JPS6041505A - Liquid separator - Google Patents

Liquid separator

Info

Publication number
JPS6041505A
JPS6041505A JP58146682A JP14668283A JPS6041505A JP S6041505 A JPS6041505 A JP S6041505A JP 58146682 A JP58146682 A JP 58146682A JP 14668283 A JP14668283 A JP 14668283A JP S6041505 A JPS6041505 A JP S6041505A
Authority
JP
Japan
Prior art keywords
woven
knitted fabric
fabric
passage
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58146682A
Other languages
Japanese (ja)
Other versions
JPH0371166B2 (en
Inventor
Teisuke Kojima
小嶋 悌亮
Heiichiro Matsuda
松田 平一郎
Naokatsu Kanamaru
金丸 直勝
Takuo Ito
卓雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58146682A priority Critical patent/JPS6041505A/en
Publication of JPS6041505A publication Critical patent/JPS6041505A/en
Publication of JPH0371166B2 publication Critical patent/JPH0371166B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain stably a high-purity permeated liquid for many hours when used at high temps. and pressure by specifying the relation between the yarn density of woven fabric as a base material for supporting a semipermeable membrane and the yarn density of woven and knitted fabric as a passage material. CONSTITUTION:The semipermeable membranes 17 and 17' are formed on base materials 25 and 25', and the base materials 25 and 25' are placed on each other at a position to hold a passage material 24 in between from both sides. The passage material 24 is provided with ribs having suitable height, and a permeated liquid flows through the clearance as a passage 23 formed by the grooves between the ribs and the base material 25. The base material 25 and 25' are formed of woven fabric A and the passage material 24 of woven and knitted fabric B. The relation between the yarn density Nb (number/25mm.) of the woven and knitted fabric B in the direction of the woven and knitted fabric B vertical to the direction of the passage 23 and the yarn density Na (number/25mm.) of the woven fabric A in the same direction is regulated to Nb<=Na-13 or Na+8<=Nb. The yarn density Na of the woven fabric A as a basis is regulated to about 60- 80/25mm..

Description

【発明の詳細な説明】 C本発明の技術分yf〕 本発明は半透膜を用いた液体分離装置に関する。[Detailed description of the invention] C Technical component of the present invention yf] The present invention relates to a liquid separation device using a semipermeable membrane.

更に詳しくは逆浸透膜を用いた液体分離装置における透
過液が通過する流路利および半透膜を保持する基材の構
造に関する。
More specifically, the present invention relates to the flow path through which a permeated liquid passes in a liquid separation device using a reverse osmosis membrane and the structure of a base material that holds a semipermeable membrane.

〔従来技術とその問題点〕[Prior art and its problems]

従来から逆浸透法を用いた液体分離装置は2枚の半透膜
を封筒状にし、該封筒の開放端を中空軸管の中空部に連
通せしめると共に該封筒を中空軸管のまわりにまきつけ
、該封筒の内filNを透間液が。
Conventionally, a liquid separation device using the reverse osmosis method consists of forming two semipermeable membranes into an envelope shape, communicating the open end of the envelope with the hollow part of a hollow shaft tube, and wrapping the envelope around the hollow shaft tube. The interstitial fluid fills the inside of the envelope.

封筒の外側を原液が流れる構造としたいわゆるスパイラ
ル型のものがある。
There is a so-called spiral type that has a structure in which the undiluted solution flows around the outside of the envelope.

この液体分離装置は封筒の外側に膜の逆浸透圧以上の高
圧の原液を通過させ、膜を通過した透過液は封筒の内側
を通って取シ出されるが、封筒自体品用にて外側から加
圧されるため、透過液の流路として挿入されている流路
材を押しつぶすことになり液の流れを悪くするので、一
般に封筒の内側に封筒の外側を加圧されても透過液の流
路をなす流路材がつぶされないように流路材自体を剛直
化させ変形に耐えられるようにしている。
This liquid separation device passes a high-pressure stock solution that is higher than the reverse osmosis pressure of the membrane through the outside of the envelope, and the permeate that has passed through the membrane is taken out through the inside of the envelope. Because the pressure is applied, it crushes the channel material inserted as a flow path for the permeated liquid, impairing the flow of the liquid, so generally speaking, even if the outside of the envelope is pressurized, the flow of the permeated liquid will be suppressed. In order to prevent the channel material forming the channel from being crushed, the channel material itself is made rigid so that it can withstand deformation.

そしてこの流路材に用いられていたものは織物。The material used for this channel material was woven fabric.

編物などの多孔性でその内部に延びる微細な溝をもつ布
帛が用いられ、特に表面に溝をもつ構造のものが用いら
れていた。これらの布帛は膜を介して原液に加わる圧力
によっても容易に変形しないようにメラミン樹脂などを
含浸させて剛直化させていた。一方、半透膜自体は加圧
如より破れ易いので、基材として織物で支持し、耐久性
を上げていた。
Porous fabrics such as knitted fabrics with fine grooves extending inside them were used, especially fabrics with grooves on the surface. These fabrics were impregnated with melamine resin to make them rigid so that they would not easily deform due to the pressure applied to the raw solution through the membrane. On the other hand, since the semipermeable membrane itself is easily torn under pressure, it has been supported with a fabric as a base material to increase its durability.

そして従来、前記した流路利としての織編物Bと、半透
膜を支持する基材としての織物人の各々の糸密度の差I
″i精々5〜6本/25哩程度のものであった。
Conventionally, there has been a difference in thread density between the woven and knitted fabric B as the flow channel advantage and the woven fabric B as the base material supporting the semipermeable membrane.
``i'' was at most about 5 to 6 pieces/25 miles.

しかし従来のかかる構造では低温使用では問題はないが
高温高圧使用になると長時間運転において透過水の純度
が低下する傾向が高いという欠点。
However, with such a conventional structure, there is no problem when used at low temperatures, but when used at high temperatures and high pressures, there is a drawback that the purity of permeated water tends to decrease during long-term operation.

および流路抵抗が犬となり、純水取り出し量が低下する
という欠点があった。
Also, there was a drawback that the flow path resistance was high and the amount of pure water taken out was reduced.

〔本発明の目的〕[Object of the present invention]

本発明は前記従来例の欠点を改善し、高温高圧使用にお
いても長期間安定した純水透過能を確保する装置を提供
する。さらにょシ具体的には、半透膜を支持する基材と
しての織物Aの糸密度 Naと、流路材としての織編物
Bの糸密度 1.Ibとの関係を特定化することにょp
、高温高圧で使用しても高純度の透過液を長期間高能率
で安定して得ることができることを目的とする。
The present invention improves the drawbacks of the conventional examples and provides a device that ensures stable pure water permeability over a long period of time even when used at high temperatures and high pressures. More specifically, the thread density Na of the fabric A as the base material supporting the semipermeable membrane and the thread density Na of the woven fabric B as the channel material 1. To specify the relationship with Ib
The purpose is to be able to stably obtain a high-purity permeate for a long period of time with high efficiency even when used at high temperature and high pressure.

〔本発明の構成〕[Configuration of the present invention]

本発明は次の構成からなる。 The present invention consists of the following configuration.

[半透膜を支持する基材として織物Aを設け。[Fabric A is provided as a base material to support the semipermeable membrane.

流路材として織編物Bを設けた液体分離装置において、
前記織編物Bの流路方向と直交する方向の織編物Bの糸
密度N1)(本725 mm )と、同方向の織物Aの
糸密度Na (本/ 25 mm )との関係がNb≦
Na−13又はNa+8≦Nb であることを特徴とする液体分離装置。」更に本発明の
詳細な説明する。
In a liquid separation device provided with a woven or knitted fabric B as a channel material,
The relationship between the yarn density N1) (strands/25 mm) of the woven or knitted fabric B in the direction orthogonal to the flow path direction of the woven or knitted fabric B and the thread density Na (strands/25 mm) of the fabric A in the same direction is Nb≦
A liquid separation device characterized in that Na-13 or Na+8≦Nb. ” The present invention will be further explained in detail.

本発明に係る半透膜の基材として使用する織物Aとして
はタンク、ツィルなどが使用できるが。
As the fabric A used as the base material of the semipermeable membrane according to the present invention, tank, twill, etc. can be used.

できるだけ表面平滑で薄くて形態変化の少ないものが良
く1合成繊維フィラメントから成る高密度の眸織物(タ
フタなど)が好ましい。流路材となツる織編物Bとして
はつ坏、アゼを長さ方向に持つ−た組織のものが好まし
く1編物の場合ダブルデンピあるいはこれに更に鎖編等
を組合せた3枚才す使いの変化組織のトリコットを使用
することができる。特に流路旧となる織編物Bは半透膜
を通過してきた透過液を中空軸管などの透過液取出口に
向かって流すに必要な微細な多数の溝および互いに連通
した孔を有することである。溝巾が犬きく。
It is preferable to use a high-density silk fabric (such as taffeta) made of one synthetic fiber filament, which has a smooth surface, is as thin as possible, and has little change in shape. As the woven or knitted fabric B that serves as a channel material, it is preferable to use a structure with a cross stitch or adze in the length direction. A modified tissue tricot can be used. In particular, the woven and knitted fabric B, which forms the flow path, has a large number of fine grooves and mutually communicating holes necessary for flowing the permeate that has passed through the semipermeable membrane toward the permeate outlet such as a hollow shaft tube. be. The groove width is dog-like.

かつ単位長さアタりの溝の本数が多いことは透過水を抵
抗なく流すことに対しては好ましいことであるが、あま
りに溝が広過ぎたり9本数が多過ぎたシして半透膜が加
圧された状態になると半透膜・が変形して溝の中へ落ち
込んできて1本来、透過液の流路として確保されるべき
溝が閉塞されて装置の液体分離能力たとえば造水量が低
下するので。
A large number of grooves per unit length is good for allowing permeated water to flow without resistance, but if the grooves are too wide or there are too many grooves, the semipermeable membrane may When pressurized, the semipermeable membrane deforms and falls into the groove, blocking the groove that was originally supposed to be a flow path for the permeate, reducing the liquid separation capacity of the device, such as the amount of water produced. Because I do.

限度があることはいうまでもない。上記のような条件を
満足する流路材の構造は溝巾100μm〜500pm、
厚ミ15071m 〜500μi 程度カヨイ。溝本数
は4本/Cl11〜40本/藺であればよい。
Needless to say, there are limits. The structure of the channel material that satisfies the above conditions has a groove width of 100 μm to 500 pm,
Thickness: 15071m ~ 500μi. The number of grooves may be 4/Cl11 to 40/line.

さらに流路材となる織編物Bは剛着化されている必要が
あるが、その手段としては織編物Bの生機から流路材に
仕上げる段階で樹脂等を付与し固化させることによって
織編物Bに剛性を与えるものであってもよく、あるいは
織編物Bを形成する原糸として融点差のある2種のポリ
マから成る合成繊維糸条を混合して使用するか、低融点
ポリマを鞘側に配置した融点差のある2種ポリマの芯鞘
複合糸条を使用するなどして織編物Bを作シ、その後に
熱セットなどの手段で低融点ポリマのみを溶融し固化す
ることによって全体を剛直化するものであっても良い。
Furthermore, the woven or knitted fabric B that serves as the channel material needs to be made rigid, but this can be done by adding a resin or the like to it and solidifying it at the stage of finishing the greige of the woven or knitted fabric B into the channel material. Alternatively, a mixture of synthetic fiber yarns made of two types of polymers with different melting points may be used as the yarn forming the woven or knitted fabric B, or a low melting point polymer may be used on the sheath side. Woven and knitted fabric B is produced by using core-sheath composite yarns of two types of polymers with different melting points arranged, and then the whole is made rigid by melting and solidifying only the low melting point polymer by means such as heat setting. It may be something that becomes

次に本発明に係る織編物Aと織編物Bとの糸密度関係に
ついて説明する。織編物Bは流路材を構成するものであ
り長さ方向につ不、アゼを持ったものが好ましい。すな
わち織編物Bは流路を形成する必要がちシ、該流路の形
態、大きさは液体分離装置の性能を犬きく左右する。そ
のために織編物Bの流路方向の糸配列特に織編の糸密度
には十分配慮がなされてきた。他方、織編物Bの流路と
泊交する方向の糸配列については殆ど考慮されず織編物
B fi、形成する時の容易さ、織編物に対する衣料の
一般的な常識から決定されていた。
Next, the yarn density relationship between the woven and knitted fabric A and the woven and knitted fabric B according to the present invention will be explained. The woven or knitted fabric B constitutes a channel material, and preferably has ribs or creases in the length direction. That is, the woven or knitted fabric B needs to form a flow path, and the shape and size of the flow path greatly influences the performance of the liquid separation device. For this reason, sufficient consideration has been given to the yarn arrangement in the flow path direction of the woven or knitted fabric B, particularly the yarn density of the woven or knitted fabric. On the other hand, the yarn arrangement in the direction perpendicular to the flow path of the woven or knitted fabric B was hardly considered, and was determined based on the woven or knitted fabric B fi, ease of formation, and general knowledge regarding clothing with respect to woven or knitted fabrics.

織編物Aについては半透膜を保持する基材として使用さ
れるものでちるが、該織編物Aの糸配列は織編物表面の
平滑性、厚さ1寸法安定性の他て半透膜の塗布のし易さ
のみによって決定されていた。従来から」二記の観点か
ら織編物A−Bの改善検討を重ね、原液の温度・圧力が
40“(+、30kg/ cm’程度以内であればほぼ
満足できるものが得られた。ところが原液がさらに高温
・高圧となると透過液の純度が著しく低下する大きな問
題が生じ。
The woven or knitted fabric A is used as a base material to hold the semipermeable membrane, and the thread arrangement of the woven or knitted fabric A is determined based on the smoothness of the surface of the woven or knitted fabric, the dimensional stability of the thickness, and the stability of the semipermeable membrane. It was determined solely by ease of application. We have repeatedly investigated the improvement of woven and knitted fabrics A-B from the viewpoints of 2. Conventionally, we have obtained a product that is almost satisfactory as long as the temperature and pressure of the stock solution is within about 40" (+30 kg/cm'). However, when the stock solution When the temperature and pressure become even higher, a major problem arises in that the purity of the permeate drops significantly.

以上の考えだけでは満足すべき液体分離装置は得られな
いことが明らかとなった。この問題解決のためて種々検
討を加え得られたのが本発明であって織編物Bの流路と
直交する方向の糸密度 Nb (本/ 25 mm )
および織編物Aの液体分離装置内における流路と直交す
る方向の糸密度 Na (本/25n]III+)は互
いに関連しながら液体分離装置の性能に大きく影響して
いることを見い出したのである。
It has become clear that a satisfactory liquid separation device cannot be obtained with the above considerations alone. The present invention was obtained through various studies to solve this problem, and the yarn density in the direction perpendicular to the flow path of the woven or knitted fabric B is Nb (threads/25 mm).
It has been found that the yarn density Na (strands/25n]III+) in the direction perpendicular to the flow path in the liquid separation device of the woven or knitted fabric A are related to each other and greatly influence the performance of the liquid separation device.

C本/ 25 mm )は。C book/25 mm).

Nb≦Na−13又はNa +8≦Nbの関係を満足し
ている必要がある。これは液体分離装置内の透過液の流
路と直交する方向において織編物Aの糸密度と織編物B
の糸密度と1d−1’3以上又は+8本725 mm以
上離れていなければならないことを意味する。さらに好
ましくは。
It is necessary to satisfy the relationship Nb≦Na-13 or Na+8≦Nb. This is the difference between the yarn density of woven fabric A and woven fabric B in the direction perpendicular to the flow path of the permeate in the liquid separation device.
This means that the thread density must be 1d-1'3 or more or +8 threads 725 mm or more apart. More preferably.

Nb5Na −15又はNa+12≦Nbの関係全満足
していることである。
The relationship of Nb5Na -15 or Na+12≦Nb is fully satisfied.

才た基本となる織物Aの糸密度Naは60〜80本/ 
25 mm程度が好せしい。
The thread density Na of the basic fabric A is 60 to 80/
Approximately 25 mm is preferable.

次に図面を用いて説明する。Next, it will be explained using drawings.

第1図は本発明に係る装置の一例を示す長手方向の断面
図、第2図は第1図に示すx −X断面図を示す。
FIG. 1 is a longitudinal sectional view showing an example of the device according to the present invention, and FIG. 2 is a sectional view taken along the line x-X shown in FIG.

第1〜2図に示す装置は円筒容器5に液体分力1f要素
8全内蔵し、側面蓋6,7を用いてシールしである。捷
た前記円筒容器5には被分離液体である原液の供給管9
と原液排出管1oか設けられており、さらに肢体分離要
素8には該液体分離要素によって分離された透過液を取
り出す透過液排出管11 が接続しである。また液体分
離要素8と円筒容器5との間に原液を閉塞するためのシ
ール部月16が液体分離要素8の両端に設けられている
In the apparatus shown in FIGS. 1 and 2, the liquid component 1f element 8 is entirely housed in a cylindrical container 5, and is sealed using side lids 6 and 7. The shredded cylindrical container 5 is provided with a supply pipe 9 for the stock solution, which is the liquid to be separated.
Further, the limb separation element 8 is connected to a permeate discharge pipe 11 for taking out the permeate separated by the liquid separation element. Further, seal portions 16 are provided at both ends of the liquid separation element 8 for sealing the stock solution between the liquid separation element 8 and the cylindrical container 5.

原液は原液供給管9から原液の浸透圧よりも高い圧力で
送り込まれ1円筒容器5の空間部15を満たしたのち液
体分離要素8の外周母線上に開「112を有し該ffi
線と直交する方向に渦巻状にのびる原液通路19に流入
する。
The stock solution is fed from the stock solution supply pipe 9 at a pressure higher than the osmotic pressure of the stock solution and fills the space 15 of the cylindrical container 5. After that, the liquid separation element 8 has an opening 112 on the outer peripheral generatrix and the ffi
The raw liquid flows into the raw liquid passage 19 extending spirally in the direction perpendicular to the line.

第2図に示す如く、液体分離要素は中心に小孔14を有
する中空管16を備え、該中空管の小孔14をはさんで
2枚の半透膜17.17’がその一端を接着によシ取付
けられている。前記半透膜の中空管の小孔14をはさま
ない側には原液通路19を形成させ、該原液通路に原液
の流れを円滑に行なわせるための多孔性のシート状物が
原液通路材22として挿入されている。一方半透膜17
,177の小孔をはさむ側は透過液流路23f:形成せ
しめ。
As shown in FIG. 2, the liquid separation element includes a hollow tube 16 having a small hole 14 in the center, and two semipermeable membranes 17 and 17' are placed at one end of the hollow tube with the small hole 14 in between. It is installed by gluing. A stock solution passage 19 is formed on the side of the hollow tube of the semipermeable membrane that does not sandwich the small hole 14, and a porous sheet-like material is used as the stock solution passage material to allow the stock solution to flow smoothly in the stock solution passage. It is inserted as 22. On the other hand, semipermeable membrane 17
, 177, a permeate flow path 23f is formed on the side sandwiching the small holes.

この透過液流路23に流路材24を挿入し、半透膜17
,17/の中空管16に接着したとは反対側の端部を共
に合わせて接合させる。このように配列した半透131
7,17’、原液の通路材22.および透過液の流路材
24を一体として中空管16のまわりに巻きつけたのち
両端に第1図の如くシール部20.21を形成させる。
A channel material 24 is inserted into this permeate channel 23, and the semipermeable membrane 17 is
, 17/ are joined together by bringing together the ends opposite to the ones glued to the hollow tube 16. Semi-transparent 131 arranged in this way
7, 17', channel material for concentrate 22. After the passage material 24 for the permeated liquid is integrally wrapped around the hollow tube 16, seal portions 20 and 21 are formed at both ends as shown in FIG.

従って得られた液体分離要素8は渦巻状の原液通路19
および透過液流路23が形成されると共に原液通路19
は前記した如く液体分離要素8の外周母線」二に開口1
2を備えたものとなる。またシール部21(原液排出管
10のある側)の中空管16の近辺に原液通過71、.
18を設けてあり、ここより液体分離要素から原液が流
出する構造としである。
Therefore, the obtained liquid separation element 8 has a spiral-shaped raw liquid passage 19.
A permeate flow path 23 is formed, and a stock liquid path 19 is formed.
As mentioned above, the opening 1 is located on the outer peripheral generatrix of the liquid separation element 8.
2. Further, a stock solution passage 71, .
18 is provided, from which the raw liquid flows out from the liquid separation element.

第6図は第2図とは異なる態様の装置を示す断面図であ
る。第2図のものは一本の中空管に対し一つの原液通路
19と一つの透過液流路23を設けたものであるのに対
し第6図のものは小孔14を3ケ所に設け、原液通路1
9.透過液通路23を夫々3つ設け、一本尚りの各流路
の長さを短くしたものである。
FIG. 6 is a sectional view showing a different aspect of the device from FIG. 2. The one in Figure 2 has one stock solution passage 19 and one permeate passage 23 for one hollow tube, while the one in Figure 6 has small holes 14 in three locations. , stock solution passage 1
9. Three permeate passages 23 are provided, and the length of each passage is shortened.

第4図および第5図は半透膜17,177、透過液流路
23.流路材24および基材25’、25’の位置関係
をモデル的に示す断面図であり、第4図は第5図のZ 
−Z断面図、第5図は第4図のY−Y断面図である。半
透膜17.17’は基材25,25/の上て形成されて
おり、基材25,25’は流路材24を両側からはさむ
位置で重ね合わされている。流路材24は適度な高さの
つ不を有する構造になっていて、ライ、間の溝部と基材
25とで形成する空間が流路26となって透過液を流す
。原液は半透膜17.177の外方の両側を流れる0本
発明において織編物Aは基材25.25’を形成し、織
編物Bは流路材24となる。したがって本発明における
織編物Bの流路と直交する方向の糸密度Nb(本7’ 
25mm )および織編物Aの液体分離装置内における
流路と直交する方向の糸密度IJaとは、第5図の場合
それぞれ紙面と直交する糸す、b、b・・・・・・・・
・および糸a、a、a、・・・・・・・・・の215m
m間の本数に等しい。
4 and 5 show the semipermeable membranes 17, 177, the permeate flow path 23. FIG. 4 is a sectional view schematically showing the positional relationship between the channel material 24 and the base materials 25' and 25', and FIG.
-Z sectional view, and FIG. 5 is a YY sectional view of FIG. The semipermeable membranes 17 and 17' are formed on the base materials 25 and 25/, and the base materials 25 and 25' are overlapped at positions sandwiching the channel material 24 from both sides. The flow path material 24 has a structure with a groove of an appropriate height, and the space formed by the groove between the lies and the base material 25 becomes a flow path 26 through which the permeated liquid flows. The stock solution flows on both sides of the outside of the semipermeable membrane 17.177. In the present invention, the woven or knitted fabric A forms the base material 25, 25', and the woven or knitted fabric B becomes the channel material 24. Therefore, the yarn density Nb in the direction perpendicular to the flow path of the woven or knitted fabric B in the present invention (Book 7'
25 mm ) and the yarn density IJa in the direction perpendicular to the flow path in the liquid separation device of the woven or knitted fabric A, in the case of FIG.
・And 215 m of thread a, a, a,...
Equal to the number of lines between m.

さらに云えば基材、流路材とも元の織編物A、Bの長さ
方向を液体分離装置としたときの流路の方向に一致させ
るのが一般的であり、この場合NIL。
Furthermore, it is common for the length direction of the original woven or knitted fabrics A and B to match the direction of the flow path when used as a liquid separation device for both the base material and the channel material, and in this case, NIL.

Nb は織編物A、Hのヨコ糸密度となる。さらに編物
の場合はコース密度となる。
Nb is the weft density of the woven and knitted fabrics A and H. Furthermore, in the case of knitted fabrics, it is the course density.

〔本発明の作用効果〕[Actions and effects of the present invention]

本発明の液体分離装置によって原液が高温・高圧となっ
ても透過液の純度を十分高く維持することができる。液
体分離装置として最も重要な特性は、どれほど高純度の
透過液をいかに多く取シ出し得るかであり、これに装置
の経済性、耐久性が付は方向えられる。その典型的な例
が海水の淡水化であるが、透過液の取り出し量を上げる
ためには原液に高圧をかけるのが最も効果的である。こ
の要求は中近東の真水に恵まれない地域に強く、このよ
うな地域においては高温海水を原液として高圧化で液体
分離装置を稼動させねばならない場合が多い。このよう
な条件下では「半透膜の落ち込み」と呼ぶ現象が発生す
る。これを第4図について説明すると半透膜17,17
/、基材25.25’、流路材24に高温、高圧がかか
り各部材の剛性が下がるとともに、高圧によって変形し
半透膜および基材が流路利24の流路23の部分に落ち
込む現象である。このような現象が生じると流路26の
断面積が減少し透過液の取シ出し量が少なくなる。
The liquid separation device of the present invention allows the purity of the permeate to be maintained at a sufficiently high level even when the stock solution is exposed to high temperatures and high pressures. The most important characteristic of a liquid separation device is how much highly purified permeate it can extract, and the economic efficiency and durability of the device are determined by this. A typical example is seawater desalination, and the most effective way to increase the amount of permeate extracted is to apply high pressure to the raw solution. This requirement is strong in areas in the Middle East that are not blessed with fresh water, and in such areas it is often necessary to operate liquid separation equipment at high pressure using high temperature seawater as the raw liquid. Under such conditions, a phenomenon called "slumping of the semipermeable membrane" occurs. To explain this with reference to FIG. 4, the semipermeable membranes 17, 17
/, High temperature and high pressure are applied to the base material 25, 25' and the channel material 24, reducing the rigidity of each member, and the semipermeable membrane and the base material are deformed by the high pressure and fall into the channel 23 part of the channel material 24. It is a phenomenon. When such a phenomenon occurs, the cross-sectional area of the flow path 26 decreases, and the amount of permeate taken out decreases.

さらに半透膜17の表面に「落ち込み」の程度に応じた
凹みが生じる。このような凹みは軽微な間は大きな問題
はないが、凹みの深さが増すとその部分の近くの半透膜
に細かなひび割れ現象が生じ原液の透過液側への漏れが
発生して透過液純度を著しく下げる。この「落ち込み」
現象は液体分離装置にとってきわめて重要な問題であシ
、特に原液温度、圧力を高くするとこの問題はきわめて
深刻なものとなる。
Further, a depression is formed on the surface of the semipermeable membrane 17 depending on the degree of "depression". While such dents are minor, there is no major problem, but as the depth of the dent increases, fine cracks occur in the semipermeable membrane near the dent, causing leakage of the stock solution to the permeate side, which prevents permeation. Significantly reduces liquid purity. This “down”
This phenomenon is an extremely important problem for liquid separators, and this problem becomes particularly serious when the temperature and pressure of the stock solution are increased.

本発明の液体分離装置はこの問題に対する解決手段を与
えたという顕著な効果を奏する。
The liquid separation device of the present invention has the remarkable effect of providing a solution to this problem.

すなわち前記品温高圧時の使用1例えば中近東における
海水の淡水化においても、「落ち込み」現象を防ぎ、長
期間安定した純水化運転を可能にすることができた。
That is, even in use 1 when the product temperature and pressure is high, for example, in seawater desalination in the Middle East, it was possible to prevent the "drop" phenomenon and enable stable water purification operation for a long period of time.

次に実施例によシ、より詳細に説明する。Next, examples will be explained in more detail.

実施例1 ポリエチレンテレフタレートから成るろZ5デニール、
18フイラメントの糸条およびポリエチレンテレフタレ
ートにイソフクール酸6ioモルチ共重合したポリマよ
シ成る3 7.5デニール、18フイラメントの糸条を
常法によって作成した。両糸条を引揃え混繊し75デニ
ール、36フイラメントの混繊糸条を得、該混繊糸条を
62ゲージ。
Example 1 Filter Z5 denier made of polyethylene terephthalate,
An 18-filament yarn and a 37.5-denier, 18-filament yarn consisting of a polymer obtained by copolymerizing polyethylene terephthalate with 6iomol of isofucuric acid were prepared by a conventional method. Both yarns were pulled together and mixed to obtain a mixed yarn of 75 denier and 36 filaments, and the mixed yarn was made into a 62 gauge yarn.

ト肝コツト編機に供給し、コース密度43,54゜7ろ
(本/ 25 mm )の生機を作成した。該編地全リ
ラックス精練したのち熱処理後のコース密度が48.5
0,54,60,68,73,76.80本725 m
m。
The material was fed to a knitting machine to produce a gray fabric with a course density of 43.54°7 (strand/25 mm). After the knitted fabric was completely relaxed and refined, the course density after heat treatment was 48.5.
0,54,60,68,73,76.80 lines 725 m
m.

ウエール密度40本725 mmとなるようテンタ条件
を決めて25(]’axI分間の熱融着加工を行なった
。これら8種類のトリコット融着加工品を流路材とした
。一方、基材としてはポリエチレンテレフタレートから
成る150デニール、48フイラメントの糸条をタテ、
ヨコ糸として使用したタフタ−1(タテ糸密度89本7
25 m+n 、ヨコ糸密度66本725 mm )お
よび同じ糸条を使ったタフタ−2(タテ糸密度93本7
25 mm 、ヨコ糸密度76本725 mm )を用
いた。これらの暴利に合成複合膜を塗布し8種類の流路
材と組み合せて16種類の液体分htt装置を作成して
性能評価テストを行なつfrcoなお本実施・例におい
ては流路はトリコットの長さ方向に平行しており、暴利
の長さ方向ど流路(」の長さ方向を一致させて液体分離
装置を作成した。
The tenter conditions were determined so that the wale density was 40 and 725 mm, and thermal fusion processing was performed for 25 (]'axI minutes. These eight types of tricot fusion processed products were used as channel materials. On the other hand, as a base material is made of 150 denier, 48 filament yarn made of polyethylene terephthalate,
Taffeta-1 used as weft yarn (warp yarn density 89 pieces 7
25 m+n, weft thread density 66 threads 725 mm) and taffeta-2 using the same yarn (warp thread density 93 threads 7
25 mm, weft density: 76 threads (725 mm). A synthetic composite membrane was applied to these profiteers and combined with 8 types of flow path materials to create a HTT device for 16 types of liquids, and a performance evaluation test was conducted. The liquid separation device was created by matching the length direction of the channel (') with the length direction of the profiteering channel.

したがって N&はタフタのヨコ糸密度、Nbはトリコ
ツ!・のコース密度と攻る。性能テスト結果の一例を第
6図、第7図に示す。第6図は透過数純度の経済的な変
化、第7図は透過液の取り出し量の経済的な変化r示す
ものであり、あ丑りlki: l’!l)の良くない液
体分離装置のテスト例である。透過液の純度が運転時間
の経過とともに低−トしているのがわかる。透過液の取
り出しチー(半透j模1 +r+”当りの1日分の取り
出し鼠で表示しである)はかなり大幅に変化しているこ
とがわかる。
Therefore, N& is the weft density of taffeta, and Nb is Trikotsu! - Course density and attack. Examples of performance test results are shown in FIGS. 6 and 7. Figure 6 shows the economic change in permeation number purity, and Figure 7 shows the economic change in the amount of permeate removed. This is a test example of a poor liquid separation device (l). It can be seen that the purity of the permeate decreases with the passage of operating time. It can be seen that the amount of permeate removed (expressed in one day's amount removed per semi-permeable 1+r+'') varies considerably.

第1表は16種類の液体分離装置について透過液純度の
経時的な低下の有無と取シ出し量の安定性を捷とめたも
のである。本発明の液体分離装置は透過液純匣の経時的
な低下はほとんどなく、透過液の取り出し量の安定性も
ほぼ問題なく安定していることがわかる。
Table 1 shows the presence or absence of a decrease in permeate purity over time and the stability of the output amount for 16 types of liquid separation devices. It can be seen that in the liquid separation device of the present invention, there is almost no decrease in the purity of the permeated liquid over time, and the stability of the amount of permeated liquid taken out is also stable without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜6図は本発明に係る液体分離装置の構造を例示
したもので第2図が正面図、第3.4図は第2図のX 
−X断面を示す。 第4図、第5図は半透膜、流路材、基材の位置関係をモ
デル的に示す断面図であり、第4図は第5図のZ−Z断
面、第5図は第4図のY−Y断面を示す。第6図、第7
図はそれぞれ透過液純度および透過液の取シ出し量の運
転時間経過に対する変化を示す。 17.17’:半透膜 19:原液通路26:透過液流
路 24:流路材 25、25’ :基材 特許出願人 東し株式会社 第1図 t+図 ガ、5’/327
Figures 1 to 6 illustrate the structure of the liquid separation device according to the present invention. Figure 2 is a front view, and Figures 3 and 4 are X in Figure 2.
-X cross section is shown. 4 and 5 are cross-sectional views showing the positional relationships among the semipermeable membrane, channel material, and base material in model form. A YY cross section of the figure is shown. Figures 6 and 7
The figures show the changes in permeate purity and permeate withdrawal amount over the operating time, respectively. 17. 17': Semi-permeable membrane 19: Stock solution passage 26: Permeated liquid passage 24: Channel material 25, 25': Base material Patent applicant Toshi Co., Ltd. Figure 1 t+Figure 5'/327

Claims (3)

【特許請求の範囲】[Claims] (1) 半透膜を支持する基材として織物Aを設け。 流路拐として織編物Bを設けた液体分離装置において、
前記織編物Bの流路方向と直交する方向の織編物Bの糸
密度Nb(本725 mm )と、同方向の織物Aの糸
密度Na (本725 mm )との関係がNt)s;
、 Na、 −16又はNa +8≦Nbであることを
特徴とする液体分離装置。
(1) Fabric A is provided as a base material that supports the semipermeable membrane. In a liquid separation device provided with a woven or knitted fabric B as a flow path,
The relationship between the yarn density Nb (725 mm 2) of the woven or knitted fabric B in the direction perpendicular to the flow path direction of the woven or knitted fabric B and the thread density Na (725 mm 2) of the woven fabric A in the same direction is Nt)s;
, Na, -16 or Na +8≦Nb.
(2) 糸密度NaとN 1)の関係がNb≦Na −
15又は Na + 12≦Nbでちることを特徴とす
る特許請求の範囲第(1)項記載の液体分離装置。
(2) The relationship between thread density Na and N1) is Nb≦Na −
15 or Na + 12≦Nb.
(3) 織物Aがタフタ、織編物Bがトリコットである
ことを特徴とする特許請求の範囲第(1)項記載の液体
分離装置。
(3) The liquid separation device according to claim (1), wherein the fabric A is taffeta, and the woven or knitted fabric B is tricot.
JP58146682A 1983-08-12 1983-08-12 Liquid separator Granted JPS6041505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146682A JPS6041505A (en) 1983-08-12 1983-08-12 Liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146682A JPS6041505A (en) 1983-08-12 1983-08-12 Liquid separator

Publications (2)

Publication Number Publication Date
JPS6041505A true JPS6041505A (en) 1985-03-05
JPH0371166B2 JPH0371166B2 (en) 1991-11-12

Family

ID=15413202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146682A Granted JPS6041505A (en) 1983-08-12 1983-08-12 Liquid separator

Country Status (1)

Country Link
JP (1) JPS6041505A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599791A2 (en) * 1992-11-27 1994-06-01 Aktiebolaget Electrolux A method of manufacturing a membrane filter
US7691266B2 (en) 1999-01-29 2010-04-06 Pall Corporation Separation devices and processes
US8043512B2 (en) 2008-04-11 2011-10-25 Pall Corporation Fluid treatment arrangements and methods
US8048315B2 (en) 2008-07-28 2011-11-01 Pall Corporation Fluid treatment arrangements and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417383A (en) * 1977-07-11 1979-02-08 Toray Ind Inc Separating unit for liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417383A (en) * 1977-07-11 1979-02-08 Toray Ind Inc Separating unit for liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599791A2 (en) * 1992-11-27 1994-06-01 Aktiebolaget Electrolux A method of manufacturing a membrane filter
EP0599791A3 (en) * 1992-11-27 1994-06-29 Electrolux Ab A membrane filter for a fluid purifier and a method for its manufacture.
US7691266B2 (en) 1999-01-29 2010-04-06 Pall Corporation Separation devices and processes
US8043512B2 (en) 2008-04-11 2011-10-25 Pall Corporation Fluid treatment arrangements and methods
US8048315B2 (en) 2008-07-28 2011-11-01 Pall Corporation Fluid treatment arrangements and methods

Also Published As

Publication number Publication date
JPH0371166B2 (en) 1991-11-12

Similar Documents

Publication Publication Date Title
US4792401A (en) Spiral wound membrane module and method of manufacture and use
US4352736A (en) Wound flattened hollow fiber assembly having plural spaced core sections
US3342729A (en) Permeability separatory cell and apparatus and method of using the same
US3616928A (en) Permeation separation device for separating fluids
US3422008A (en) Wound hollow fiber permeability apparatus and process of making the same
GB1113630A (en) Improved method and apparatus for use in the reverse osmotic separation of liquid solvents from liquid feed solutions
JPS631404A (en) Hollow yarn type membrane separation device
EP0513207A1 (en) Spiral-wound membrane separation device with feed and permeate/sweep fluid flow control
KR20090009216A (en) Liquid separation device, flow channel material and process for producing the same
US3367505A (en) Semipermeable membrane backing and support medium
US4299702A (en) Liquid separation apparatus
US3984328A (en) Membrane on a hollow cord
JP2007167783A (en) Spiral type separation membrane element
JP2010131483A (en) Liquid separating channel forming material, and method for manufacturing the same
JP2000354743A (en) Membrane module for separating liquids
WO2017131031A1 (en) Flow path material
JPS6041505A (en) Liquid separator
JPH09141060A (en) Liquid separation element, device and treatment therefor
JPS6136964B2 (en)
JPH0366008B2 (en)
JPS6235802B2 (en)
US20040182775A1 (en) Spiral separation membrane element
JPS6257609A (en) Spiral membrane element
JP2000051668A (en) Liquid separation element and water making method
JP2020104099A (en) Flow path material