JP2000354010A - Optical transmitter - Google Patents

Optical transmitter

Info

Publication number
JP2000354010A
JP2000354010A JP11200773A JP20077399A JP2000354010A JP 2000354010 A JP2000354010 A JP 2000354010A JP 11200773 A JP11200773 A JP 11200773A JP 20077399 A JP20077399 A JP 20077399A JP 2000354010 A JP2000354010 A JP 2000354010A
Authority
JP
Japan
Prior art keywords
waves
modulated
reference carrier
sends
baseband signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11200773A
Other languages
Japanese (ja)
Inventor
Hitoshi Kiuchi
等 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP11200773A priority Critical patent/JP2000354010A/en
Publication of JP2000354010A publication Critical patent/JP2000354010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical transmitter which can highly stably perform optical communication by using homodyne transmission method, with a simple and inexpensive constitution. SOLUTION: An optical transmitter first sends a laser light emitted from a laser light source 1 to a polarizer/separator 2. The polarizer/separator 2 separates the laser light into two different polarized waves and sends one of the polarized waves to a modulator 4. The modulator 4 modulates the received polarized waves into modulated waves, by using base-band signals S0 and sends the modulated waves to a synthesizer 5. The polarizer/separator 2 also sends the other polarized waves to the synthesizer 5 as they are, as a reference carrier wave. The combining unit 5 combines the modulated waves with a reference carrier wave and transmits the combined waves to a reception side through an optical fiber 6. On the reception side, a polarizer/separator 7 first separates the combined waves into the modulated waves and reference carrier wave and sends the separated waves to a synchronization detector 8. The detector 8 demodulates the modulated waves to the base-band signals S0 by performing homodyne detection on the modulated waves, based on the reference carrier wave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、レーザ光をベー
スバンド信号で変調したその変調光を光ファイバを用い
て伝送し、その伝送された変調光からベースバンド信号
を再生復調する光伝送装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission apparatus for modulating laser light with a baseband signal, transmitting the modulated light using an optical fiber, and reproducing and demodulating a baseband signal from the transmitted modulated light. Things.

【0002】[0002]

【従来の技術】従来の光伝送装置における伝送方式の主
流は、IM−DD(Intensity Modula
tion−Direct Detection)方式に
よるものであり、このIM−DD方式では、ベースバン
ド信号で強度変調した光信号を伝送し、直接検波(強度
検出)により再度ベースバンド信号を再生復調してい
る。この方式は、光の強度変化に情報を乗せている。
2. Description of the Related Art The mainstream of a transmission system in a conventional optical transmission apparatus is IM-DD (Intensity Modula).
In the IM-DD system, an optical signal intensity-modulated with a baseband signal is transmitted, and the baseband signal is reproduced and demodulated again by direct detection (intensity detection). In this method, information is added to a change in light intensity.

【0003】また、IM−DD方式に比べ、光受信感度
を10〜25dB改善できるコヒーレント方式によるも
のがある。このコヒーレント方式は、光の広い周波数帯
域を利用した光ネットワークを構築する際に、重要な技
術となっている。
Further, there is a coherent system capable of improving the optical receiving sensitivity by 10 to 25 dB as compared with the IM-DD system. This coherent method is an important technology when constructing an optical network using a wide frequency band of light.

【0004】図3は従来のコヒーレント方式による光伝
送装置の構成を示す図である。コヒーレント方式による
光伝送装置では、図に示すように、搬送波用レーザ10
1の信号(レーザ光)が、入力端子102からのベース
バンド信号S0により変調器103で変調され、光ファ
イバ104で伝送される。受信側では、受信光(光受信
データ)を同期検波器105で受光し同期検波復調する
際、ヘテロダイン方式とホモダイン方式が用いられる。
ヘテロダイン方式は、受信光を局部発振用レーザ106
からの局部発振光と混合して中間周波数に変換し、その
後ベースバンド信号S0に復調するものであり、ホモダ
イン方式は、局部発振用レーザ106からの局部発振光
を常に受信光と一致させて混合し、ベースバンド信号S
0に復調するものである。
FIG. 3 is a diagram showing the configuration of a conventional coherent optical transmission device. In a coherent optical transmission device, as shown in FIG.
One signal (laser light) is modulated by the modulator 103 by the baseband signal S0 from the input terminal 102 and transmitted by the optical fiber 104. On the receiving side, when the received light (optical received data) is received by the synchronous detector 105 and synchronously detected and demodulated, a heterodyne method and a homodyne method are used.
In the heterodyne method, the received light is
In the homodyne method, the local oscillation light from the local oscillation laser 106 is always mixed with the received light to be mixed with the local oscillation light from the laser and converted to an intermediate frequency and then demodulated to the baseband signal S0. And the baseband signal S
The signal is demodulated to 0.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来のコ
ヒーレント方式による光伝送装置では、何れの場合もI
M−DD方式と比べ、送信・受信に高安定なレーザ10
1,106が必要であるばかりか、受信側では同期回路
107によりレーザ同期を行うことが要求される。これ
がコヒーレント方式を行うにあたりシステムを複雑に
し、高価なものにしていた。
However, in the above-mentioned conventional optical transmission device using the coherent method, in any case,
Laser 10 that is more stable for transmission and reception than M-DD system
In addition to the necessity of 1 and 106, the receiving side is required to perform laser synchronization by the synchronization circuit 107. This made the system complicated and expensive in performing the coherent method.

【0006】この発明は上記に鑑み提案されたもので、
簡単でかつ安価に、しかも高安定に構築することができ
る光伝送装置を提供することを目的とする。
[0006] The present invention has been proposed in view of the above,
It is an object of the present invention to provide an optical transmission device that can be constructed simply, inexpensively, and stably.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、この発明の光伝送装置は、レーザ光をベースバンド
信号で変調し、その変調光を光ファイバを用いて伝送
し、その伝送した変調光からベースバンド信号を再生復
調する光伝送装置において、レーザ光源からのレーザ光
を2つの異なった偏波に分離し、一方の偏波にベースバ
ンド信号を用い変調を掛けて変調波とし、他方の偏波を
そのまま参照搬送波とし、両者を合成した後、その合成
波を光ファイバで受信側に送り、受信側で再度変調波と
参照搬送波とに分離し、その参照搬送波を基に変調波を
ホモダイン検波することで、ベースバンド信号に復調す
る、ことを特徴としている。
In order to achieve the above object, an optical transmission apparatus according to the present invention modulates a laser beam with a baseband signal, transmits the modulated beam using an optical fiber, and transmits the modulated beam. In an optical transmission device that reproduces and demodulates a baseband signal from a modulated light, a laser beam from a laser light source is separated into two different polarizations, and one of the polarizations is modulated using a baseband signal to produce a modulated wave, The other polarization is used as it is as a reference carrier, and after combining the two, the combined wave is sent to the receiving side via an optical fiber, and separated by the receiving side into a modulated wave and a reference carrier again. Is demodulated into a baseband signal by homodyne detection.

【0008】[0008]

【発明の実施の形態】以下にこの発明の実施の形態を図
面に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0009】図1はこの発明の光伝送装置の構成を示す
図である。この発明の光伝送装置は、レーザ光をベース
バンド信号S0で変調し、その変調光を光ファイバ7を
用いて伝送し、その伝送した変調光からベースバンド信
号S0を再生復調する装置であって、先ずレーザ光源1
からのレーザ光を偏波分離器2に送出する。偏波分離器
2では、そのレーザ光を2つの異なった偏波に分離し、
一方の偏波を変調器4に送出する。この変調器4では、
受光した偏波に入力端子3からのベースバンド信号S0
を用い変調を掛けて変調波とし、その変調波を合成器5
に送出する。なお、この場合の変調は、位相変調、周波
数変調、振幅変調の何れでもよい。また、偏波分離器2
は、他方の偏波をそのまま参照搬送波として、合成器5
に送出する。合成器5は、変調波と参照搬送波とを合成
しその合成波を光ファイバ6で受信側に伝送する。
FIG. 1 is a diagram showing a configuration of an optical transmission device according to the present invention. An optical transmission device according to the present invention is a device that modulates a laser beam with a baseband signal S0, transmits the modulated beam using an optical fiber 7, and reproduces and demodulates the baseband signal S0 from the transmitted modulated beam. First, the laser light source 1
Is transmitted to the polarization splitter 2. The polarization separator 2 separates the laser light into two different polarizations,
One polarized wave is transmitted to the modulator 4. In this modulator 4,
The baseband signal S0 from the input terminal 3 is applied to the received polarization.
And modulates it into a modulated wave.
To send to. Note that the modulation in this case may be any of phase modulation, frequency modulation, and amplitude modulation. In addition, the polarization separator 2
Is used as the reference carrier with the other polarization as it is,
To send to. The combiner 5 combines the modulated wave and the reference carrier, and transmits the combined wave to the receiving side via the optical fiber 6.

【0010】受信側では、先ず偏波分離器7がその合成
波を再度変調波と参照搬送波とに分離して同期検波器8
に送出する。同期検波器8では、参照搬送波を基に変調
波をホモダイン検波することで、ベースバンド信号S0
に復調する。
On the receiving side, first, the polarization separator 7 separates the combined wave into a modulated wave and a reference carrier again, and
To send to. The synchronous detector 8 performs homodyne detection of the modulated wave based on the reference carrier, thereby obtaining the baseband signal S0.
Demodulated to

【0011】図2はこの発明の光伝送装置の具体的な構
成例を示す図である。この構成例では、送信側および受
信側の各偏波分離器として偏光ビームスプリッタ21,
71を採用している。また、合成器5にも偏光ビームス
プリッタ等を使用できる。さらに、受信側の同期検波器
では、ホモダイン検波を行い、ベースバンド信号S0を
得る。すなわち、偏光ビームスプリッタ71で分離して
得た変調波と変調波の搬送波成分である参照搬送波とを
光周波数合成器(ミキサ)81で合成することで、光の
ビート信号としてのベースバンド信号を得る。このと
き、光周波数合成器81に入力される参照搬送波は、変
調波と同一偏波となるように1/4波長板83を通過し
たものである。これを受光素子82で受光し、電気信号
に変換し、電気信号としてのベースバンドS0信号を得
る。
FIG. 2 is a diagram showing a specific configuration example of the optical transmission device of the present invention. In this configuration example, the polarization beam splitters 21 and
71 is adopted. In addition, a polarization beam splitter or the like can be used for the synthesizer 5. Further, the synchronous detector on the receiving side performs homodyne detection to obtain a baseband signal S0. That is, by combining the modulated wave obtained by separation by the polarization beam splitter 71 and a reference carrier which is a carrier component of the modulated wave by an optical frequency synthesizer (mixer) 81, a baseband signal as a beat signal of light is converted. obtain. At this time, the reference carrier input to the optical frequency synthesizer 81 has passed through the quarter-wave plate 83 so as to have the same polarization as the modulated wave. This is received by the light receiving element 82 and converted into an electric signal to obtain a baseband S0 signal as an electric signal.

【0012】以上述べたように、この実施形態では、レ
ーザ光を2つの異なった偏波に分離し、その一つの偏波
を参照搬送波として受信側に送り、受信側ではその参照
搬送波でホモダイン検波を行うので、従来必要であった
高安定なレーザや、受信光に同期を掛けるための回路が
不要となり、したがって、ホモダイン伝送方式での光通
信を簡単でかつ安価な構成の下で、高安定に行うことが
できる。
As described above, in this embodiment, the laser beam is separated into two different polarizations, and one of the polarizations is sent to the receiving side as a reference carrier, and the receiving side uses the reference carrier for homodyne detection. This eliminates the need for a highly stable laser and a circuit for synchronizing the received light, which were required in the past.Thus, optical communication using the homodyne transmission method can be performed in a simple and inexpensive configuration with high stability. Can be done.

【0013】また、レーザ光を2つの異なった偏波に分
離し、同一ファイバにより同時に伝送するので、送信側
レーザの影響及び伝送途中で受ける雑音等の影響が共通
となり、したがって、受信側での同期検波時にそれらの
影響をキャンセルすることができ、検波(復調)を高精
度で行うことができる。一般にファイバの偏波分散によ
り各偏波の伝搬遅延量に差が生じるが、この伝搬遅延量
は、短時間で変化する量ではないため、本装置では固定
量として扱え通信上問題は生じない。
Further, since the laser light is separated into two different polarized waves and transmitted simultaneously by the same fiber, the influence of the laser on the transmission side and the influence of noise and the like received during transmission become common, and therefore, the influence on the reception side is increased. These effects can be canceled at the time of synchronous detection, and detection (demodulation) can be performed with high accuracy. In general, there is a difference in the amount of propagation delay of each polarization due to the polarization dispersion of the fiber. However, since this amount of propagation delay does not change in a short time, this device can treat it as a fixed amount and does not cause a communication problem.

【0014】[0014]

【発明の効果】以上説明したように、この発明の光伝送
装置によれば、レーザ光を2つの異なった偏波に分離
し、その一つの偏波を参照搬送波として受信側に送り、
受信側ではその参照搬送波でホモダイン検波を行うの
で、従来必要であった高安定なレーザや、受信光に同期
を掛けるための回路が不要となり、したがって、ホモダ
イン伝送方式での光通信を簡単でかつ安価な構成の下
で、高安定に行うことができる。
As described above, according to the optical transmission apparatus of the present invention, a laser beam is separated into two different polarizations, and one of the polarizations is sent to a receiving side as a reference carrier.
On the receiving side, homodyne detection is performed with the reference carrier wave, eliminating the need for a highly stable laser and a circuit for synchronizing the received light, which were required in the past. It can be performed with high stability under an inexpensive configuration.

【0015】また、レーザ光を2つの異なった偏波に分
離し、同一ファイバにより同時に伝送するので、送信側
レーザの影響及び伝送途中で受ける雑音等の影響が共通
となり、したがって、受信側での同期検波時にそれらの
影響をキャンセルすることができ、検波を高精度で行う
ことができる。
Further, since the laser light is separated into two different polarized waves and transmitted simultaneously through the same fiber, the influence of the laser on the transmission side and the influence of noise and the like received during transmission become common, and therefore, the influence on the reception side is increased. These effects can be canceled at the time of synchronous detection, and detection can be performed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光伝送装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an optical transmission device of the present invention.

【図2】この発明の光伝送装置の具体的な構成例を示す
図である。
FIG. 2 is a diagram showing a specific configuration example of an optical transmission device of the present invention.

【図3】従来のコヒーレント方式による光伝送装置の構
成を示す図である。
FIG. 3 is a diagram showing a configuration of a conventional coherent optical transmission device.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 偏波分離器 3 入力端子 4 変調器 5 合成器 6 光ファイバ 7 偏波分離器 8 同期検波器 9 増幅フィルタ 21 偏光ビームスプリッタ 71 偏光ビームスプリッタ 81 光周波数合成器 82 受光素子 S0 ベースバンド信号 REFERENCE SIGNS LIST 1 laser light source 2 polarization splitter 3 input terminal 4 modulator 5 combiner 6 optical fiber 7 polarization splitter 8 synchronous detector 9 amplification filter 21 polarization beam splitter 71 polarization beam splitter 81 optical frequency synthesizer 82 light receiving element S0 base Band signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光をベースバンド信号で変調し、
その変調光を光ファイバを用いて伝送し、その伝送した
変調光からベースバンド信号を再生復調する光伝送装置
において、 レーザ光源からのレーザ光を2つの異なった偏波に分離
し、一方の偏波にベースバンド信号を用い変調を掛けて
変調波とし、他方の偏波をそのまま参照搬送波とし、両
者を合成した後、その合成波を光ファイバで受信側に送
り、受信側で再度変調波と参照搬送波とに分離し、その
参照搬送波を基に変調波をホモダイン検波することで、
ベースバンド信号に復調する、 ことを特徴とする光伝送装置。
1. A method for modulating a laser beam with a baseband signal,
In an optical transmission device that transmits the modulated light using an optical fiber and regenerates and demodulates a baseband signal from the transmitted modulated light, a laser beam from a laser light source is separated into two different polarizations, and one of the polarizations is separated. The wave is modulated using a baseband signal to form a modulated wave, the other polarization is used as it is as a reference carrier, and the two are combined.Then, the combined wave is sent to the receiving side via an optical fiber, and the modulated wave is again formed on the receiving side. By separating into a reference carrier and homodyne detection of the modulated wave based on the reference carrier,
An optical transmission device for demodulating into a baseband signal.
JP11200773A 1999-06-10 1999-06-10 Optical transmitter Pending JP2000354010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11200773A JP2000354010A (en) 1999-06-10 1999-06-10 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11200773A JP2000354010A (en) 1999-06-10 1999-06-10 Optical transmitter

Publications (1)

Publication Number Publication Date
JP2000354010A true JP2000354010A (en) 2000-12-19

Family

ID=16429949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11200773A Pending JP2000354010A (en) 1999-06-10 1999-06-10 Optical transmitter

Country Status (1)

Country Link
JP (1) JP2000354010A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012080A (en) * 2001-07-30 2003-02-12 지정훈 Polarization Division Multiplexing Optical Communication System and Method, and Optical Transmitter and Receiver thereof
JP2007049350A (en) * 2005-08-09 2007-02-22 Mitsubishi Electric Corp Optical demodulation circuit
KR100703388B1 (en) * 2004-12-29 2007-04-03 삼성전자주식회사 Optical transceiver and passive optical network using the same
JP2011019198A (en) * 2009-07-10 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Transmission circuit for optical code division multiplexing and reception circuit for optical code division multiplexing
JP2011044913A (en) * 2009-08-21 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> Optical code division multiplexing transmission system and optical code division multiplexing transmission method
WO2022185400A1 (en) * 2021-03-02 2022-09-09 日本電信電話株式会社 Optical transmission device and transmission method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012080A (en) * 2001-07-30 2003-02-12 지정훈 Polarization Division Multiplexing Optical Communication System and Method, and Optical Transmitter and Receiver thereof
KR100703388B1 (en) * 2004-12-29 2007-04-03 삼성전자주식회사 Optical transceiver and passive optical network using the same
JP2007049350A (en) * 2005-08-09 2007-02-22 Mitsubishi Electric Corp Optical demodulation circuit
JP4694301B2 (en) * 2005-08-09 2011-06-08 三菱電機株式会社 Optical demodulation circuit
JP2011019198A (en) * 2009-07-10 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> Transmission circuit for optical code division multiplexing and reception circuit for optical code division multiplexing
JP2011044913A (en) * 2009-08-21 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> Optical code division multiplexing transmission system and optical code division multiplexing transmission method
WO2022185400A1 (en) * 2021-03-02 2022-09-09 日本電信電話株式会社 Optical transmission device and transmission method

Similar Documents

Publication Publication Date Title
CA1324689C (en) Method and apparatus for transmitting information
US7149435B2 (en) Method and apparatus for transmitting high-frequency signals in optical communication system
EP0718989B1 (en) A low-bias heterodyne fiber-optic communication link
US5146359A (en) Double-stage phase-diversity receiver
JPS59104847A (en) Radio communicating system
JP2000354010A (en) Optical transmitter
JP2007067663A (en) Optical-wireless fusion communications system and its method
CN115549792A (en) Optical millimeter wave receiving end, transmitting end, system, demodulation method and modulation method
CN115549791A (en) Optical millimeter wave receiving end, transmitting end, system, demodulation method and modulation method
JPS595757A (en) Optical coherent transmitting method
JP3218325B2 (en) Millimeter-wave wireless / optical fiber transmission system and equipment
JP3168735B2 (en) Coherent optical transmission equipment
JP2731600B2 (en) Wireless microphone method
WO2022001546A1 (en) Signal transmission method and apparatus, and network device
JP2758227B2 (en) Optical heterodyne receiver
JPH05303128A (en) Optical heterodyne detecting and receiving device capable of removing image signal
JPH0622348B2 (en) Optical heterodyne detection optical communication method
JPH0946300A (en) Optical communication method
JPH02120726A (en) Coherent light communication system
JPH06291734A (en) Optical communication system
JPS60107626A (en) Optical heterodyne-homodyne communication method
JPH104386A (en) Optical homodyne detection communication system and equipment, and system and equipment for optical code division multiplex transmission using same
JPH052197A (en) Optical transmission system, light wavelength conversion system, and reception system
JP3007955B2 (en) Optical / millimeter wave generation transmission method and apparatus
CN115733558A (en) Laser communication method, laser communication receiving end, transmitting end and laser communication system