JPS6042321B2 - Main steam stop valve with bypass valve - Google Patents

Main steam stop valve with bypass valve

Info

Publication number
JPS6042321B2
JPS6042321B2 JP1765678A JP1765678A JPS6042321B2 JP S6042321 B2 JPS6042321 B2 JP S6042321B2 JP 1765678 A JP1765678 A JP 1765678A JP 1765678 A JP1765678 A JP 1765678A JP S6042321 B2 JPS6042321 B2 JP S6042321B2
Authority
JP
Japan
Prior art keywords
valve
bypass valve
valve body
steam
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1765678A
Other languages
Japanese (ja)
Other versions
JPS54111127A (en
Inventor
俊夫 篠原
功 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1765678A priority Critical patent/JPS6042321B2/en
Publication of JPS54111127A publication Critical patent/JPS54111127A/en
Publication of JPS6042321B2 publication Critical patent/JPS6042321B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、蒸気流量を制御するバイパス弁体を主弁体
内に設けたバイパス弁付主蒸気止め弁に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a main steam stop valve with a bypass valve, in which a bypass valve body for controlling steam flow rate is provided within the main valve body.

蒸気タービンは起動時の熱応力を軽減するため全周噴射
運転を行う。
Steam turbines perform all-round injection operation to reduce thermal stress during startup.

このため、主蒸気止め弁の主弁体内に小開口比のバイパ
ス弁を設け、起動時には、下流にある蒸気加減弁をすべ
て全開のままとしておき、主弁体内のバイパス弁によつ
て蒸気流量を制御する。このバイパス弁は主蒸気弁の主
弁体に内蔵させてある関係上、その弁棒は下流側に設け
られ、弁棒で押し上げることにより弁体を開く構造にな
つている。
For this reason, a bypass valve with a small opening ratio is provided in the main valve body of the main steam stop valve, and at startup, all downstream steam control valves are left fully open, and the steam flow rate is controlled by the bypass valve in the main valve body. Control. Since this bypass valve is built into the main valve body of the main steam valve, its valve stem is provided on the downstream side, and the valve body is opened by pushing up with the valve stem.

また、比較的少流量の範囲の制御で、弁揚程も小さく、
弁体の前後の圧力差も非常に大きい。したがつて、弁を
通過する蒸気の流速は非常に大きく、そのため蒸気流中
に含まれている微少のドレンやスケール等の重量物によ
り弁がエロージヨンを受けることが多く、弁の一部が破
損し、その破片が下流側部、つまり、タービンのノズル
や羽根に損傷を与えるおそれがある。このエロージヨン
による弊害は、主蒸気の圧力の上昇とともに大きくなり
、169kglc♯ig以上の主蒸気の圧力の場合、毎
年バイパス弁を交換する例が多い。つぎに、従来のバイ
パス弁付主蒸気止め弁を第1図および第2図により説明
する。入口管部1と出口管部9とをそなえた弁箱8の内
部には主弁室2が形成されており、主弁室2には主蒸気
中に含まれる金属錆等の異物がタービン内に侵入するの
を防ぐための円筒形のストレーナ3が取付けられている
In addition, by controlling a relatively small flow rate range, the valve lift is also small.
The pressure difference before and after the valve body is also very large. Therefore, the flow rate of steam passing through the valve is extremely high, and as a result, the valve is often subject to erosion due to heavy objects such as minute amounts of condensate and scale contained in the steam flow, resulting in part of the valve being damaged. However, the fragments may cause damage to downstream parts, such as the turbine nozzles and blades. The damage caused by this erosion increases as the pressure of the main steam increases, and when the pressure of the main steam exceeds 169 kglc#ig, the bypass valve is often replaced every year. Next, a conventional main steam stop valve with a bypass valve will be explained with reference to FIGS. 1 and 2. A main valve chamber 2 is formed inside a valve box 8 having an inlet pipe section 1 and an outlet pipe section 9, and the main valve chamber 2 is used to prevent foreign matter such as metal rust contained in the main steam from entering the turbine. A cylindrical strainer 3 is attached to prevent water from entering the tank.

ストレーナ3の内がわにおける弁箱壁部には、主弁座5
を設けた拡大管7が取付けられており、主弁座5に対し
ては主弁体4が設置されている。主弁体4の上部中央に
は、弁棒11にねじばめさせたバイパス弁体10が内蔵
させられており、蒸気室22が設けられている。
A main valve seat 5 is attached to the wall of the valve box inside the strainer 3.
A main valve body 4 is mounted to the main valve seat 5. A bypass valve body 10 screwed onto a valve stem 11 is built into the center of the upper part of the main valve body 4, and a steam chamber 22 is provided therein.

蒸気室2の上方壁1部にはバイパス弁座21が形成され
ている。弁棒11は主弁体4に取付けた案内ブッシュ1
2により軸方向に摺動できるように支えられており、案
内ブッシュ12はキーパリング13によつて押えられて
いる。主弁体4、キーパリング13、弁棒illはキー
14、ピン15によつてそれぞれ回転を阻止するように
している。バイパス弁体10の上部には、バイパス弁体
10の肩部17を受けさせるストッパ部18を形成した
弁キャップ16がボルト32により固定されている。弁
キャップ16の外周部には、これとバイパス弁体10と
主弁体4との三者で形成されている円環状の蒸気室20
につらねた通路部19が設けられており、主弁体4には
蒸気室22と拡大管7内部とをつらねる通路部23が設
けられている。バイパス弁制御装置(図示してない)か
らの信号により駆動装置が作動し、弁棒11が押し上げ
られると、バイパス弁体10が一緒に上昇して弁座21
から離れる。
A bypass valve seat 21 is formed in a portion of the upper wall of the steam chamber 2 . The valve stem 11 is a guide bush 1 attached to the main valve body 4
2 so as to be slidable in the axial direction, and the guide bush 12 is held down by a keeper ring 13. The main valve body 4, keeper ring 13, and valve stem ill are prevented from rotating by a key 14 and a pin 15, respectively. A valve cap 16 having a stopper portion 18 for receiving the shoulder portion 17 of the bypass valve body 10 is fixed to the upper part of the bypass valve body 10 by bolts 32 . On the outer periphery of the valve cap 16, there is an annular steam chamber 20 formed by the valve cap 16, the bypass valve body 10, and the main valve body 4.
The main valve body 4 is provided with a passage 23 that connects the steam chamber 22 and the inside of the expansion tube 7. When the drive device is actuated by a signal from a bypass valve control device (not shown) and the valve stem 11 is pushed up, the bypass valve body 10 rises together with the valve seat 21.
move away from

すなわちバイパス弁が開く。このとき主弁体4はまだ全
閉したままである。さらに弁棒11が上昇し、バイパス
弁体10の肩部17が弁キャップ16のストッパ部18
に当り、それを押上げることによつて主弁体4が主弁座
5から離れて開く。一方、蒸気は、まずバイパス弁が開
くと、弁キャップ16の通路部19を経て円環状の蒸気
室20に入る。
That is, the bypass valve opens. At this time, the main valve body 4 remains fully closed. Further, the valve stem 11 rises, and the shoulder portion 17 of the bypass valve body 10 moves to the stopper portion 18 of the valve cap 16.
By pushing it up, the main valve body 4 separates from the main valve seat 5 and opens. On the other hand, when the bypass valve first opens, steam enters the annular steam chamber 20 through the passage section 19 of the valve cap 16.

そこで周方向の圧力の均一化が行われ、バイパス弁体1
0とバイパス弁座21との間を通り、弁棒11を中心と
する、主弁体4内の円環状の蒸気室22に入り、そこで
周方向の圧力の均一化が行われたのち、通路部23を経
て拡大管7内に流れこしみ、さらに下流の加減弁を経て
タービンへ流出する。上記のバイパス弁の揚程を変える
ことにより、弁絞り部の面積を変えて蒸気の流量を制御
するわけであるが、小流量範囲のため、弁前後の圧力差
が大きく、弁を通過した流れは超音速になる。
Therefore, the pressure in the circumferential direction is equalized, and the bypass valve body 1
0 and the bypass valve seat 21, and enters the annular steam chamber 22 in the main valve body 4 centered on the valve stem 11, where the pressure in the circumferential direction is equalized, and then the passage It flows into the expansion tube 7 through the section 23, and further flows out to the turbine through a downstream control valve. By changing the lift of the bypass valve mentioned above, the area of the valve throttle part is changed to control the steam flow rate. However, because the flow rate is in a small flow range, the pressure difference before and after the valve is large, and the flow passing through the valve is Become supersonic.

したがつて、弁下流の流れが弁棒11の表面近くで大き
く流れの方向を変えるようなこの弁構造では、弁棒11
は流れのベクトル変化による大きな衝撃を受ける。した
がつて、蒸気中にドレーンや金属酸化物の重い異物が含
まれていると、前述したようにその衝撃によりエロージ
ヨンを起し、極一端な場合には弁棒11の破断を招く。
この発明の目的は、弁棒のエロージヨンを軽減すること
ができるバイパス弁付主蒸気止め弁を提供するにある。
Therefore, in this valve structure in which the flow downstream of the valve largely changes the flow direction near the surface of the valve stem 11, the valve stem 11
is subject to large shocks due to changes in the flow vector. Therefore, if heavy foreign matter such as drain or metal oxide is included in the steam, the impact will cause erosion as described above, and in extreme cases, the valve stem 11 will break.
An object of the present invention is to provide a main steam stop valve with a bypass valve that can reduce erosion of the valve stem.

以下、この発明の一実施態様を第3図により説一明する
。同図において第1図および第2図と同じ符号をつけた
ものは同じもの、もしくは相当するものを表わす。バイ
パス弁体10とバイパス弁座21との締切り位置A点、
流路の最小断面積点B点24は、軸方向にずらしてあり
、両点A..B間の中間、いいかえればA点の下流がわ
には主弁体4とバイパス弁体10との間で形成した環状
の蒸気室27がある。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. In this figure, the same reference numerals as in FIGS. 1 and 2 represent the same or equivalent elements. A point A, a closing position between the bypass valve body 10 and the bypass valve seat 21;
The minimum cross-sectional area point 24 of the flow path is shifted in the axial direction, and both points A. .. In the middle between point B, or in other words, on the downstream side of point A, there is an annular steam chamber 27 formed between the main valve body 4 and the bypass valve body 10.

すなわち、比較的半径の大きな位置に、垂直な弁軸に対
して少くとも60度以上の大きな傾き角を持つ締切り点
Aを設け、その下流がわに噴流速度をやわらげ、周方向
の圧力の均一化をはかる蒸気室27を設け(さらに徐々
に弁軸に対して角度lが小さくなるように、流路壁を傾
け、半径の小さなり点では弁軸に対して30度以内の傾
き角で絞り流路となるようにしてある。B点では、バイ
パス弁体10の全閉時に、軸方向に0.5〜1.hの間
隙δを持つものとする。この場合、A点の半径を・R1
、傾き角をα1B点の半径をR2、傾き角をα2、弁の
揚程をhとすれば、の条件が満足されると、B点の流路
断面積はA点・の流路断面積よりも小さくなる。
In other words, a cut-off point A with a large inclination angle of at least 60 degrees with respect to the vertical valve shaft is provided at a position with a relatively large radius, and the jet velocity is softened downstream of the cut-off point A, thereby making the pressure uniform in the circumferential direction. (Furthermore, the flow path wall is tilted so that the angle 1 with respect to the valve shaft becomes gradually smaller, and at the point where the radius becomes small, the steam chamber 27 is narrowed with an angle of inclination of 30 degrees or less relative to the valve shaft.) At point B, there is a gap δ of 0.5 to 1.h in the axial direction when the bypass valve body 10 is fully closed.In this case, the radius of point A is R1
, the inclination angle is α1, the radius at point B is R2, the inclination angle is α2, and the lift height of the valve is h. If the following conditions are satisfied, the cross-sectional area of the flow path at point B is greater than the cross-sectional area of the flow path at point A. will also become smaller.

式(1)でhの小さな値でも左辺の値を右辺の値より大
きくすることは構造上困難ではないので、弁締切時にB
点で許容する軸方向の間隙の値δをある程度小さくとれ
ば、かなり小さな値の弁揚程で上記条件は満足できる。
バイパス弁体10の上部は中空になつており、その頭部
にバイパス弁キャップ31を取付けて蒸気室25を形成
してある。
In equation (1), even if h is small, it is structurally not difficult to make the value on the left side larger than the value on the right side, so when the valve is closed, B
If the value δ of the axial gap allowed at the point is set to a certain small value, the above conditions can be satisfied with a considerably small value of the valve lift.
The upper part of the bypass valve body 10 is hollow, and a steam chamber 25 is formed by attaching a bypass valve cap 31 to the head thereof.

この蒸気室25はバイパス弁体10に軸線に対して直角
に加工された数個の通路部29を介して円環状の蒸気室
27につらなつている。また、バイパス弁体10の蒸気
室25の下がわにおける円筒面部には、軸方向の小さな
通路孔26と、通路孔26につらなる蒸気室30と、蒸
気室30につらなる通路溝29とが設けられており、蒸
気室22は通路部23を介して拡大管7内に連通してい
る。バイパス弁体10の下方の円筒部は蒸気室22内に
突出しており、それに設けたねじ穴に弁棒11のねじ部
がはめこまれている。
This steam chamber 25 is connected to an annular steam chamber 27 via several passages 29 that are machined in the bypass valve body 10 at right angles to the axis. Further, a small passage hole 26 in the axial direction, a steam chamber 30 connected to the passage hole 26, and a passage groove 29 connected to the steam chamber 30 are provided on the cylindrical surface portion of the bypass valve body 10 at the lower side of the steam chamber 25. The steam chamber 22 communicates with the inside of the expansion tube 7 via a passage section 23. A lower cylindrical portion of the bypass valve body 10 projects into the steam chamber 22, and a threaded portion of the valve rod 11 is fitted into a threaded hole provided therein.

すなわち、バイパス弁体10と弁棒11のねじ締結部C
はかなり下方にあり、弁棒がバイパス弁からの噴流の影
響を受けない構造になつている。これにより、万一噴流
によるエロージヨンが発生しても、バイパス弁体10の
みを交換すればすむ。弁棒11の上昇によりA点で締切
られていたバイパス弁体10が開き始める。
That is, the screw fastening portion C between the bypass valve body 10 and the valve stem 11
is located far below, so that the valve stem is not affected by the jet flow from the bypass valve. As a result, even if erosion occurs due to the jet flow, only the bypass valve body 10 needs to be replaced. As the valve stem 11 rises, the bypass valve body 10, which had been closed at point A, begins to open.

このときB点はすてにある間隙を持つている。A点の間
隙が少し大きくなると、流路の最小断面積はB点に移る
。したがつてB点までは蒸気の流れは音速以下の比較的
乱れの少い流れになる。また、蒸気室27で流れは一部
分離し、通路部18を経て蒸気室25に入る。ここで流
れはよどみ、圧力が均一化され、軸方向の通路孔26、
および蒸気室30を通つて、周方向の圧力が均一化され
、ついで通路溝29から円筒状の軸方向の噴流となつて
弁筒部表面に沿つて流出する。この噴流はB点から超音
速の流れが、弁棒11およびこれに結合されたバイパス
弁下部の表面に衝突するのを防ぎ、エロージヨンの発生
を抑制する。その後、蒸気は蒸気室22て均圧化され、
通路部23を経て主弁体4の下流に流出する。この発明
の弁では、バイパス弁の蒸気流路の絞り部が二箇所ある
ので、弁前後の圧力比が等しい場合、B点から噴出する
流速は従来のものよりかなり小さくなる。
At this time, point B has a certain gap. When the gap at point A becomes slightly larger, the minimum cross-sectional area of the flow path shifts to point B. Therefore, up to point B, the steam flow is below the speed of sound and has relatively little turbulence. Further, the flow is partially separated in the steam chamber 27 and enters the steam chamber 25 via the passage section 18 . Here the flow stagnates, the pressure is equalized, and the axial passage hole 26,
The pressure in the circumferential direction is made uniform through the steam chamber 30, and then flows out from the passage groove 29 as a cylindrical axial jet along the surface of the valve barrel. This jet stream prevents the supersonic flow from point B from colliding with the valve stem 11 and the surface of the lower part of the bypass valve connected thereto, thereby suppressing the occurrence of erosion. After that, the steam is pressure-equalized in the steam chamber 22,
It flows out downstream of the main valve body 4 through the passage portion 23 . In the valve of this invention, since there are two throttle parts in the steam flow path of the bypass valve, if the pressure ratio before and after the valve is equal, the velocity of the flow jetting out from point B will be considerably smaller than that of the conventional valve.

これはA点の絞りを通過した蒸気は蒸気室27でその運
動エネルギの大半を失うためで、この流速の低下はエロ
ージヨンの発生をさらに減少させる。また、B点から噴
流の弁軸に対する角度は従来の弁にくらべてかなり小さ
い。この角度が30度以下の場合にはエロージヨンの進
行は非常に緩慢であることが知られている。以上説明し
たこの発明によれば、弁棒のエロージヨンを抑制し、保
守の間隙を増大することができる。
This is because the steam that has passed through the throttle at point A loses most of its kinetic energy in the steam chamber 27, and this reduction in flow velocity further reduces the occurrence of erosion. Furthermore, the angle of the jet flow from point B to the valve shaft is considerably smaller than that of conventional valves. It is known that when this angle is 30 degrees or less, erosion progresses very slowly. According to the invention described above, erosion of the valve stem can be suppressed and the gap for maintenance can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバイパス弁付主蒸気止め弁を示す縦断面
図、第2図は第1図における主弁体およびバイパス弁体
部分を示す拡大断面図、第3図はこの発明の一実施態様
を示す縦断面図である。 7・・・・・・拡大管、10・・・・・・バイパス弁体
、11・・・・・弁棒、12・・・・・・案内ブッシュ
、13・・・・・・キーパリング、14・・・・・・キ
ー、15・・・・・・ピン、17・・・バイパス弁体肩
部、18・・・・ストッパ部、19・・・・・・通路部
、20・・・・・・蒸気室、21・・・・・バイパス弁
座、22・・・・・・蒸気室、23・・・・・通路部、
24・・・最小流路断面積点、25・・・・・・蒸気室
、26・・・・・・通路孔、27・・・・・蒸気室、2
8・・・・・通路部、29・・・・・通路溝、30・・
・・・・蒸気室、31・・・・・・バイパス弁キャップ
FIG. 1 is a vertical sectional view showing a conventional main steam stop valve with a bypass valve, FIG. 2 is an enlarged sectional view showing the main valve body and bypass valve body portions in FIG. 1, and FIG. 3 is an embodiment of the present invention. It is a longitudinal cross-sectional view showing an aspect. 7... Enlarged pipe, 10... Bypass valve body, 11... Valve stem, 12... Guide bush, 13... Keeper ring, 14... Key, 15... Pin, 17... Bypass valve body shoulder, 18... Stopper part, 19... Passage part, 20... ... Steam chamber, 21 ... Bypass valve seat, 22 ... Steam room, 23 ... Passage section,
24... Minimum flow path cross-sectional area point, 25... Steam chamber, 26... Passage hole, 27... Steam chamber, 2
8... Passage portion, 29... Passage groove, 30...
...Steam chamber, 31...Bypass valve cap.

Claims (1)

【特許請求の範囲】[Claims] 1 主弁体内にバイパス弁体をそなえたバイパス弁付主
蒸気止め弁において、バイパス弁体の締切り位置と流路
最小断面位置との半径位置を軸方向に間隔おいて設け、
両位置間に蒸気圧を均一化させる蒸気室を形成し、かつ
、バイパス弁体の弁棒に対する結合部を、流路最小断面
位置の流路より下方に形成した蒸気室内におさめたバイ
パス弁付主蒸気止め弁。
1. In a main steam stop valve with a bypass valve having a bypass valve body within the main valve body, the radial position between the closing position of the bypass valve body and the minimum cross-sectional position of the flow path is spaced apart in the axial direction,
With a bypass valve that forms a steam chamber that equalizes the steam pressure between both positions, and that the connection part of the bypass valve body to the valve stem is housed in the steam chamber that is formed below the flow path at the minimum cross-sectional position of the flow path. Main steam stop valve.
JP1765678A 1978-02-20 1978-02-20 Main steam stop valve with bypass valve Expired JPS6042321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1765678A JPS6042321B2 (en) 1978-02-20 1978-02-20 Main steam stop valve with bypass valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1765678A JPS6042321B2 (en) 1978-02-20 1978-02-20 Main steam stop valve with bypass valve

Publications (2)

Publication Number Publication Date
JPS54111127A JPS54111127A (en) 1979-08-31
JPS6042321B2 true JPS6042321B2 (en) 1985-09-21

Family

ID=11949887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1765678A Expired JPS6042321B2 (en) 1978-02-20 1978-02-20 Main steam stop valve with bypass valve

Country Status (1)

Country Link
JP (1) JPS6042321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102379936B1 (en) * 2021-07-26 2022-04-04 모간산업 주식회사 Steam Trap

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236272B2 (en) * 2018-12-28 2023-03-09 三菱重工業株式会社 Steam valve and power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102379936B1 (en) * 2021-07-26 2022-04-04 모간산업 주식회사 Steam Trap

Also Published As

Publication number Publication date
JPS54111127A (en) 1979-08-31

Similar Documents

Publication Publication Date Title
CA1210422A (en) Multi-nozzle spray desuperheater
US4603710A (en) Non-return valve
EP1914393B1 (en) Steam valve and steam turbine plant
JPS6039911B2 (en) anti cavitation valve
US1477722A (en) slattery
US4121617A (en) Combined stop and control valve
CN108533780A (en) A kind of pressure and temperature reducing valve
US4177826A (en) Fire hydrant with improved shoe and valve
JPS6042321B2 (en) Main steam stop valve with bypass valve
JPS63293367A (en) Flow control valve
US4803841A (en) Moisture separator for steam turbine exhaust
CN1020240C (en) Pressure-medium-operated valve
JPS6113067A (en) Throttle valve
CA1115173A (en) Steam valve of turbine system in power generating plant
US4986309A (en) Main steam by-pass valve
JPH0647923B2 (en) Steam flow control valve
JPS6123601Y2 (en)
JPS6388278A (en) Water column separation suppressing method
JP2550439B2 (en) Control valve
US1545059A (en) Impulse turbine
KR830000394B1 (en) Steam stop valve with bypass valve
SU1539334A1 (en) Combination cutoff and control valve
US1603973A (en) Hydraulic turbine
US1604362A (en) Impulse turbine
CN104121240A (en) Resistance and vibration reduction hydraulic ram pump