial electrode was constructed using this, and the glutamic acid concentration was determined for the L-glutamic acid fermentation liquid of the same sample as in Example 2, and it was found to be in good agreement with the value measured by the conventional autoanalyzer method using pumpkin enzyme. . In this case, as in Example 3, almost no enzyme activity was expressed in the bacterial cells that were not treated with the surfactant, making it impossible to quantify L-glutamic acid. Example 5 Lactobacillus casei
casei) ATCC7469<Test NO. l) with 10% skim milk powder, 0.5% L-lysine salt, and 1 % pyridoxal.
In a culture solution consisting of 00 μda/e, Streptococcus
Str'EptOcOccusfae
calls) ATCCl2984 (NO.2), Pseudomonas satsukalovia (PseudOmOnass
accharOphia) ATCCl5946 (NO
.. 3), Bacillus subtilis
btllls) ATCCl5O37 (NO.4), Myxococcus virescens (MyxOcOccusv
irescens) ATCC252O3 (NO.5) with 1% meat scratches, 1% polypeptone, NaClO. 5%,
L-lysine hydrochloride 0.5%, pyridoxal 100μf
In addition, Aspergillus niger (Aspergillus niger) ATCC627
8 (NO.6) with 2% glucose, KII2PO4O.
1% and koji juice supplemented with lime carbonate.After 2 hours, 50ml of each culture solution was centrifuged to obtain wet bacterial cells, each containing 0.1M, . After washing twice with KCI solution 5
The suspension was suspended in mt of water, and 5 ml of acetone was added dropwise at room temperature, followed by the same method as in Example 1 to obtain 0.5 to 0.6 y of acetone/ether treated microbial cells, respectively.

(尚この粉末を栄養培地で培養し1Cf個/f程度の生
菌を確認した。)この溶液で処理した活性菌体を用いて
実施例1の方法て微生物電極を構成し、実施例2と同様
のサンプルのL−リジン発酵液A,B,CについてL−
リジン濃度を定量したところ、第8表のごとく従来法の
酸性ニンヒドリン法の値とよく一致した。実施例6 ストレプトコツカス フアエカリス (StrePtOCOCCLlSfaecalls)A
TCCl2984を力ティンのトリプシン分解物3%、
グルコース1%、酵母自己分解物0.1%の培養液で3
rc115時間培養し、実施例1と同様な方法で処理し
0.5yの処理菌体を得、これを用いて微生物電極を構
成し、実施例2と同様の試料のL−グルタミン酸発酵液
に異なる量のL−フェニルアラニンを添加し、それぞれ
試料A,B,Cとし液体クロマトグラフィー法の測定値
と比較し、次の第9表を得た。
(This powder was cultured in a nutrient medium and viable bacteria of about 1 Cf/f was confirmed.) A microbial electrode was constructed using the method of Example 1 using the active bacteria treated with this solution, and the method of Example 2 was used. Regarding L-lysine fermentation liquids A, B, and C of similar samples, L-
When the lysine concentration was quantified, as shown in Table 8, it agreed well with the value obtained using the conventional acidic ninhydrin method. Example 6 StrePtOCOCCLlSfaecalls A
TCCl2984 was mixed with 3% trypsin-digested product of Tritin,
3 with a culture solution containing 1% glucose and 0.1% yeast autolysate.
rc Cultured for 115 hours and treated in the same manner as in Example 1 to obtain 0.5y of treated microbial cells, which were used to construct a microbial electrode. The following Table 9 was obtained by adding a certain amount of L-phenylalanine to samples A, B, and C, respectively, and comparing the measured values with the liquid chromatography method.

ただしバッファー液は実施例1と同様としPHを5.0
に設定したものを用いた。その結果両者はよく一致して
いた。また未処理菌体が冷蔵庫保存で1ケ月間しか活性
が持続しなかつたのに対し、この処理菌体は6ケ月間、
活性を維持し得た。実施例7 エシエリヒア●コリ(EscherichiacOll
)ATCClO787を実施例6と同様に培養し、実施
例1の方法で処理して0.3yの処理菌体を得、これを
用いて微生物電極を構成し、実施例2と同様のL−グル
タミン酸発酵液に異なる量のL−アルギニンを添加して
、それぞれ試料A,B,Cとし、本発明の方法で定量し
、一方液体クロマトグラフィーで定量してその結果を対
比して第1咳に示すが、表に示すように両者はよく一致
した。
However, the buffer solution was the same as in Example 1, and the pH was 5.0.
The settings were used. The results showed good agreement between the two. Also, while the untreated bacteria remained active for only 1 month when stored in the refrigerator, the treated bacteria remained active for 6 months.
The activity was maintained. Example 7 Escherichia coli
) ATCClO787 was cultured in the same manner as in Example 6, and treated in the same manner as in Example 1 to obtain 0.3y of treated bacterial cells, which were used to construct a microbial electrode and L-glutamic acid as in Example 2. Different amounts of L-arginine were added to the fermentation liquid to give samples A, B, and C, respectively, and quantified by the method of the present invention, while quantified by liquid chromatography, and the results are compared and shown in the first cough. However, as shown in the table, there was good agreement between the two.

尚、使用したバッファー液は実施例6と同様であつた。The buffer solution used was the same as in Example 6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いる微生物電極の構造説明図
、図中1溶存炭酸ガス電極隔膜、2微生物層、3担体、
4透析膜、5PH電極、6内部液、7微生物電極の全体
を示す。 第2図は本発明の方法に使用する定量システムセットの
一態様を示す。 図中、7微生物電極、8,『ゴムバッキング、9フロー
セル、10N2ガス吹込口、11バッファー液注入口、
12サンプル注入口、13PH計またはイオンメーター
、14レコーダー。第3図は実施例1のL−アミノ酸水
溶液及びその希釈液の飽和レベルにおける起電力のピー
クを示すグラフ、縦軸は電極の起電力Mvl横軸は時間
を示す。 第4図は第3図中のピークの高さMVと、フローセル中
のL−アミノ酸液濃度との関係を示すグラフ。
FIG. 1 is an explanatory diagram of the structure of the microbial electrode used in the method of the present invention, in which 1 dissolved carbon dioxide electrode diaphragm, 2 microorganism layer, 3 carrier,
4 dialysis membranes, 5 PH electrodes, 6 internal liquids, and 7 microorganism electrodes are shown in their entirety. FIG. 2 shows one embodiment of a quantitative system set used in the method of the invention. In the figure, 7 microbial electrodes, 8, rubber backing, 9 flow cells, 10 N2 gas inlet, 11 buffer solution inlet,
12 sample injection ports, 13 PH meter or ion meter, 14 recorder. FIG. 3 is a graph showing the peak of electromotive force at the saturation level of the L-amino acid aqueous solution of Example 1 and its diluted solution, the vertical axis shows the electromotive force Mv of the electrode, and the horizontal axis shows time. FIG. 4 is a graph showing the relationship between the height MV of the peak in FIG. 3 and the concentration of L-amino acid solution in the flow cell.

Claims (1)

【特許請求の範囲】[Claims] 1 炭酸ガス電極の隔膜と、これを覆う微細孔を有する
薄膜の間に、エシエリヒヤ属、シトロバクター属、クロ
ストリジウム属、バクテリウム属、ストレプトコッカス
属、シュードモナス属、バチルス属、ミクソコッカス属
及びラクトバチルス属に属する細菌類、アスペルギルス
属に属する子嚢菌類あるいはロドトルラ属に属する酵母
類に属し、かつ定量せんとするL−アミノ酸の脱炭酸酵
素活性を有する微生物の菌体を有機溶媒および/または
界面活性剤で処理した活性処理菌体を、封入した微生物
電極あるいは該微生物菌体を固定化した微生物膜を溶存
炭酸ガスの隔膜上に取りつけた微生物電極を嫌気的条件
で基質L−アミノ酸を含有する被験液に浸漬、または接
触させ、該当L−アミノ酸の濃度Cの常用対数値Log
Cと、上記微生物電極の起電力との間の比較関係を利用
して該当L−アミノ酸の濃度を求めることを特徴とする
、微生物電極を用いるL−アミノ酸の定量法。
1. Between the diaphragm of the carbon dioxide gas electrode and the thin film with micropores covering it, the genus Escherichia, Citrobacter, Clostridium, Bacterium, Streptococcus, Pseudomonas, Bacillus, Myxococcus, and Lactobacillus are separated. The cells of a microorganism belonging to Bacteria belonging to the genus Aspergillus, Ascomycetes belonging to the genus Aspergillus, or yeast belonging to the genus Rhodotorula and having the decarboxylase activity of the L-amino acid to be quantified are treated with an organic solvent and/or a surfactant. The treated activated microbial cells are placed in a test solution containing the substrate L-amino acid under anaerobic conditions using an encapsulated microbial electrode or a microbial electrode in which a microbial membrane on which the microbial cells are immobilized is attached on a diaphragm of dissolved carbon dioxide. Immersion or contact, common logarithm value Log of the concentration C of the relevant L-amino acid
A method for quantifying L-amino acids using a microbial electrode, characterized in that the concentration of the relevant L-amino acid is determined using a comparative relationship between C and the electromotive force of the microbial electrode.
JP54006357A 1979-01-22 1979-01-22 Quantification method of L-amino acid Expired JPS6042910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54006357A JPS6042910B2 (en) 1979-01-22 1979-01-22 Quantification method of L-amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54006357A JPS6042910B2 (en) 1979-01-22 1979-01-22 Quantification method of L-amino acid

Publications (2)

Publication Number Publication Date
JPS5598348A JPS5598348A (en) 1980-07-26
JPS6042910B2 true JPS6042910B2 (en) 1985-09-25

Family

ID=11636107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54006357A Expired JPS6042910B2 (en) 1979-01-22 1979-01-22 Quantification method of L-amino acid

Country Status (1)

Country Link
JP (1) JPS6042910B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921400A (en) * 1982-07-27 1984-02-03 Ajinomoto Co Inc Measurement of l-amino acid
JPS6052765A (en) * 1983-08-31 1985-03-26 Ajinomoto Co Inc Quantiative determination of l-amino acid

Also Published As

Publication number Publication date
JPS5598348A (en) 1980-07-26

Similar Documents

Publication Publication Date Title
RU2116347C1 (en) Method of stereoselective synthesis of chiral amines
Hikuma et al. A potentiometric microbial sensor based on immobilized Escherichia coli for glutamic acid
US4384936A (en) System for determining the concentration of an L-amino acid in fermentation
Petrović et al. Effect of various carbon sources on microbial lipases biosynthesis
Chien-Yuan et al. Amperometric L-glutamate sensor using a novel L-glutamate oxidase from Streptomyces platensis NTU 3304
Vrbova et al. Biosensor for the determination of L-lysine
Altenbern et al. Stereospecific asparaginases in smooth Brucella abortus, strain 19
Kobos et al. Application of microbial cells as multistep catalysts in potentiometric biosensing electrodes
JPS6042910B2 (en) Quantification method of L-amino acid
JPS6255097A (en) Production of l-amino acid
Barban STUDIES ON THE METABOLISM OF THE TREPONEMATA I: Amino Acid Metabolism
Fleming et al. STUDIES ON THE PHYSIOLOGY OF VIRULENCE OF PASTEURELLA TULARENSIS I: Citrulline Ureidase and Deamidase Activity
Grobler et al. Bacterial electrode for L-arginine
JPH01179689A (en) Stabilizer for organism catalyst
US4661456A (en) Method for cultivation of pseudomonas bacteria
US4224407A (en) Assay of L-lysine
Papierz et al. Selection and activation of Escherichia coli strains for L-aspartic acid biosynthesis
JPS6042911B2 (en) Assay method for L-lysine
FUKUMI et al. Nutritional requirements and respiratory pattern of pertussis-parapertussis-bronchisepticus group of microorganisms
Schär et al. Hyphomicrobium bacterial electrode for determination of monomethyl sulfate
Schuster et al. A synthetic medium for continuous culture of the S‐layer carrying Bacillus stearothermophilus PV 72 and studies on the influence of growth conditions on cell wall properties
JP2008017785A (en) METHOD FOR ENRICHING COMMON SALT-CONTAINING FOOD WITH gamma-AMINOBUTYRIC ACID
Kawashima et al. A microbial sensor for uric acid
Sakaguchi Studies on the Activities of Bacteria in Soy Sauce Brewing: Part IV. Proteases, Transaminases of Pediococcus soyae, nov. sp., and its Numerical Transition in Soy Mash
Kitada et al. Biochemical properties of a thermophilic alkalophile