JPS6042911B2 - Assay method for L-lysine - Google Patents

Assay method for L-lysine

Info

Publication number
JPS6042911B2
JPS6042911B2 JP54006358A JP635879A JPS6042911B2 JP S6042911 B2 JPS6042911 B2 JP S6042911B2 JP 54006358 A JP54006358 A JP 54006358A JP 635879 A JP635879 A JP 635879A JP S6042911 B2 JPS6042911 B2 JP S6042911B2
Authority
JP
Japan
Prior art keywords
lysine
electrode
microbial
membrane
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54006358A
Other languages
Japanese (ja)
Other versions
JPS5598349A (en
Inventor
春夫 小花
忠 白川
基彦 引馬
武夫 安田
征夫 軽部
周一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP54006358A priority Critical patent/JPS6042911B2/en
Publication of JPS5598349A publication Critical patent/JPS5598349A/en
Publication of JPS6042911B2 publication Critical patent/JPS6042911B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は、微生物電極を用いるL−リジンの定量法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantifying L-lysine using a microbial electrode.

L−リジンの定量法としては、従来から、エシエリヒア
、コリあるいはバクテリウム・キヤダベリス由来のL−
リジン脱炭酸酵素(L−lysinedecarbox
ylase)を用いて、次の式(I)の反応により発生
する炭酸ガスの量をマノメトリーで測 L−リジ、、L
−リジン脱炭酸酵素。
Conventionally, the method for quantifying L-lysine has been to use L-lysine derived from Escherichia, coli or Bacterium chyadabellis.
Lysine decarboxylase (L-lysine decarboxylate)
ylase) to measure the amount of carbon dioxide gas generated by the reaction of the following formula (I) by manometry.
-Lysine decarboxylase.

ャダ、り、、+Co、(■)定するワールブルグ検圧法
、又発生炭酸ガスを自薊、^れ警、u8tLピ11−フ
1、−1−一 ′゛゛ 一゛、)上 −る。
+Co, (■) The Warburg pressure method determines the generated carbon dioxide, and the generated carbon dioxide is detected.

両者は、正確ですぐれた方法であるが、酵素の反復的使
用が困難なため、高価な酵素を測定のたびに新たに使用
しなければならず、経済的でなく、又、オートアナライ
ザー法の場合には、装置が複雑で高価な上、酵素の調製
が必要である。ここで酵素を固定化して連続的に使用す
る方法も考えられるが、実用化されるに至つていない。
一方、化学的なL−リジンの定量法としては、酸性ニ
ンヒドリン法があるが、ある種のアミノ酸が共存する場
合には、定量上の妨害要因を考慮せねばならないなどの
問題点がある。 そこで、本発明者等は、簡便で、正確
なL−リジンの定量法について鋭意研究を重ねた結果、
細菌類に属するエシエリヒア属、バクテリウム属、スト
レフトコッカス属、シュードモナス属、バチルス属、ミ
クソコッカス属、クロストリジウム属、ラクトバチルス
属等の微生物及び子嚢菌類に属するアスペルギルス属等
の微生物に属するL−リジン脱炭酸酵素活性を有する微
生物またはそれらの凍結乾燥菌体を、溶存炭酸ガス電極
上に取りつけた微生物電極を、嫌気条件下でL−リジン
を含有する被験液に浸漬または接触させて、その起電力
を測定したところ、該起電力と基質L−リジンの濃度の
常用対数値との間に比例的関係が存することを発見し、
本発明を完成した。
Both methods are accurate and excellent, but because it is difficult to use enzymes repeatedly, expensive enzymes must be used anew each time a measurement is performed, making them uneconomical. In some cases, the equipment is complex and expensive, and enzyme preparation is required. Although it is possible to immobilize the enzyme and use it continuously, this method has not yet been put to practical use.
On the other hand, as a chemical method for quantifying L-lysine, there is an acid ninhydrin method, but there are problems such as the need to take into account factors that interfere with the quantitative determination when certain amino acids coexist. Therefore, as a result of extensive research into a simple and accurate method for quantifying L-lysine, the present inventors found that
L-lysine belongs to microorganisms such as Escherichia, Bacterium, Streftococcus, Pseudomonas, Bacillus, Myxococcus, Clostridium, and Lactobacillus that belong to the Bacteria, and Aspergillus that belongs to the Ascomycetes. Microorganisms having decarboxylase activity or their freeze-dried cells are attached to a dissolved carbon dioxide electrode, and the microorganism electrode is immersed or brought into contact with a test solution containing L-lysine under anaerobic conditions, and the electromotive force is measured. When measuring, it was discovered that there is a proportional relationship between the electromotive force and the common logarithm value of the concentration of the substrate L-lysine,
The invention has been completed.

即ち、本発明の方法は、微生物菌体を用いて(1)式の
反応を嫌気的条件下で行なわしめ、生成される炭酸ガス
を、溶存炭酸ガス電極で定量することを特徴とするもの
である。
That is, the method of the present invention is characterized in that the reaction of formula (1) is carried out under anaerobic conditions using microbial cells, and the produced carbon dioxide is quantified using a dissolved carbon dioxide electrode. be.

以下本発明について詳細に説明する。本発明に使用する
微生物としてはL−リジン脱炭酸酵素活性の強力な菌株
であればすべて用いることが可能であり、例えば細菌類
のうちエシエリヒア、バクテリウム、ストレプトコツカ
ス、シュードモナス、バチルス、ミクソコッカス、クロ
ストリジウム、ラクトバチルス等の各属の他、子嚢菌類
の中のアスペルギルス属等にわたつてL−リジン脱炭酸
酵素の存在は広く知られており、その中からL−リジン
脱炭酸酵素活性の強い菌株、例えばエシエリヒア●コリ
(EscherihiacOll)ATCC23226
、バクテリウム・キヤダベリス(Bacteriumc
adaveris)ATCC976ヘストレプトコツカ
ス●フアエカリス(StreptOcOccusfae
calls)ATCCl2984、シュードモナス●サ
ッカロフイア(PseudOmOrlassaccha
rOphia)ATCCl5946、バチルス◆ズブチ
リス(Bacillussubtllls)ATCCl
5O37、ミクソコッカス◆ヴイレスセンス(MyxO
cOccusvirescens)ATCC252O3
、クロストリジウム ウエルシユ(ClOstridi
unlwelchii)ATCCl3l2屯ラクトバチ
ルス●カゼイ(LactObacilluscasei
)ATCC7469、及びアスペルギルス ニゲル(A
spergillusniger)ATCC6278、
等が好ましく用いられ、それぞれの菌株に適した栄養培
地に、それぞれに適した条件下において培養し得られる
菌体をそのま)用いることができ、またはこれを凍結乾
燥したものを使用することができる。
The present invention will be explained in detail below. Any microorganism that can be used in the present invention can be used as long as it has a strong L-lysine decarboxylase activity; for example, among bacteria, Escherichia, Bacterium, Streptococcus, Pseudomonas, Bacillus, Myxococcus, The existence of L-lysine decarboxylase is widely known in various genera such as Clostridium and Lactobacillus, as well as in the genus Aspergillus among ascomycetes. Strains such as Escherichia coli ATCC23226
, Bacteriumc
adaveris) ATCC976 Streptococcus fae
calls) ATCCl2984, Pseudomonas Saccharophia (PseudOmOrlassaccha)
rOphia) ATCCl5946, Bacillus subtilis (Bacillus subtilis) ATCCl
5O37, Myxococcus virescens (MyxO
cOccus virescens) ATCC252O3
, Clostridium welsh (ClOstridi)
Lactobacillus casei
) ATCC7469, and Aspergillus niger (A
spergillus niger) ATCC6278,
etc. are preferably used, and the bacterial cells obtained by culturing each strain in a nutrient medium suitable for each strain under conditions suitable for each strain can be used as is, or it can be used after being freeze-dried. can.

凍結乾燥菌体は冷所保存すれば長期間(例えは1年以上
)活性を保持することができるので、便利に使用できる
。またこれらの活性菌体を常用技術によつてコラーゲン
、アクリルアミド●ゲル等によつて固定化して固定化微
生物として使用することもできる。しかし、特に固定化
微生物膜を用いなくても安定性等の機能には殆んど変り
がないので、特に固定化微生物膜を用いて行なう必要は
ないが、その使用も本発明の範囲に包含されることはも
ちろんである。本発明の微生物電極は、第1図に示すよ
うに、通常の市販の溶存炭酸ガス電極の隔膜上に上記の
微生物菌体を取りつけたものが用いられ、培養菌体を枦
過または遠心分離で分離し、要すれば洗浄した菌体2を
、ナイロン●メッシュ、ミリボア●フィルター(1)本
ミリボア社商標)、泊紙片、炭酸カルシウム等の担体3
に塗布し、これをセロファン膜等の微生物を透過しない
程度の微細孔を有する膜4で覆つて第1図の如く隔膜上
に取り付けることによつて容易に作製することができる
Freeze-dried bacterial cells can maintain their activity for a long period of time (for example, one year or more) if stored in a cool place, so they can be conveniently used. These active microorganisms can also be immobilized with collagen, acrylamide gel, etc. using conventional techniques and used as immobilized microorganisms. However, even if an immobilized microbial membrane is not used, there is almost no difference in functions such as stability, so it is not necessary to use an immobilized microbial membrane, but its use is also included within the scope of the present invention. Of course it will be done. As shown in FIG. 1, the microbial electrode of the present invention is a conventional commercially available dissolved carbon dioxide electrode with the above-mentioned microbial cells attached to the membrane, and the cultured microbial cells are filtered or centrifuged. The separated and, if necessary, washed bacterial cells 2 are transferred to a carrier 3 such as nylon mesh, Millibore filter (1) Millibore trademark), Tomari paper, calcium carbonate, etc.
It can be easily produced by applying the membrane to a diaphragm, covering it with a membrane 4 such as a cellophane membrane having micropores that are impermeable to microorganisms, and attaching it to a diaphragm as shown in FIG.

ここに微生物の菌体層2を掩い支持する微細孔を有する
薄膜4としては、本発明で用いる微生物の菌体を通過せ
ず、炭酸ガス等を自由に通過させる薄膜4であれば何で
も良く、例えばミリボアフィルター等の多孔性膜、セロ
ファン、動物性半透膜等の透析膜等の上記の条件を満足
するものであればすべて使用することができる。尚固定
化微生物膜を用いた場合は上記の薄膜4は不必要である
。第1図に於て、1は溶存炭酸ガス電極の隔膜(シリコ
ーン膜)、2は微生物層、3は担体、4は透析膜(セロ
ファン膜)、5はPH電極、6は内部液(NaHCO−
NaCl混液)、7は微生物電極全体を示す。
As the thin film 4 having micropores that covers and supports the bacterial cell layer 2 of the microorganisms, any thin film 4 that does not pass through the bacterial cells of the microorganisms used in the present invention but allows carbon dioxide gas etc. to freely pass through may be used. For example, any membrane that satisfies the above conditions can be used, such as a porous membrane such as a millibore filter, a dialysis membrane such as cellophane, or an animal semipermeable membrane. Note that when an immobilized microbial membrane is used, the above-mentioned thin film 4 is unnecessary. In Figure 1, 1 is the diaphragm (silicone membrane) of the dissolved carbon dioxide electrode, 2 is the microorganism layer, 3 is the carrier, 4 is the dialysis membrane (cellophane membrane), 5 is the PH electrode, and 6 is the internal solution (NaHCO-
7 shows the entire microbial electrode.

この微生物電極を酸素の存在下で発酵液などの被験液に
接触させると、隔膜近傍の微生物は被験液中の栄養物(
糖、アミノ酸)を資化および/または呼吸し多量の炭酸
ガスを放出するためL−リジンの定量は不可能である。
When this microbial electrode is brought into contact with a test liquid such as a fermentation liquid in the presence of oxygen, the microorganisms near the diaphragm absorb nutrients (
It is impossible to quantify L-lysine because it assimilates and/or respires (sugars, amino acids) and releases a large amount of carbon dioxide gas.

これに対して、本発明者等は微生物電極と被験液を嫌気
的条件下で接触させれば、上記の微生物の呼吸活動によ
る炭酸ガスの生成が完全に抑制され、従つて(1)式の
反応が定量的に進行するということを発見し、これに基
づいて本発明を完成したものであることは先に述べたと
おりである。第2図に示す定量システムのセットは本発
明の実施態様の1つである、第2図の7は微生物電極、
9はフローセル、8,8″はゴムバッキング、10はN
2ガス吹込口、11はバッファー液注入口、12はサン
プル注入口、13はPH計又はイオンメーター、14は
レコーダを夫々示す。
On the other hand, the present inventors have found that if the microbial electrode and the test solution are brought into contact with each other under anaerobic conditions, the production of carbon dioxide gas due to the respiration activity of the microorganisms mentioned above is completely suppressed, and therefore, the equation (1) is satisfied. As mentioned above, the present invention was completed based on the discovery that the reaction proceeds quantitatively. The set of quantitative system shown in FIG. 2 is one of the embodiments of the present invention. 7 in FIG. 2 is a microbial electrode;
9 is a flow cell, 8,8″ is a rubber backing, 10 is N
2 gas inlets, 11 a buffer solution inlet, 12 a sample inlet, 13 a PH meter or ion meter, and 14 a recorder.

この第2図のシステムに従つて本発明の測定法を以下に
説明する。まず最初にバッファー液を11から一定の流
量で、10からN2ガスを吹込みながらフローセル9内
に流し、電極の起電力をレコーダー14に記録する、サ
ンプルを12から注入時間0.5〜5分間で1〜3紛間
隔を置いて順次注入する、このサンプル液はバッファー
液で適当に希釈されフローセル9内に達する。
The measuring method of the present invention will be explained below according to the system shown in FIG. First, the buffer solution is flowed into the flow cell 9 at a constant flow rate from 11 while blowing N2 gas from 10, the electromotive force of the electrode is recorded on the recorder 14, and the sample is injected from 12 for 0.5 to 5 minutes. This sample solution is injected sequentially at intervals of 1 to 3 samples, and this sample solution is appropriately diluted with a buffer solution and reaches the flow cell 9.

フローセル9内ではサンプル中のL−リジンが微生物の
酵素により(1)式の反応により分解されCO2ガスが
発生する。このCO2ガスは隔膜1を通つて内部液のP
Hを変化させる。PH変化はPH電極5を経てPH計又
はイオンメーター13によつて測定され、レコーダー1
4に記録される。電極の起電力Eと基質L−リジンの濃
度Cの常用対数10gCとの間には第4図のような関係
が見られ、ネルンストの式(■)が成立する。
In the flow cell 9, L-lysine in the sample is decomposed by the enzyme of the microorganism by the reaction of formula (1), and CO2 gas is generated. This CO2 gas passes through the diaphragm 1 and the internal liquid P
Change H. The PH change is measured by a PH meter or ion meter 13 via a PH electrode 5, and a recorder 1
Recorded in 4. A relationship as shown in FIG. 4 is observed between the electromotive force E of the electrode and the common logarithm 10 gC of the concentration C of the substrate L-lysine, and the Nernst equation (■) is established.

式中、EOは非対称電位差、Rはガス定数、Tは絶対温
度、Fはファラデー定数を示す。
In the formula, EO is the asymmetric potential difference, R is the gas constant, T is the absolute temperature, and F is the Faraday constant.

この(■)式を用いて被験液の基質濃度を求めることが
できる。
Using this formula (■), the substrate concentration of the test solution can be determined.

測定時の条件については、測定のPHは3.5〜6.5
s温度は20〜40℃の範囲が良く、サンプルと電極と
の接触時間は0.5〜5分間で充分であり、通常3分間
でほぼ飽和値に達する。
Regarding the conditions during measurement, the pH of measurement is 3.5 to 6.5.
The s temperature is preferably in the range of 20 to 40°C, and the contact time between the sample and the electrode is sufficient for 0.5 to 5 minutes, and the saturation value is generally reached in 3 minutes.

基質の測定濃度範囲は10−1〜10−4Mであり、広
い範囲の測定が可能で、E<510gCの直線性は非常
に良好である。使用するバッファー液としては、クエン
酸、フマル酸、コハク酸等の有機酸バッファー、又はピ
リジンー塩酸バッファーが用いられる。
The measurement concentration range of the substrate is 10-1 to 10-4M, allowing measurement over a wide range, and the linearity of E<510gC is very good. The buffer used is an organic acid buffer such as citric acid, fumaric acid, or succinic acid, or a pyridine-hydrochloric acid buffer.

特にNaClとKH2PO4(それぞれ0.5y/dl
)、及びピリドキサ−ルー5″−リん酸(イ).1v/
e)を含有したピリジンー塩酸バッファーは望ましいも
のである。第2図では嫌気的条件にするためN2ガスを
用いているが、別にN2ガスに限定されず、要は溶存酸
素が共存しなければ良いのであつて、他の不活性ガスで
置換しても良く、又溶存酸素を含まないキャリアーを用
いても良い。
Especially NaCl and KH2PO4 (0.5y/dl each)
), and pyridoxal-5″-phosphoric acid (a).1v/
A pyridine-hydrochloric acid buffer containing e) is preferred. In Figure 2, N2 gas is used to create an anaerobic condition, but it is not limited to N2 gas, as long as dissolved oxygen does not coexist, and replacement with other inert gases is also acceptable. It is also possible to use a carrier that does not contain dissolved oxygen.

以上の条件で使用した場合、連続使用で3週間以上活性
が持続される。本発明の方法は微生物の活性菌体を用い
ているのでL−リジン以外のアミノ酸、有機酸、糖等の
不純物の影響を受け易いように考えられるので、その選
択性について調査すると次の第1表に示すとおり、L−
リジン100%に対して10%以上の影響を示すものは
認められなかつた。
When used under the above conditions, the activity is maintained for more than 3 weeks with continuous use. Since the method of the present invention uses active microbial cells, it is thought to be susceptible to impurities such as amino acids other than L-lysine, organic acids, and sugars. As shown in the table, L-
No effect of 10% or more on 100% lysine was observed.

尚第1表に示されなかつた他のアミノ酸L−セリン、L
−スレオニン、L−システイン、L−シスチン、L−メ
チオニン、L−アスパラギン、L−グルタミン、L−フ
ェニルアラニン、L−アスパラギン酸、L−ヒスチジン
、L−アルギニン、L−オルニチン塩酸塩、L−シトル
リン、L−イソロイシン、DL一乳酸、酒石酸、α−ケ
トグルタール酸、こはく酸、りんご酸、フマル酸、くえ
ん酸、グルコース、尿素等は全く影響が見られなかつた
In addition, other amino acids not shown in Table 1, L-serine, L
-Threonine, L-cysteine, L-cystine, L-methionine, L-asparagine, L-glutamine, L-phenylalanine, L-aspartic acid, L-histidine, L-arginine, L-ornithine hydrochloride, L-citrulline, No effect was observed with L-isoleucine, DL monolactic acid, tartaric acid, α-ketoglutaric acid, succinic acid, malic acid, fumaric acid, citric acid, glucose, urea, etc.

この結果は最もL−リジンに対して選択性を向上させた
条件(475mμ)下での酸性ニンヒドリン法の値であ
るL−リジン100%に対してL−システイン8%、L
−シスチン3%、L−チロシン11%、L−ヒスチジン
4%、L−プロリン17%、L−オルニチン塩酸塩8%
と云う選択性に比較して、本発明の方法は極めて選択性
が優れた方法であると云うことができる。上述の如く本
発明の方法は、他の方法、即ち、ワールブルグ検圧法、
酵素を用いたオートアナライザー法、並びに酸性ニンヒ
ドリン法に比べて、より簡便で、かつ正確なL−リジン
定量法を提供するものと信じる。
This result shows that L-cysteine is 8% and L-cysteine is 8% relative to 100% L-lysine, which is the value of the acidic ninhydrin method under conditions (475 mμ) that improves selectivity to L-lysine the most.
- Cystine 3%, L-tyrosine 11%, L-histidine 4%, L-proline 17%, L-ornithine hydrochloride 8%
Compared to this selectivity, the method of the present invention can be said to have extremely excellent selectivity. As mentioned above, the method of the present invention is similar to other methods, namely, the Warburg pressure method,
We believe that this method provides a simpler and more accurate method for quantifying L-lysine than the autoanalyzer method using an enzyme or the acidic ninhydrin method.

実施例1 エシエリヒア●コリ(EscherihiacOll)
ATCC23226を第2表の培地を用いて、30℃で
フラスコ振盪培養した。
Example 1 Escherichia colli (EscherihiacOll)
ATCC23226 was cultured in a shaking flask at 30°C using the medium shown in Table 2.

2叫間培養後、培養液50m1を遠心分離、これを0.
1M..KC1溶液50mtで良く洗浄し、凍結乾燥し
て0.6Vの菌体を得た。
After incubation for 2 hours, 50 ml of the culture solution was centrifuged, and the 0.0 ml of culture solution was centrifuged.
1M. .. The cells were thoroughly washed with 50 mt of KC1 solution and freeze-dried to obtain 0.6V bacterial cells.

1〜2m9の凍結乾燥菌体を少量の水に溶かし、ペース
ト状2とし、径1−のナイロン●メッシュ3に塗りつけ
、これをセロファン膜4を用いて、第1図のように溶存
炭酸ガス電極(E5O3(代)、ラジオメーター社、デ
ンマーク)のシリコーン膜1上に取りつけた。
Dissolve 1 to 2 m9 of freeze-dried bacterial cells in a small amount of water to make a paste 2, and apply it to a nylon mesh 3 with a diameter of 1-mm, and use a cellophane membrane 4 to connect it to a dissolved carbon dioxide electrode as shown in Figure 1. (E5O3, Radiometer, Denmark) was mounted on a silicone film 1.

この微生物電極を用いて、第2図に示すフローセル(容
量0.5m1)にゴムバッキング8,8″を介して挿入
し、第2図のような測定システムを組立てた。
Using this microbial electrode, it was inserted into a flow cell (capacity: 0.5 ml) shown in FIG. 2 via rubber backings 8, 8'', and a measurement system as shown in FIG. 2 was assembled.

バッファー液としては、PH5.Oへ0.1Mピリジン
ー塩酸バッファー液(イ).5y/Dt(7)NaCl
及びKH2PO4、0.1y/′のピドキサールー5″
りん酸を含む)を第2図の11から4m1/Minの流
量で流入させ、10からN2ガスを0.2e/Minの
流量で吹込んでフローセル9を通し、電極7はその起電
力を測定するため、PH計13さらには記録計14に接
続した。
The buffer solution has a pH of 5. 0.1M pyridine-hydrochloric acid buffer solution (a). 5y/Dt(7)NaCl
and KH2PO4, 0.1y/'pidoxalu5''
(containing phosphoric acid) flows from 11 in Fig. 2 at a flow rate of 4 m1/min, and from 10 blows N2 gas at a flow rate of 0.2 e/min to pass through the flow cell 9, and the electrode 7 measures the electromotive force. Therefore, it was connected to a PH meter 13 and a recorder 14.

測定中、フローセル内の温度は30℃に保つた。サンプ
ルは5y/eのL−リジン水溶液及びその希釈液を順次
1m1/Minの速度で3分間、サンプル注入口12か
ら注入した。このサンプルは、バッファ液により希釈さ
れフローセル9に流入すると同時に、微生物電極7は指
示をしはじめ、3分後には指示が飽和レベルに達し、第
3図のようなピークが記録された。
During the measurement, the temperature inside the flow cell was maintained at 30°C. As a sample, a 5y/e aqueous L-lysine solution and its diluted solution were sequentially injected from the sample injection port 12 at a rate of 1 ml/min for 3 minutes. At the same time as this sample was diluted with a buffer solution and flowed into the flow cell 9, the microbial electrode 7 began to give an indication, and after 3 minutes, the indication reached a saturation level, and a peak as shown in FIG. 3 was recorded.

第3図中、縦軸は電極の起電力m■、横軸は時間を示す
。第3図中の各ピークの高さとフローセル9中のL−リ
ジン濃度との間には第4図の関係が見られ、その傾き5
8rr1V/PCLy8は式(■)におけるネルンスト
項の係数にほとんど一致した。(理論値:60.16n
1V,30℃)一方、ブレビバクテリウム●ラクトフエ
ルメンタムATCCl3869を第3表の培地を用いて
30℃で通気攪拌培養を行なつた。
In FIG. 3, the vertical axis represents the electromotive force m of the electrode, and the horizontal axis represents time. The relationship shown in Figure 4 is seen between the height of each peak in Figure 3 and the L-lysine concentration in the flow cell 9, and the slope is 5.
8rr1V/PCLy8 almost matched the coefficient of the Nernst term in equation (■). (Theoretical value: 60.16n
1V, 30°C) On the other hand, Brevibacterium Lactofermentum ATCCl3869 was cultured with aeration at 30°C using the medium shown in Table 3.

培養液を2@希釈し、サンプルAとし、これに試薬のL
−リジンを既知量だけ添加し、サンプルB,C,Dを調
整した。
Dilute the culture solution 2@ to make sample A, and add L of reagent to this.
- Samples B, C, and D were prepared by adding a known amount of lysine.

これらのサンプルを第2図のシステムに従い、ピーク値
を読み取り標準濃度液で作つた校正直線からL−リジン
の濃度を求めた。
The peak values of these samples were read according to the system shown in FIG. 2, and the concentration of L-lysine was determined from a calibration line prepared using a standard concentration solution.

その結果は、第4表に示す如くであり、各サンプルにつ
いて、従来のバクテリウム・キヤダベリス由来の酵素を
使用したワールブルグ検圧法で測定した値と良く一致し
ていた。
The results are shown in Table 4, and the values for each sample were in good agreement with the values measured by the conventional Warburg manometry method using an enzyme derived from Bacterium cyadaveris.

実施例2 バクテリウム●キヤダベリス(Bacteriunlc
adaveris)ATCC976Oを第5表の培地を
用いて30℃でフラスコ振盪培養を行なつた。
Example 2 Bacterium
adaveris) ATCC976O was cultured in a shaking flask at 30°C using the medium shown in Table 5.

得られた培養液50mtを集菌し、0.1M..KC1
溶液で2回洗滌後、真空デシケ−ター中で乾燥して0.
3yの乾燥菌体を得、微生物電極を構成した。
50 mt of the obtained culture solution was collected, and 0.1M. .. KC1
After washing twice with the solution, drying in a vacuum desiccator to a 0.
3y of dried bacterial cells were obtained, and a microbial electrode was constructed.

実施例1と同様にして得たL−リジン発酵液の経時的サ
ンプルA,B,C,Dについて、本法と従来行なわれて
いる酸性ニンヒドリン法によつてL−リジンの濃度を求
め、第6表を得た。各サンプルについて両方法による分
析値はよく一致していた。
For time-lapse samples A, B, C, and D of L-lysine fermentation liquid obtained in the same manner as in Example 1, the concentration of L-lysine was determined by this method and the conventional acid ninhydrin method. Six tables were obtained. The analytical values obtained by both methods for each sample were in good agreement.

実施例3 クロストリジウム●ウエルシユ(ClOstridiu
mwelchll)ATCCl3l24を3%力ティン
のトリプシン分解物、2%グルコース、100pq/l
ピリドキサール、0.5%L−リジン塩酸塩に肉片を加
えた培養液で、水素ガスを通して30℃、2C@間フラ
スコ振盪培養した。
Example 3 Clostridium Welsh (ClOstridium)
mwelchll) ATCCl3l24 with 3% tryptic digest, 2% glucose, 100 pq/l
A flask culture was carried out using a culture solution containing pyridoxal, 0.5% L-lysine hydrochloride, and meat pieces added thereto at 30° C. and 2° C. with hydrogen gas.

培養液50mLを実施例2の方法で微生物電極を構成し
、実施例2と同じサンプルのL−リジン発酵液について
L−リジン濃度を求めたところ、第7表の如く従来行な
われている酸性ニンヒドリン法によつて求めた値とよく
一致した。実施例4 ラクトバテルス●カゼイ(LlctObacillus
●Casei)ATCC7469(NO.l)を10%
脱脂粉乳、0.5%L−リジン塩酸塩、100μy/e
ピリドキサール、からなる培養液で、ストレプトコツカ
ス・フエカリス(StreptOcOccusfaec
aIis)ATCCl2984(NO.2)、シュード
モナス●サツカロフイア(PseudOmOnassa
ccharOphia)ATCCl5946(NO.3
)、バチルス●ズブチリス(BacillussLlb
tllls)ATCCl5O37(NO.4)、ミクソ
コッカス●ヴイレスセンス(MyxOcOccusvi
rescens)ATCC252O3(NO.5)、を
肉工キズ1%、ポリペプトン1%、NaClO.5%、
0.5%L−リジン塩酸塩、100μf/′ピリドキサ
ール、からなる培養液で、アスペルギルス●ニゲル(A
spergilIusniger)ATCC6278(
NO.6)を2%グルコース、0.1%KH2PO4、
炭酸石灰添加コウジ汁の培地でそれぞれフラスコ振盪培
養し、実施例2の方法で微生物電極を構成し、実施例2
と同様の試料のL−リジン発酵液A,B,CについてL
−リジン濃度を求めたところ、第8表の如く、従来行な
われ性ニンヒドリン法によつて求めた値とよく一致した
A microbial electrode was constructed using 50 mL of the culture solution according to the method of Example 2, and the L-lysine concentration was determined for the L-lysine fermentation solution of the same sample as in Example 2. The value was in good agreement with the value obtained by the method. Example 4 Lactobacillus casei (LlctObacillus casei)
●Casei) ATCC7469 (NO.l) 10%
Skimmed milk powder, 0.5% L-lysine hydrochloride, 100μy/e
Streptococcus faecalis (Streptococcus faecalis) with a culture solution consisting of pyridoxal.
aIis) ATCCl2984 (NO.2), Pseudomonas satsukalovia (PseudOmOnassa)
ccharOphia) ATCCl5946 (NO.3
), Bacillus subtilis (Bacillus subtilis)
tllls) ATCCl5O37 (NO.4), Myxococcus virescens (MyxOcOccusvi
Rescens) ATCC252O3 (NO.5), 1% meat scratches, 1% polypeptone, NaClO. 5%,
Aspergillus niger (A
spergilusniger) ATCC6278 (
NO. 6) with 2% glucose, 0.1% KH2PO4,
Each flask was shaken and cultured in a medium of Koji juice supplemented with lime carbonate, and a microorganism electrode was constructed by the method of Example 2.
Regarding L-lysine fermentation liquids A, B, and C of samples similar to L
- When the lysine concentration was determined, as shown in Table 8, it agreed well with the value determined by the conventional ninhydrin method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に用いる微生物電極の構造説明図
、図中1溶存炭酸ガス電極隔膜、2微生物層、3担体、
4透析膜、5PH電極、6内部液、7は微生物電極の全
体を示す。 第2図は本発明の方法に使用する定量システムセットの
一態様を示す。 図中、7微生物電極、8,『ゴムバッキング、9フロー
セル、10N2ガス吹込口、11バッファー液注入口、
12サンプル注入口、13PH計またはイオンメーター
、14レコーダー第3図は実施例1のL−リジン水溶液
及びその希釈液の飽和レベルにおける起電力のピークを
示すグラフ、縦軸は電極の起電力Mvl横軸は時間を示
す。 第4図は第3図中のピークの高さMVと、フローセル中
のL−リジン液濃度との関係を示すグラフ。
FIG. 1 is an explanatory diagram of the structure of the microbial electrode used in the method of the present invention, in which 1 dissolved carbon dioxide electrode diaphragm, 2 microorganism layer, 3 carrier,
4 dialysis membrane, 5 PH electrode, 6 internal solution, 7 shows the entire microorganism electrode. FIG. 2 shows one embodiment of a quantitative system set used in the method of the invention. In the figure, 7 microbial electrodes, 8, rubber backing, 9 flow cells, 10 N2 gas inlet, 11 buffer solution inlet,
12 Sample injection port, 13 PH meter or ion meter, 14 Recorder Figure 3 is a graph showing the peak of the electromotive force at the saturation level of the L-lysine aqueous solution of Example 1 and its diluted solution, and the vertical axis is the horizontal electromotive force Mvl of the electrode. The axis shows time. FIG. 4 is a graph showing the relationship between the height MV of the peak in FIG. 3 and the concentration of L-lysine solution in the flow cell.

Claims (1)

【特許請求の範囲】[Claims] 1 炭酸ガス電極の隔膜と、これを覆う微細孔を有する
薄膜の間に、L−リジン脱炭酸酵素活性を有する微生物
菌体を封入した微生物電極、又は該微生物菌体を固定化
した微生物膜を溶存炭酸ガスの隔膜上に取りつけた微生
物電極を、嫌気的条件下でL−リジンを含有する被験液
に浸漬または接触させ、上記L−リジン濃度Cの常用対
数値LogCと、上記微生物電極の起電力との間の比例
関係を利用してL−リジンの濃度を求めることを特徴と
する、微生物電極を用いるL−リジンの定量法。
1. A microbial electrode in which microbial cells having L-lysine decarboxylase activity are encapsulated, or a microbial membrane in which the microbial cells are immobilized, is placed between the diaphragm of the carbon dioxide gas electrode and a thin film having micropores covering the membrane. A microbial electrode attached to a diaphragm of dissolved carbon dioxide is immersed or brought into contact with a test solution containing L-lysine under anaerobic conditions, and the common logarithm LogC of the L-lysine concentration C and the origin of the microbial electrode are determined. A method for quantifying L-lysine using a microbial electrode, characterized in that the concentration of L-lysine is determined using a proportional relationship with electric power.
JP54006358A 1979-01-22 1979-01-22 Assay method for L-lysine Expired JPS6042911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54006358A JPS6042911B2 (en) 1979-01-22 1979-01-22 Assay method for L-lysine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54006358A JPS6042911B2 (en) 1979-01-22 1979-01-22 Assay method for L-lysine

Publications (2)

Publication Number Publication Date
JPS5598349A JPS5598349A (en) 1980-07-26
JPS6042911B2 true JPS6042911B2 (en) 1985-09-25

Family

ID=11636135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54006358A Expired JPS6042911B2 (en) 1979-01-22 1979-01-22 Assay method for L-lysine

Country Status (1)

Country Link
JP (1) JPS6042911B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6976580B2 (en) 2001-11-06 2005-12-20 Mizuno Corporation Golf bag with a stable base

Also Published As

Publication number Publication date
JPS5598349A (en) 1980-07-26

Similar Documents

Publication Publication Date Title
Hikuma et al. A potentiometric microbial sensor based on immobilized Escherichia coli for glutamic acid
Kuriyama et al. Plant tissue-based bioselective membrane electrode for glutamate
Cornell et al. Acceleration of gluconeogenesis from lactate by lysine
Karube et al. Monoamine oxidase electrode in freshness testing of meat
CN102796660A (en) Detection device for monitoring water quality on line and water quality on-line monitoring method
JPH02501009A (en) L-glutamine sensor
US4384936A (en) System for determining the concentration of an L-amino acid in fermentation
Karube et al. Microbial BOD sensor utilizing thermophilic bacteria
Riedel et al. An electrochemical method for determination of cell respiration
Chien-Yuan et al. Amperometric L-glutamate sensor using a novel L-glutamate oxidase from Streptomyces platensis NTU 3304
Matsumoto et al. Amperometric determination of choline with use of immobilized choline oxidase
Vrbova et al. Biosensor for the determination of L-lysine
Kobos Microbe-based electrochemical sensing systems
Moody et al. The analytical role of ion-selective and gas-sensing electrodes in enzymology. A review
Kobos et al. Application of microbial cells as multistep catalysts in potentiometric biosensing electrodes
Eyer et al. On‐line estimation of viable cells in a hybridoma culture at various DO levels using ATP balancing and redox potential measurement
Ye et al. L-Glutamate biosensor using a novel L-glutamate oxidase and its application to flow injection analysis system
JPS6042911B2 (en) Assay method for L-lysine
Barban STUDIES ON THE METABOLISM OF THE TREPONEMATA I: Amino Acid Metabolism
Liu et al. Studies on microbial biosensor for DL-phenylalanine and its dynamic response process
Basu et al. Development of biosensor based on immobilized L-glutamate oxidase for determination of monosodium glutamate in food
JPS6042910B2 (en) Quantification method of L-amino acid
US4224407A (en) Assay of L-lysine
Kawashima et al. A microbial sensor for uric acid
Hasebe et al. Determinations of citric acid by differential pulse polarography with immobilized enzymes