JP2732371B2 - Method for manufacturing spiral electrode for lithium secondary battery - Google Patents

Method for manufacturing spiral electrode for lithium secondary battery

Info

Publication number
JP2732371B2
JP2732371B2 JP7207479A JP20747995A JP2732371B2 JP 2732371 B2 JP2732371 B2 JP 2732371B2 JP 7207479 A JP7207479 A JP 7207479A JP 20747995 A JP20747995 A JP 20747995A JP 2732371 B2 JP2732371 B2 JP 2732371B2
Authority
JP
Japan
Prior art keywords
separator
electrode plate
secondary battery
battery
spiral electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7207479A
Other languages
Japanese (ja)
Other versions
JPH0845547A (en
Inventor
一三 由光
耕三 梶田
俊勝 真辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP7207479A priority Critical patent/JP2732371B2/en
Publication of JPH0845547A publication Critical patent/JPH0845547A/en
Application granted granted Critical
Publication of JP2732371B2 publication Critical patent/JP2732371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、方向性のある微細
孔を多数有する樹脂フィルムをセパレータに用いるリチ
ウム二次電池用渦巻電極の製造方法の改良に係り、電池
組立時の内部短絡の発生防止および充電時の樹枝状電析
リチウムによる内部短絡の発生防止をはかることを目的
とする。 【0002】 【従来の技術】渦巻電極は、一般にセパレータを正極板
と負極板との間に介在させた状態で正極板と負極板とを
重ね合わせ渦巻状に巻回することによって作られる。そ
して、通常は正極板からの正極合剤粉末の剥離による内
部短絡の防止をはかるため、セパレータを袋状にし、そ
の中に正極板を入れ、正極板をセパレータで包被した状
態で正極板と負極板とが重ね合わされる。 【0003】ところで、有機電解質系の電解液を用いる
電池では、上記セパレータの構成材料として微孔性樹脂
フィルムと称される方向性のある微細孔を多数有する樹
脂フィルムが反応に伴なう正極側の体積増加が生じても
良好な保液性を有し電池特性の低下を招くことが少ない
ことから好用され、この方向性のある微細孔を多数有す
る樹脂フィルム(以下、微孔性樹脂フィルムという)と
ポリプロピレン不織布やポリエチレン不織布などの不織
布とを重ね合わせるか、あるいは微孔性樹脂フィルム同
士を重ね合わせてセパレータとして用いられている。特
に微孔性ポリプロピレンフィルムとポリプロピレン不織
布とを重ね合わせたものが好用され、通常その微孔性ポ
リプロピレンフィルムが負極に対向するように配置され
る。 【0004】 【発明が解決しようとする課題】ところが、このような
微孔性樹脂フィルムを使用したセパレータを用いて渦巻
電極を作製し、電池組立を行うと、内部短絡の発生がし
ばしば認められる。特に二次電池に用いた場合、充電時
の内部短絡の発生が著しい。 【0005】 【課題を解決するための手段】本発明者らは、そのよう
な内部短絡の発生原因の究明とその防止対策を見出すべ
く種々研究を重ねた結果、そのような内部短絡は、微孔
性樹脂フィルムの微細孔の長軸方向が渦巻状に巻くとき
の巻き方向に垂直な方向に配置されると、渦巻状に巻回
したとき微細孔の幅が広がることによって引き起こされ
ること、特に二次電池では充電時に電析するリチウムが
樹枝状であるため微細孔の幅が広がるとリチウムがセパ
レータを貫通しやすくなるために内部短絡の発生が多く
なること、そして、微孔性樹脂フィルムをその微細孔の
長軸方向が渦巻状に巻くときの巻き方向と同じ方向にな
るように配置して渦巻電極を作製するときは、微細孔は
長さ方向に伸びるが幅がより狭くなるため内部短絡の防
止はもとよりセパレータ効果が一段と向上することを見
出し、本発明を完成するにいたった。 【0006】本発明においてセパレータに用いる微孔性
樹脂フィルムは、たとえばポリエチレン、ポリプロピレ
ン、ナイロンなどの合成樹脂を押出成形によって微細孔
を多数有するように成形されたフィルムで、その微細孔
の径は、たとえば長軸方向が0.02〜0.2μm、短
軸方向が0.01〜0.05μmである。このような微
孔性樹脂フィルムの代表的な市販例としては「ジュラガ
ード」の商品名でポリプラスチックス(株)より市販さ
れているポリプロピレン製のものがあげられ、本発明に
おいて特に好適に用いられる。 【0007】 【発明の実施の形態】つぎに、本発明の実施例を図面と
ともに説明する。 【0008】実施例1 図1は本実施例で用いる微孔性ポリプロピレンフィルム
を模式的に示す平面図であり、この微孔性ポリプロピレ
ンフィルム1においては微細孔1aは方向性を有して形
成されている。 【0009】上記のような微孔性ポリプロピレンフィル
ム1とポリプロピレン不織布とを重ね合わせてセパレー
タ2にし、これを長方形の袋状に形成した。その際、微
孔性ポリプロピレンフィルム1を外側にし、かつその微
細孔1aの長軸方向が袋状セパレータ2の長さ方向と同
一方向になるように配置して袋状にした。 【0010】図2に示すように、この袋状セパレータ内
2に、二硫化チタンを正極活物質とし、ステンス鋼製の
集電網4に保持させた正極板3を入れ、一方、リチウム
をステンレス鋼製の集電網に圧着して負極板5を形成
し、これを前記セパレータ2で包被した正極板3と重ね
合わせ、蓋7付きの集電パイプ6を芯にして渦巻状に巻
いて渦巻電極を形成した。 【0011】この渦巻電極において、微孔性ポリプロピ
レンフィルム1はその微細孔1aの長軸方向が袋状セパ
レータ2の長さ方向と同一方向になるように配置されて
いるため、渦巻状に巻回する方向と微細孔の長軸方向と
が同一方向になっている。 【0012】上記のようにして製造された渦巻電極を筒
形の電池ケースに入れ、電解液として1,3−ジオキソ
ランと1,2−ジメトキシエタンとの容量比が70:3
0の混合溶媒にLiB(C6 5 4 を0.6モル/リ
ットル溶解させたものを用い、ハーメチックシールして
電池を製造した。 【0013】比較例1 微孔性ポリプロピレンフィルムをその微細孔の長軸方向
が渦巻状に巻く際の巻き方向に直交するように配置した
ほかは実施例1と同様にして渦巻電極を形成し、以後実
施例1と同様にして電池を製造した。 【0014】上記のようにして製造した実施例1の電池
と比較例1の電池を1.0mAの定電流で放電1.5V
〜充電2.7Vの間で充放電させ、サイクル数と充放電
比との関係を調べ、その結果を図3に示した。なお、充
放電比とは次式に示すように 各サイクルでの放電電気量と充電電気量との比であり、
充放電比が1に近いほど充放電特性が良好なことを示
す。 【0015】図3に示すように、実施例1の電池は比較
例1の電池に比べて充放電比が1に近く、充放電特性が
すぐれていた。比較例1の電池において充放電比が高い
のは、渦巻状に巻回する際に微孔性ポリプロピレンフィ
ルムの微細孔がひらいて、そこから樹枝状の電枝リチウ
ムが正極側に貫通して内部短絡を生じることによるもの
と思われる。また実施例1の電池の充放電特性がすぐれ
ているのは、微孔性ポリプロピレンフィルムの微細孔が
ひらかず、樹枝状の電析リチウムによる内部短絡の発生
が抑制できたためであると思われる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an improvement in a method for manufacturing a spiral electrode for a lithium secondary battery using a resin film having a number of directional fine holes as a separator. Another object of the present invention is to prevent the occurrence of an internal short circuit during battery assembly and the occurrence of an internal short circuit due to dendritic lithium during charging. 2. Description of the Related Art A spiral electrode is generally formed by laminating a positive electrode plate and a negative electrode plate in a state where a separator is interposed between the positive electrode plate and the negative electrode plate, and winding the spirally. And usually, in order to prevent internal short circuit due to peeling of the positive electrode mixture powder from the positive electrode plate, the separator is made into a bag shape, the positive electrode plate is put therein, and the positive electrode plate is covered with the separator with the positive electrode plate. The negative electrode plate is overlaid. In a battery using an organic electrolyte-based electrolytic solution, a resin film having a large number of directional fine pores called a microporous resin film is used as a constituent material of the separator. A resin film having a large number of micropores having this directionality (hereinafter, referred to as a microporous resin film) is preferably used because it has good liquid retention properties and does not cause a decrease in battery characteristics even when the volume of the resin increases. ) And a non-woven fabric such as a polypropylene non-woven fabric or a polyethylene non-woven fabric, or a micro-porous resin film is superposed on each other and used as a separator. In particular, a laminate of a microporous polypropylene film and a polypropylene nonwoven fabric is preferably used, and the microporous polypropylene film is usually arranged so as to face the negative electrode. [0004] However, when a spiral electrode is manufactured using a separator using such a microporous resin film and a battery is assembled, occurrence of an internal short circuit is often recognized. In particular, when used in a secondary battery, the occurrence of an internal short circuit during charging is remarkable. The present inventors have conducted various studies to find out the cause of such an internal short-circuit and to find countermeasures to prevent the internal short-circuit. When the long axis direction of the micropores of the porous resin film is arranged in a direction perpendicular to the winding direction when spirally wound, it is caused by the widening of the micropores when spirally wound, particularly, In a secondary battery, lithium that is deposited during charging is in a dendritic form, so if the width of the micropores is widened, lithium tends to penetrate through the separator, so that an internal short circuit occurs more frequently. When a spiral electrode is fabricated by arranging the micropores in such a way that the major axis direction of the micropores is the same as the winding direction when spirally wound, the micropores extend in the length direction but become narrower because the width becomes narrower. To prevent short circuit Naturally, the inventors have found that the separator effect is further improved, and have completed the present invention. [0006] The microporous resin film used for the separator in the present invention is a film formed by extruding a synthetic resin such as polyethylene, polypropylene, nylon or the like so as to have a large number of micropores. For example, the major axis direction is 0.02 to 0.2 μm, and the minor axis direction is 0.01 to 0.05 μm. A typical commercially available example of such a microporous resin film is a polypropylene film commercially available from Polyplastics Co., Ltd. under the trade name "Duragard", and is particularly preferably used in the present invention. Can be Next, embodiments of the present invention will be described with reference to the drawings. Example 1 FIG. 1 is a plan view schematically showing a microporous polypropylene film used in this example. In this microporous polypropylene film 1, micropores 1a are formed with a direction. ing. [0009] The separator 2 was formed by laminating the microporous polypropylene film 1 and a polypropylene nonwoven fabric as described above, and formed into a rectangular bag shape. At that time, the microporous polypropylene film 1 was placed outside and the major axis direction of the micropores 1a was arranged in the same direction as the length direction of the bag-like separator 2 to form a bag. As shown in FIG. 2, a positive electrode plate 3 containing titanium disulfide as a positive electrode active material and held by a current collector network 4 made of stainless steel is put in the bag-shaped separator 2, and lithium is added to stainless steel. A negative electrode plate 5 is formed by press-fitting the negative electrode plate 5 with a positive electrode plate 3 covered with the separator 2 and spirally wound around a current collecting pipe 6 with a lid 7 as a core. Was formed. In this spiral electrode, the microporous polypropylene film 1 is arranged so that the major axis direction of the micropores 1a is in the same direction as the length direction of the bag-like separator 2, so that it is spirally wound. And the major axis direction of the fine holes is the same direction. The spiral electrode manufactured as described above is placed in a cylindrical battery case, and the volume ratio of 1,3-dioxolane to 1,2-dimethoxyethane is 70: 3 as an electrolytic solution.
Using a mixed solvent of LiB (C 6 H 5 ) 4 dissolved in 0.6 mol / liter in a mixed solvent of No. 0, a hermetic seal was used to manufacture a battery. Comparative Example 1 A spiral electrode was formed in the same manner as in Example 1, except that the microporous polypropylene film was arranged so that the major axis direction of the micropores was perpendicular to the winding direction when spirally wound. Thereafter, a battery was manufactured in the same manner as in Example 1. The battery of Example 1 and the battery of Comparative Example 1 manufactured as described above were discharged at a constant current of 1.0 mA and discharged at 1.5 V.
The charge / discharge was performed between the charge and the charge of 2.7 V, and the relationship between the number of cycles and the charge / discharge ratio was examined. The result is shown in FIG. The charge / discharge ratio is as shown in the following equation. The ratio between the amount of discharged electricity and the amount of charged electricity in each cycle,
The closer the charge / discharge ratio is to 1, the better the charge / discharge characteristics. As shown in FIG. 3, the battery of Example 1 had a charge / discharge ratio close to 1 as compared with the battery of Comparative Example 1, and had excellent charge / discharge characteristics. The charge / discharge ratio of the battery of Comparative Example 1 is high because the micropores of the microporous polypropylene film are opened when spirally wound, and dendritic lithium branches penetrate to the positive electrode side from there, and the inside of the battery. Probably due to short circuit. The reason why the battery of Example 1 has excellent charge / discharge characteristics is considered to be that the micropores of the microporous polypropylene film did not open and the occurrence of internal short circuit due to dendritic electrodeposited lithium could be suppressed.

【図面の簡単な説明】 【図1】微孔性ポリプロピレンフィルムを模式的に示す
平面図である。 【図2】渦巻電極製造時の状態を模式的に示す一部断面
斜視図である。 【図3】本発明の実施例により製造された渦巻電極を用
いた電池と従来法により製造された渦巻電極を用いた電
池のサイクル数と充放電比との関係を示す図である。 【符号の説明】 1 微孔性ポリプロピレンフィルム 1a 微細孔 2 セパレータ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view schematically showing a microporous polypropylene film. FIG. 2 is a partially sectional perspective view schematically showing a state at the time of manufacturing a spiral electrode. FIG. 3 is a diagram showing the relationship between the number of cycles and the charge / discharge ratio of a battery using a spiral electrode manufactured according to an example of the present invention and a battery using a spiral electrode manufactured by a conventional method. [Description of Signs] 1 Microporous polypropylene film 1a Micropore 2 Separator

Claims (1)

(57)【特許請求の範囲】 1.方向性のある微細孔を多数有する樹脂フィルムと不
織布とを重ね合わせてセパレータに用いるリチウム二次
電池用渦巻電極の製造にあたり、上記セパレータを正極
板と負極板との間に上記樹脂フィルムが負極板に接する
ようにして介在させ、かつ上記樹脂フィルムをその微細
孔の長軸方向が渦巻状に巻くときの巻き方向と同一方向
になるように配置して、渦巻状に巻くことを特徴とする
リチウム二次電池用渦巻電極の製造方法。
(57) [Claims] In manufacturing a spiral electrode for a lithium secondary battery, which is used by laminating a resin film having a number of directional pores and a nonwoven fabric for use as a separator, the resin film is interposed between the positive electrode plate and the negative electrode plate and the negative electrode plate is disposed between the separator. Lithium is interposed so as to be in contact with, and the resin film is arranged so that the major axis direction of the fine holes is in the same direction as the spiral direction when spirally wound, and spirally wound. A method for manufacturing a spiral electrode for a secondary battery.
JP7207479A 1995-07-20 1995-07-20 Method for manufacturing spiral electrode for lithium secondary battery Expired - Lifetime JP2732371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7207479A JP2732371B2 (en) 1995-07-20 1995-07-20 Method for manufacturing spiral electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7207479A JP2732371B2 (en) 1995-07-20 1995-07-20 Method for manufacturing spiral electrode for lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58150867A Division JPH0673305B2 (en) 1983-08-17 1983-08-17 Method for manufacturing spiral electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0845547A JPH0845547A (en) 1996-02-16
JP2732371B2 true JP2732371B2 (en) 1998-03-30

Family

ID=16540438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7207479A Expired - Lifetime JP2732371B2 (en) 1995-07-20 1995-07-20 Method for manufacturing spiral electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2732371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568929B2 (en) 2009-09-02 2013-10-29 Samsung Sdi Co., Ltd. Electrode assembly including separators having crossing pores and rechargeable battery

Also Published As

Publication number Publication date
JPH0845547A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
JPH11149914A (en) Cylindrical alkaline storage battery employing non-sintered electrode and its manufacture
JPH09147834A (en) Battery
JP2732371B2 (en) Method for manufacturing spiral electrode for lithium secondary battery
JP2732370B2 (en) Method for manufacturing spiral electrode for lithium secondary battery
JPH1167273A (en) Lithium secondary battery
JPH1064588A (en) Cylindrical lithium secondary battery
JPH0673305B2 (en) Method for manufacturing spiral electrode for lithium secondary battery
JPH05190158A (en) Storage battery
JP2000090965A (en) Cylindrical alkaline secondary battery
JP2966697B2 (en) Alkaline secondary battery
JPH05135756A (en) Battery with spiral electrode plate group
JPH071732Y2 (en) Alkaline zinc secondary battery
JP3332139B2 (en) Sealed alkaline storage battery
JPH0552028B2 (en)
JPH06310116A (en) Zinc alkaline secondary battery
JPH05166539A (en) Internal structure of battery
JPS6037662A (en) Zinc electrode
JPH0381953A (en) Separator for battery
JP3208246B2 (en) Non-aqueous electrolyte secondary battery
JPH0638376Y2 (en) Alkaline zinc storage battery
JPS6325659Y2 (en)
JPH02216757A (en) Alkaline zinc storage battery
JP3462563B2 (en) Hydrogen storage alloy electrode
JPH043403Y2 (en)
JPH06260162A (en) Alkaline battery and separator for same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971125