JPS60428A - Demodulating system of superhigh-speed optical phase modulated wave - Google Patents

Demodulating system of superhigh-speed optical phase modulated wave

Info

Publication number
JPS60428A
JPS60428A JP58108811A JP10881183A JPS60428A JP S60428 A JPS60428 A JP S60428A JP 58108811 A JP58108811 A JP 58108811A JP 10881183 A JP10881183 A JP 10881183A JP S60428 A JPS60428 A JP S60428A
Authority
JP
Japan
Prior art keywords
optical phase
signal
wave
speed optical
superhigh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58108811A
Other languages
Japanese (ja)
Inventor
Shigefumi Masuda
増田 重史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58108811A priority Critical patent/JPS60428A/en
Publication of JPS60428A publication Critical patent/JPS60428A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To improve an S/N ratio by constituting a titled system so that N kinds of superhigh-speed optical phase modulating signals of a phase modulated spectrum waveform, which are transmitted by a single mode optical fiber pass through the respective optical phase matching space filters and photodetectors. CONSTITUTION:The wave surface or the amplitude of a superhigh-speed optical phase modulated wave signal transmitted by single mode optical fibers 1-7 is equally divided into N parts. Each of them is inputted to N pieces of optical phase matching space filters 8-10 which have adjusted respectively a receiving optical wave transfer function Y to Y1 which is in a complex conjugate relation to a superhigh-speed optical phase modulated wave signal S, and a demodulated wave component is generated. This signal is inputted to photodetectors 11-13, and a demodulating signal converted to an electric signal is fetched. In this way, by inputting said signal to each photodetector, and fetching the demodulating signal converted to the electric signal, an S/N ratio can be improved.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は単一偏波保存単一モード光ファイバにて伝送さ
れた、N種類の位相変調されたスペクトル波形のI光波
飢す波で位相変調した超高速度光位相変調波信号を最高
のS/Nで復調可能な超高速度光位相変調波復調方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to phase modulation of I-waves of N types of phase-modulated spectral waveforms transmitted in a single-polarization-maintaining single-mode optical fiber. The present invention relates to an ultra-high speed optical phase modulation wave demodulation method capable of demodulating a modulated ultra high speed optical phase modulation wave signal with the highest S/N.

(b) 従来技術と問題点 超高速度光位相変調波復調方式は従来超々高安定化光源
を用いる光周波数局発方式が考えられていたが、送受信
回路の光周波数偏差を十分に合致さすことが出来ず又光
位相雑音元コアイバ内発生光位相雑音を十分に除去出来
ず復調後のS/Nを充分大きく出来ないため実用化され
ていない。又光の自己相関をとる遅延検波復調方式も考
へられているが、この方式は位相再生が複雑であシ、か
つ超高速度光位相変調波の復調は望めず実用化されてい
ない。
(b) Conventional technology and problems The ultra-high speed optical phase modulation wave demodulation method was conventionally considered to be an optical frequency local oscillation method using an ultra-high stabilized light source, but it is necessary to sufficiently match the optical frequency deviation of the transmitting and receiving circuits. It has not been put to practical use because it cannot sufficiently remove optical phase noise generated within the core fiber, which is the source of optical phase noise, and cannot sufficiently increase the S/N after demodulation. A delayed detection demodulation method that takes the autocorrelation of light has also been considered, but this method requires complicated phase recovery and cannot be expected to demodulate ultra-high-speed optical phase modulated waves, so it has not been put to practical use.

(c)発明の目的 本発明の目的は上記の状態に鑑み、単一偏波保存単一モ
ード光ファイバにて伝送された、N種類の位相変調され
たスペクトル波形の超高速度光位相変調波信号を最高の
S/Nで復調可能な超高速度光位相変調波復調方式の提
供にある○(d) 発明の構成 本発明は上記の目的全達成するために、N1’l+顛の
位相変調されたスペクトル波形の超高速度光位相変調波
信号s、(ω)・ε−jOJtSN((社)・ε−jO
ノt(但しtl−を時間、0J−2πf、ftd超高速
度光位相変調波信号の周波数)を復調する場合、位相変
調されたスペクトル波形の種類の数Nに応じて、該超高
速度光位相変調信号の波面又は振巾全N等分し、夫々れ
を受信光波伝達関数y+(ω1−YN((ロ)を超高速
YN(ω)−8N(”)”・ε−Cto(但しt。は光
波が入力して立上る迄の遅延時間)に夫々れ調整された
8個の光位相整合用空間フィルタに入力し夫々れ復調波
成分 ’l+ (t)−f S+ (ω)Y、(ω)ε−j(
′(t−to)dfyN(t)= f 5N((ロ)Y
N(→ε−j0)(t−to)dfを発生させこれ全天
々れの光検知器に入力し、電気信号に変換された復調信
号を取出すようにしたことを特徴とし、所謂match
 Filterの理論によυ直接光相関を取ることで、
最高のS/Nが得られる超高速度光位相変調波の復調を
可能にしている0(e) 発明の実施例 以下本発明の実施例につき図に従って説明する。
(c) Object of the Invention In view of the above-mentioned situation, the object of the present invention is to transmit an ultra-high speed optical phase modulated wave of N types of phase modulated spectral waveforms transmitted through a single polarization maintaining single mode optical fiber. The purpose of the present invention is to provide an ultra-high speed optical phase modulation wave demodulation system that can demodulate signals with the highest S/N. The ultra-high speed optical phase modulation wave signal s, (ω)・ε-jOJtSN (Company)・ε-jO
When demodulating t (where tl- is time, 0J-2πf, the frequency of the ftd ultra-high-speed optical phase modulated wave signal), the ultra-high-speed optical The wavefront or amplitude of the phase modulation signal is divided into N equal parts, and each is divided into received light wave transfer functions y+(ω1-YN((b)) as ultra-high speed YN(ω)-8N('')''・ε-Cto(however, t . is the delay time from when a light wave is input until it rises), and the demodulated wave components 'l+ (t)-f S+ (ω)Y, (ω)ε−j(
'(t-to)dfyN(t)= f 5N((b)Y
It is characterized by generating N(→ε-j0)(t-to)df, inputting it to a photodetector on all sides of the sky, and extracting a demodulated signal converted into an electrical signal, which is called a match.
By taking υ direct optical correlation according to Filter's theory,
Embodiments of the Invention Examples of the invention will now be described with reference to the drawings.

第1図は本発明の実施例の3個に振巾分割した場合の復
調回路のブロック図、第2図は本発明の実施例の2個に
波面分割した場合の復調回路のブロック図である。
FIG. 1 is a block diagram of a demodulation circuit when the amplitude is divided into three parts according to an embodiment of the present invention, and FIG. 2 is a block diagram of a demodulation circuit when the wave front is divided into two parts according to an embodiment of the present invention. .

図中1〜4,3〜7,14は単一偏波保存・単一モード
光ファイバ(以下光ファイバと称す)、8、 9. 1
0. 16. 17は光位相整合用空間フィルタで8.
9.10は光ファイバで構成されており、16.17は
誘電体ミラーで構成されている場合を示している。11
〜13,18.19は光検知器を示す。
In the figure, 1 to 4, 3 to 7, and 14 are single polarization maintaining/single mode optical fibers (hereinafter referred to as optical fibers), 8, 9. 1
0. 16. 17 is a spatial filter for optical phase matching; 8.
9.10 is composed of optical fibers, and 16.17 is composed of dielectric mirrors. 11
~13,18.19 indicate photodetectors.

第1図において光ファイバ1より送られてきた3種類の
位相変調されたスペクトル波形の超高速度光位相変調波
信号S+(ω)・ε−ja+t・・S、(→・ε−%7
1(但し、ω=2πf、fは超高速度光位相変調波信号
の周波数、tは時間)Fiイ点にて波面を3等分され光
ファイバ2〜4を介し、光位相整合用空間フィルタ8〜
10に入力する。光位相整合用空間フィルタ8〜10の
受信光伝達関数Y、(ω)〜Y3(ω)は、ε−jGJ
to〜Y3(ω)=S3(→札ε−j(J)to(但し
toは光波が入力して立上る迄の遅延時間)に調整され
ておるので、光位相整合用空間フィルタ8〜10で夫々
れmatch Filter理論により復調信号成分3
’+(t)−、r: s+(ω)y+(oc ”’(t
−to)af〜ys(t)−J : 83(ωiY s
 (’ジε−jra(t to) df を発生する。
In Fig. 1, ultra-high speed optical phase modulated wave signals S+(ω)・ε−ja+t・・S, (→・ε−%7
1 (where ω = 2πf, f is the frequency of the ultra-high speed optical phase modulation wave signal, and t is time) The wavefront is divided into three equal parts at point Fi, and the optical phase matching spatial filter is passed through optical fibers 2 to 4. 8~
Enter 10. The reception optical transfer functions Y, (ω) to Y3(ω) of the spatial filters 8 to 10 for optical phase matching are ε−jGJ
Since it is adjusted to ~ Y3 (ω) = S3 (→ tag ε-j (J) to (where to is the delay time from when the light wave is input until it rises), the optical phase matching spatial filters 8 to 10 According to the match filter theory, demodulated signal component 3
'+(t)-, r: s+(ω)y+(oc "'(t
-to)af~ys(t)-J: 83(ωiYs
('diε-jra(t to) df is generated.

この領調信号成分は光ファイバ5〜7を介し光検知器1
1〜13に送られ電気信号に変換された復調信号が得ら
れる。ここで電界: IE i−j: 、’ IE−f
”ls+((ロ)12df で表はされるので復調信号
成分y+ (t)= 2 (IE となる。このことは
光成分は殆んど電気成分となることであシ、この場合の
雑音型9S/Nは最大値となる。これはy2(tL y
3(t)についても同様である。
This signal component is transmitted to the photodetector 1 via optical fibers 5 to 7.
1 to 13, and a demodulated signal is obtained which is converted into an electrical signal. Here the electric field: IE i-j: ,' IE-f
Since it is expressed as "ls+((b)12df", the demodulated signal component y+(t)=2(IE).This means that the optical component becomes almost an electrical component, and in this case, the noise type 9S/N becomes the maximum value. This is y2(tL y
The same applies to 3(t).

次に第2図において、光ファイバ14よp送られてきた
2種類の位相変調されたスペクトル波形の超高速度光位
相変調波信号S、(ω)・ε−””+82(ω)・ε−
jwj(但しω=2πf、fは超高速度光位相変調波信
号の周波数、tは時間)はレンズ15にて平行光になり
光位相整合用空間フィルタ1.6.17にて波面を2等
分され光位相整合用空間フィルタ16.17に入力する
。光位相整合用空間フィルタ16.17は夫々れ受信光
波伝達関数y + (01) 。
Next, in FIG. 2, an ultra-high speed optical phase modulated wave signal S of two types of phase modulated spectrum waveforms is sent from the optical fiber 14, (ω)・ε−””+82(ω)・ε −
jwj (where ω = 2πf, f is the frequency of the ultra-high speed optical phase modulation wave signal, and t is time) is turned into parallel light by the lens 15, and the wavefront is divided into two magnifications by the optical phase matching spatial filter 1.6.17. The signals are separated and input to spatial filters 16 and 17 for optical phase matching. The spatial filters 16 and 17 for optical phase matching each have a receiving light wave transfer function y + (01).

・ε−””0+ Y2(’)= S 2 (”)*・ε
−j”to (但しtoハ光波が入力して立上る迄の遅
延時間)に夫々れ調整されておるので、光位相整合用空
10Jフィルタ16゜17にて夫々れmatch Fi
dter理論により復調信号成分 Ml(t)−r″′S、(ωiy+(0→ε−jo>(
t−to)dfy2(t)=f”52(to)Y2(ω
)e −joI” ” ’ df kB生fる。この復
調信号成分に光検知器18.19に送られ電気信号に変
換された復調信号が得られる。
・ε−””0+ Y2(')=S2('')*・ε
- j"to (however, to is the delay time from when the light wave is input until it rises), so the match Fi
According to the dter theory, the demodulated signal component Ml(t)−r″′S, (ωiy+(0→ε−jo>(
t-to)dfy2(t)=f”52(to)Y2(ω
) e -joI""' df kB is generated. This demodulated signal component is sent to photodetectors 18 and 19 to obtain a demodulated signal that is converted into an electrical signal.

ここで電界 IEは°IE=、/”l’sI(ωThd
fで表はされるので、復調信号成分y(t)”” 21
E となる。
Here, the electric field IE is °IE=, /”l'sI(ωThd
Since it is represented by f, the demodulated signal component y(t)"" 21
It becomes E.

このことば光成分は殆んど電気成分となることであり、
この場合の雑音室カスベクトルを1. IKとお 1E 〈とS/N−〜−となシS/Nは最大となる。
This means that the light component is mostly electrical component,
The noise chamber cass vector in this case is 1. When IK and 1E < and S/N - ~ -, S/N becomes maximum.

1に これはy2(t)についても同様である。to 1 The same applies to y2(t).

(f) 発明の効果 以上詳細に説明せる如く本発明によれば、単一偏波保存
単一モード光ファイバにて伝送されたN種類の位相変調
されたスペクトル波形の超高速度光位相変調波信号を最
高のS/Nで彷ル【4出来る効果がある。
(f) Effects of the Invention As explained in detail above, according to the present invention, ultra-high speed optical phase modulated waves of N types of phase modulated spectral waveforms transmitted through a single polarization maintaining single mode optical fiber. It has the effect of allowing the signal to roam at the highest S/N.

【図面の簡単な説明】[Brief explanation of the drawing]

′第1図は本発明の実施例の3個に振巾分割した場合の
復調回路のブロック図、第2図は本発明の実施例の2個
に波面分割した場合の復調回路のブロック図である。 図中1〜4,3〜7,14は単一偏波保存・単一モード
光7フイバ、8,9,10,16.17は光位相整合用
空ijj yイルタ、11〜13.18゜191″l:
光検知器を示す。 !;
'Figure 1 is a block diagram of a demodulation circuit when the amplitude is divided into three parts according to an embodiment of the present invention, and Figure 2 is a block diagram of a demodulation circuit when the wave front is divided into two parts according to an embodiment of the present invention. be. In the figure, 1 to 4, 3 to 7, and 14 are single polarization-maintaining, single mode optical 7 fibers, 8, 9, 10, 16.17 are optical phase matching air ijj y filters, 11 to 13.18° 191″l:
A photodetector is shown. ! ;

Claims (1)

【特許請求の範囲】 単一偏波保存単一モード光ファイバにて伝送された、N
種類の位相変調されたスペクトル波形の超高速度光位相
変調波信号S+(ω)・ε−jωt・・SN(→・εj
″t (但しtは時間、ω=2πf、fは超高速度光位
相変調波信号の周波数)を復調する場合、位相変調され
たスペクトル波形の種類の数Nに応じて該超高速度光位
相変調波信号の波面又は振巾をN等分し、夫々九を、受
信光波伝達関数y+((ロ)・・・S+ (n*・ε”
”’ −=YNO= S N(ω)” ・i −”” 
(fflしtoは光波が入力して立上る迄の遅延時間〕
に夫々れ調整されたN個の光位相整合用空間フィルタに
入力し夫々れ復調波成分 71 (t)=f : s+ (→Y1′(→ε−jc
a(t−to)df・・川・’I N(t)”= 、1
.、 S N(→YN(→ε−ja+(t to)cH
を発生させこれを夫々の光検知器に入力し、電気信号に
変換された復調信号を取出すようにしたことを特徴とす
る超高速度光位相変調波復調方式。
[Claims] N
Ultra-high speed optical phase modulated wave signals S+(ω)・ε−jωt・・SN(→・εj
When demodulating ``t (where t is time, ω = 2πf, f is the frequency of the ultra-high-speed optical phase modulated wave signal), the ultra-high-speed optical phase is Divide the wavefront or amplitude of the modulated wave signal into N equal parts, and divide each nine into the received light wave transfer function y+((b)...S+ (n*・ε")
”' −=YNO=S N(ω)” ・i −””
(ffl to is the delay time from when the light wave is input until it rises)
The demodulated wave components 71 (t)=f : s+ (→Y1′(→ε−jc
a(t-to)df・・川・'I N(t)”= , 1
.. , SN(→YN(→ε−ja+(t to)cH
An ultra-high-speed optical phase modulation wave demodulation system characterized in that the generated signal is input to each photodetector, and a demodulated signal converted to an electrical signal is extracted.
JP58108811A 1983-06-17 1983-06-17 Demodulating system of superhigh-speed optical phase modulated wave Pending JPS60428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58108811A JPS60428A (en) 1983-06-17 1983-06-17 Demodulating system of superhigh-speed optical phase modulated wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58108811A JPS60428A (en) 1983-06-17 1983-06-17 Demodulating system of superhigh-speed optical phase modulated wave

Publications (1)

Publication Number Publication Date
JPS60428A true JPS60428A (en) 1985-01-05

Family

ID=14494088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58108811A Pending JPS60428A (en) 1983-06-17 1983-06-17 Demodulating system of superhigh-speed optical phase modulated wave

Country Status (1)

Country Link
JP (1) JPS60428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557578A (en) * 1984-12-24 1985-12-10 Eastman Kodak Company Viewfinder for autofocus cameras
US6721477B2 (en) * 2000-05-05 2004-04-13 Jds Uniphase Inc. Dispersion-free optical filters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557578A (en) * 1984-12-24 1985-12-10 Eastman Kodak Company Viewfinder for autofocus cameras
US6721477B2 (en) * 2000-05-05 2004-04-13 Jds Uniphase Inc. Dispersion-free optical filters

Similar Documents

Publication Publication Date Title
JP4516501B2 (en) DQPSK optical receiver circuit
KR910003237B1 (en) Polarization insensitive coherent lightwave detector
EP0445943A2 (en) Polarization independent coherent lightwave detection arrangement
US5212825A (en) Synthetic heterodyne demodulator circuit
CN1003758B (en) Optical receiver
JPH03210841A (en) Optical fiber communication system
US5027436A (en) Optical hybrid for coherent detection systems
CN101771470A (en) Method and device for receiving OPFDM-DQPSK signals
JPS60428A (en) Demodulating system of superhigh-speed optical phase modulated wave
CN110445610A (en) Polarization method for tracing, system and the medium of continuous variable quantum key distribution system
US5081712A (en) Method and apparatus for obtaining phase in sensitive and/or polarization-insensitive optical heterodyne receiver for a fsk-modulated transmission signal
JP5233115B2 (en) Optical receiver using DQPSK demodulation method and DQPSK demodulation method
RU95108154A (en) Correlation receiver of signals with dpsk
JPS5853805B2 (en) Pilot signal removal device
CA1163005A (en) Timing recovery for modems
JPH0653906A (en) Receiver and transmitter-receiver for coherent optical communication
JP2000354010A (en) Optical transmitter
JPS63229926A (en) Optical communication system
JPS60429A (en) Demodulating system of superhigh-speed optical phase modulated wave
JP2005123934A (en) Optical communication method, optical transmitter, optical receiver and optical communication system
JP2758227B2 (en) Optical heterodyne receiver
JPH0285830A (en) Coherent light receiving system
JPH0522354A (en) Optical communication system
JPH0682853A (en) Optical frequency conversion system
JPH0422253B2 (en)