JPS6041772A - Manufacture of spiral electrode - Google Patents

Manufacture of spiral electrode

Info

Publication number
JPS6041772A
JPS6041772A JP58150867A JP15086783A JPS6041772A JP S6041772 A JPS6041772 A JP S6041772A JP 58150867 A JP58150867 A JP 58150867A JP 15086783 A JP15086783 A JP 15086783A JP S6041772 A JPS6041772 A JP S6041772A
Authority
JP
Japan
Prior art keywords
separator
sack
microporous
spiral electrode
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58150867A
Other languages
Japanese (ja)
Other versions
JPH0673305B2 (en
Inventor
Kazumi Yoshimitsu
由光 一三
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58150867A priority Critical patent/JPH0673305B2/en
Publication of JPS6041772A publication Critical patent/JPS6041772A/en
Publication of JPH0673305B2 publication Critical patent/JPH0673305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent any internal short circuits and increase the effect of a separator by making a spiral electrode in such a manner as to cause the direction of the longer axis of the minute holes of a microporous resin film to coincide with the direction of the wrapping. CONSTITUTION:After a microporous polypropylene film 1 and a nonwoven polypropylene fabric are placed upon each other to make a separator 2, this is formed into a sack-like shape in such a manner as to locate the microporous polypropylene film 1 outside of the sack-like shape and to cause the direction of the longer axis of the minute holes to coincide with the direction of the length of the sack-like separator 2. Next, for instance, a positive plate 3 formed by packing a current-collecting stainless-steel net 4 with titanium disulfide used as a positive active material is inserted into the sack-like separator 2. Then, the thus obtained body and a negative plate 5 formed by pressing and fixing lithium to a stainless-steel current collector net are placed upon each other. After that, this is wrapped around a current-collecting pipe 6 a having a lid 7 to make a spiral electrode.

Description

【発明の詳細な説明】 フイルムをセバレータに用いる渦巻電極の製造方法の改
良に係り、電池の内部短絡の防止および二次電池に用い
た場合の充電時の短絡防市をはかることを目的とする。
[Detailed Description of the Invention] This invention relates to an improvement in the manufacturing method of a spiral electrode using a film as a separator, and aims to prevent internal short circuits in batteries and short circuits during charging when used in secondary batteries. .

渦巻電極は、一般にセパレータを正極板と負極板との間
に介在させた状態で正極板と負極板とを重ね合わセ渦巻
状に巻回するごとによって作られる。そして通電は正極
板からの正極合剤粉末の剥離による内部短絡の防止番は
かるため、セパレータを袋状にし、その中に正極板を入
れ、正極板をセパレータで包被した状態で正極板と負極
板とが重ね合わされる。
A spiral electrode is generally made by stacking a positive electrode plate and a negative electrode plate and winding them in a spiral shape with a separator interposed between the positive electrode plate and the negative electrode plate. In order to prevent internal short circuits due to peeling of the positive electrode mixture powder from the positive electrode plate, the energization is carried out by forming a separator into a bag, placing the positive electrode plate inside the bag, and placing the positive electrode plate and negative electrode together with the positive electrode plate covered with the separator. The plates are overlapped.

ところで、有機電解質系の電解液を用いる電池では、上
記セパレータの構成月利として微孔性樹脂フィルムと称
される方向性のある微細孔を多数有する樹脂フィルムが
反応に伴なう正極側の体JrJ増加が生じても良好な保
液性を有し電池特性の低下を招くことが少ないことから
好用され、ごの方向性のある微細孔を多数有する樹脂フ
ィルム(以下、微孔性樹脂フィルムという)とポリプロ
ピレン不織布やポリエチレン不織布などの不織布とを重
ね合わせるか、あるいは微孔性樹脂フィルム同士を重ね
合わ・lてセパレータとして用いられている。特に微孔
性ポリプロピレンフィルムとポリプロピレン不織布とを
重ね合わせたもめが好用され、通當その微孔性ポリプロ
ピレンフィルムが負極に対向するように配置される。
By the way, in a battery using an organic electrolyte-based electrolyte, a resin film having a large number of directional micropores, called a microporous resin film, is used as a component of the separator, and the body on the positive electrode side due to the reaction. Resin films with a large number of directional micropores (hereinafter referred to as microporous resin films) are often used because they have good liquid retention properties and rarely cause deterioration of battery characteristics even when JrJ increases. It is used as a separator by laminating a nonwoven fabric such as a polypropylene nonwoven fabric or a polyethylene nonwoven fabric, or by laminating microporous resin films together. Particularly preferred is a stack of a microporous polypropylene film and a polypropylene nonwoven fabric, and the microporous polypropylene film is generally arranged so as to face the negative electrode.

ところが、このような微孔性樹脂フィルムを使用したセ
パレータを用いて渦巻電極を作製し、電池組立を行なう
と、内部短絡の発生がしばしば認められる。特に二次電
池に用いた場合、充電時の内部短絡の発生が著しい。
However, when a spiral electrode is fabricated using a separator using such a microporous resin film and a battery is assembled, internal short circuits often occur. Particularly when used in secondary batteries, internal short circuits occur significantly during charging.

本発明者らはそのような内部短絡の発生原因の究明とそ
の防止対策を見出すべく種々研究を重ねた結果、そのよ
うな内部短絡は、微孔性樹脂フィルムの微細孔の長軸方
向が渦巻状に巻くときの巻き方向に垂直な方向に配置さ
れると、渦巻状に巻回したとき@細孔の幅が広がること
によって引き起されること、特に二次電池では充電時に
電析するリチウムが樹枝状であるため微細孔の幅が広が
るとリチウムがセパレータを貫通しやすくなるために内
部短絡の発生が多くなること、そして、微孔性樹脂フィ
ルムをその微細孔のし軸方向が渦巻状に巻(ときの巻き
方向と同じ方向になるように配置して渦巻電極を作製す
るときは、微細孔は長さ方向に伸びるが幅がより狭くな
るため内部短絡の防止はもとよりセパレータ効果が一段
と向」ニすることを見出し、本発明を完成するにいたっ
た。
The present inventors have conducted various studies to investigate the cause of such internal short circuits and find measures to prevent them. As a result, we have found that such internal short circuits occur when the long axis direction of the micropores of the microporous resin film is spiral. If the winding is perpendicular to the direction of winding, the width of the pores will expand when the pores are wound, especially in secondary batteries, when lithium is deposited during charging. Since the microporous resin film has a dendritic shape, as the width of the micropores increases, it becomes easier for lithium to penetrate the separator, which increases the occurrence of internal short circuits. When creating a spiral electrode by arranging it in the same direction as the winding direction, the micropores extend in the length direction but the width becomes narrower, which not only prevents internal short circuits but also improves the separator effect. This led to the completion of the present invention.

本発明においてセパレータに用いる微孔性樹脂フィルム
は、たとえばポリエチレン、ポリプロピレン、ナイロン
などの合成樹脂を押出成形によって微細孔を多数有する
ように成形されたフィルムで、その微細孔の径はたとえ
ば長軸方向が0.02〜0.2 pm 、短縮方向が0
.01〜0.05μmである。このような微孔性樹脂フ
ィルムの代表的な市販例としては「ジュラガード」の商
品名でポリプラスチックス(株)より市販されているポ
リプロピレン裂のものがあげられ、本発明tこおいて特
に好用される。
The microporous resin film used as a separator in the present invention is a film formed by extrusion molding of a synthetic resin such as polyethylene, polypropylene, or nylon to have a large number of micropores, and the diameter of the micropores is, for example, in the longitudinal direction. is 0.02 to 0.2 pm, and the shortening direction is 0.
.. 01 to 0.05 μm. A typical commercially available example of such a microporous resin film is a polypropylene film commercially available from Polyplastics Co., Ltd. under the trade name "Duraguard". Preferred.

次に本発明の実施例を図面とともに説明する。Next, embodiments of the present invention will be described with reference to the drawings.

実施例1 第1図は本実施例で用いる微孔性ポリプロピレンフィル
ムを模式的に示す平面図であり、この微孔性ポリプロピ
レンフィルム1においては微細孔1aは方向性を有して
形成されている。
Example 1 FIG. 1 is a plan view schematically showing a microporous polypropylene film used in this example, and in this microporous polypropylene film 1, micropores 1a are formed with directionality. .

」1記のような微孔性ポリプロピレンフィルムIとボリ
プIコビレン不織布とを重ね合わせてセパレータ2にし
、これを長方形の袋状に形成した。その際、微孔性ポリ
プロピレンフィルム1を外側にし、かつその微細孔1a
の長軸方向が袋状セパレータ2の長さ方向と同一方向に
なるように配置して袋状にした。
Microporous polypropylene film I and Volip I cobylene nonwoven fabric as described in Section 1 were superimposed to form a separator 2, which was formed into a rectangular bag shape. At that time, the microporous polypropylene film 1 is placed on the outside, and the micropores 1a are
The bag-shaped separator 2 was arranged so that its long axis direction was the same as the length direction of the bag-shaped separator 2.

第2図に示すように、この袋状セパレータ内2に、二硫
化ヂタンを正極活物質とし、ステンレス鋼製の集電網4
に保持させた正極板3を入れ、一方、リチウムをステン
レス鋼製の集電網に圧着して負極板5を形成し、これを
前記セパレータ2で包被した正極板3と重ね合わせ、蓋
7伺きの集電バイブロを芯にして渦巻状に巻いて渦巻電
極を形成した。
As shown in FIG. 2, inside this bag-shaped separator 2, titane disulfide is used as a positive electrode active material, and a stainless steel current collecting network 4 is placed inside the bag-shaped separator 2.
On the other hand, lithium was crimped onto a stainless steel current collector net to form a negative electrode plate 5, which was overlapped with the positive electrode plate 3 covered with the separator 2, and the lid 7 was closed. A spiral electrode was formed by winding the current collecting vibro in a spiral shape around the core.

このa1巻電極において、微孔性ポリプロピレンフィル
ム1はその微細孔1aの長軸方向が袋状セパレータ2の
長さ方向と同一方向になるように配置されているため、
渦巻状に巻回する方向と微細孔の長軸方向とが同一方向
になっている。
In this a1-wound electrode, the microporous polypropylene film 1 is arranged so that the long axis direction of the micropores 1a is in the same direction as the length direction of the bag-shaped separator 2.
The direction of spiral winding and the long axis direction of the micropores are in the same direction.

上記のようにして製造された渦巻電極を筒形の電池ケー
スに入れ、電解液として1.3−ジオキソランと1.2
−シメトギシェタンとの容量比が70:30の混合溶媒
にLiB(CsHs)4を0.6 Tニル/p/8解さ
せたものを用い、ハーメチックシールして電池を製造し
た。
The spiral electrode manufactured as described above was placed in a cylindrical battery case, and 1.3-dioxolane and 1.2
A battery was produced by hermetically sealing LiB(CsHs)4 dissolved in a mixed solvent having a volume ratio of 70:30 with -cymetogishetane at a concentration of 0.6 T nyl/p/8.

比較例1 微孔性ボリプ11ピレンフィルムをその微細孔の長軸方
向が渦巻状に巻く際の巻き方向に直交するように配置し
たばかは実施例1と同様にして渦巻電極を形成し、以後
実施例■と同様にして電池を製造した。
Comparative Example 1 A spiral electrode was formed in the same manner as in Example 1 by arranging a microporous Volip 11 pyrene film so that the long axis direction of the micropores was perpendicular to the direction of spiral winding. A battery was manufactured in the same manner as in Example (2).

−に記のようにして製造した実施例1の電池と比較例1
の電池を1.(1mAの定電流で放電1.5V〜充電2
.7Vの間で充hk電させ、サイクル数と充放電比との
関係をI’dべ、その結果を第3図に示した。
- Battery of Example 1 and Comparative Example 1 manufactured as described in
1. (Discharge 1.5V to charge 2 at 1mA constant current)
.. The battery was charged between 7V and the relationship between the number of cycles and the charge/discharge ratio was plotted, and the results are shown in FIG.

なお、充放電比とは次式に示すように 充電電気量(mAh ) 充放電比−□−−− 放電電気量(mAh) 各サイクルでの放電電気量と充放電電気量との比であり
、充放電比が1に近いほど充放電特性が良好なことを示
す。
Note that the charge/discharge ratio is the ratio of the amount of electricity charged (mAh), the amount of electricity discharged (mAh), and the amount of electricity charged and discharged in each cycle, as shown in the following formula. , the closer the charge-discharge ratio is to 1, the better the charge-discharge characteristics are.

第3図に示すように、実施例1の電池は比較例1の電池
に比べて充放電比が1に近く、充放電特性がずくれてい
た。比較例1の電池に−おいて充放電比が高いのは、渦
巻状に巻回する際に微孔性ポリプロピレンフィルムの微
細孔がひらいて、そこから樹枝状の電析リチウムが正極
側に号通して内部短絡を生じることによるものと思われ
る。また実施例1の電池の充放電特性がすぐれているの
は、微孔性ポリプロピレンフィルムの微細孔がひらかず
、樹枝状の電析リチウムによる内部短絡の発生が抑制で
きたためであると思われる。
As shown in FIG. 3, the battery of Example 1 had a charge/discharge ratio closer to 1 than the battery of Comparative Example 1, and its charge/discharge characteristics were deviated. The reason why the battery of Comparative Example 1 has a high charge-discharge ratio is that the fine pores in the microporous polypropylene film open up when it is spirally wound, and the dendritic electrodeposited lithium flows from there to the positive electrode side. This is thought to be due to the occurrence of an internal short circuit. Furthermore, the reason why the battery of Example 1 had excellent charge-discharge characteristics is thought to be because the microporous polypropylene film did not have micropores, which suppressed the occurrence of internal short circuits due to the dendritic electrodeposited lithium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は微孔性ポリプロピレンフィルムを模式的に示す
平面図、第2図は渦巻電極製造時の状態を模式的に示す
一部断面斜視図、第3図は本発明の実施例により製造さ
れた渦巻電極を用いた電池と従来法により製造された渦
巻電極を用いた電池のサイクル数と充放電比との関係を
示す図である。 1・・m 7L t’lポリプロピレンフィルム、1a
・・微細孔、2・・セパレータ 特許出19ii人 日立マクセル株式会社第1図 芳2閏 芳3図 月 サイク1し救
FIG. 1 is a plan view schematically showing a microporous polypropylene film, FIG. 2 is a partial cross-sectional perspective view schematically showing the state during manufacture of a spiral electrode, and FIG. 3 is a plan view schematically showing a microporous polypropylene film. FIG. 3 is a diagram showing the relationship between the number of cycles and the charge/discharge ratio of a battery using a spiral electrode manufactured by a conventional method and a battery using a spiral electrode manufactured by a conventional method. 1...m 7L t'l polypropylene film, 1a
...Minor pores, 2...Separator patent issued by 19ii Hitachi Maxell Co., Ltd.

Claims (1)

【特許請求の範囲】 (1,1方向性のある微細孔を多数有する樹脂フィルム
をセパレータに用いる渦巻電極の製造にあたり、」1記
樹脂フィルムをその微細孔の長軸方向が渦巻状に巻(と
きの巻き方向と同一方向になるように配置して、渦巻状
に巻くことを特徴とする渦巻電極の製造方法。 (2) セパレータが方向性のある微細rLを多数有す
るポリプロピレンフィルムとポリプし1ビレン不織布と
を重ね合わせたものであるH144許請求の範囲第1項
記載の渦巻電極の製造方法。
[Claims] (1. In manufacturing a spiral electrode using a resin film having a large number of directional micropores as a separator, "1. The resin film is wound in a spiral shape with the long axis direction of the micropores ( A method for producing a spiral electrode characterized by winding it in a spiral shape by arranging it in the same direction as the winding direction when the electrode is wound. A method for manufacturing a spiral electrode according to claim 1 of H144, which is obtained by laminating a birene nonwoven fabric.
JP58150867A 1983-08-17 1983-08-17 Method for manufacturing spiral electrode for lithium secondary battery Expired - Lifetime JPH0673305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58150867A JPH0673305B2 (en) 1983-08-17 1983-08-17 Method for manufacturing spiral electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58150867A JPH0673305B2 (en) 1983-08-17 1983-08-17 Method for manufacturing spiral electrode for lithium secondary battery

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP7207479A Division JP2732371B2 (en) 1995-07-20 1995-07-20 Method for manufacturing spiral electrode for lithium secondary battery
JP7207478A Division JP2732370B2 (en) 1995-07-20 1995-07-20 Method for manufacturing spiral electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS6041772A true JPS6041772A (en) 1985-03-05
JPH0673305B2 JPH0673305B2 (en) 1994-09-14

Family

ID=15506109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150867A Expired - Lifetime JPH0673305B2 (en) 1983-08-17 1983-08-17 Method for manufacturing spiral electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0673305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119171A (en) * 1986-11-07 1988-05-23 Sanyo Electric Co Ltd Nonaqueous type secondary battery
US8389204B2 (en) 2010-04-14 2013-03-05 Tokyo Ohka Kogyo Co., Ltd. Method for producing comb-shaped electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659478A (en) * 1979-10-17 1981-05-22 Matsushita Electric Ind Co Ltd Apparatus for manufacture of assembled spiral electrode plates
JPS575026A (en) * 1980-06-13 1982-01-11 Ricoh Co Ltd Light beam scanner
JPS5751479U (en) * 1980-09-10 1982-03-24

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659478A (en) * 1979-10-17 1981-05-22 Matsushita Electric Ind Co Ltd Apparatus for manufacture of assembled spiral electrode plates
JPS575026A (en) * 1980-06-13 1982-01-11 Ricoh Co Ltd Light beam scanner
JPS5751479U (en) * 1980-09-10 1982-03-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119171A (en) * 1986-11-07 1988-05-23 Sanyo Electric Co Ltd Nonaqueous type secondary battery
US8389204B2 (en) 2010-04-14 2013-03-05 Tokyo Ohka Kogyo Co., Ltd. Method for producing comb-shaped electrode

Also Published As

Publication number Publication date
JPH0673305B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
EP0251683A2 (en) High rate sealed lead-acid battery with ultrathin plates
JP2002134161A (en) Spiral electrode group for battery and battery
JPH09147834A (en) Battery
JPS6041772A (en) Manufacture of spiral electrode
US6468687B1 (en) Alkaline storage battery with reinforced separators
JPH04341766A (en) Spiral type closed storage battery
JPH10302842A (en) Winding type secondary battery
KR20000076959A (en) Rectangular battery
JP2732371B2 (en) Method for manufacturing spiral electrode for lithium secondary battery
JP2732370B2 (en) Method for manufacturing spiral electrode for lithium secondary battery
JP2966697B2 (en) Alkaline secondary battery
JPH05135756A (en) Battery with spiral electrode plate group
JP3511709B2 (en) Thin battery
JP4208311B2 (en) Non-aqueous electrolyte battery
JP2884570B2 (en) Sealed alkaline secondary battery
CN113036225B (en) Method for manufacturing lithium ion battery
JPH09129211A (en) Nonaqueous electrolytic secondary battery
JP2874529B2 (en) Lithium battery
JPH043403Y2 (en)
JPS5818871A (en) Zinc-nickel battery
JPH0552028B2 (en)
JPH0272564A (en) Alkaline storage battery
JPH071732Y2 (en) Alkaline zinc secondary battery
JPH0417271A (en) Secondary battery and manufacture thereof
JPS6235452A (en) Electrode plate for storage battery