JP2000354743A - Membrane module for separating liquids - Google Patents

Membrane module for separating liquids

Info

Publication number
JP2000354743A
JP2000354743A JP11168610A JP16861099A JP2000354743A JP 2000354743 A JP2000354743 A JP 2000354743A JP 11168610 A JP11168610 A JP 11168610A JP 16861099 A JP16861099 A JP 16861099A JP 2000354743 A JP2000354743 A JP 2000354743A
Authority
JP
Japan
Prior art keywords
melting point
separation membrane
knitted fabric
membrane module
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11168610A
Other languages
Japanese (ja)
Other versions
JP3559475B2 (en
Inventor
Takuji Shintani
卓司 新谷
Hiroyoshi Ito
弘喜 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16861099A priority Critical patent/JP3559475B2/en
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to ES99126091T priority patent/ES2249867T3/en
Priority to AT99126091T priority patent/ATE306312T1/en
Priority to EP99126091A priority patent/EP1059114B1/en
Priority to DE69927674T priority patent/DE69927674D1/en
Priority to US09/484,338 priority patent/US6454942B1/en
Priority to CNB001089838A priority patent/CN1136950C/en
Publication of JP2000354743A publication Critical patent/JP2000354743A/en
Application granted granted Critical
Publication of JP3559475B2 publication Critical patent/JP3559475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a flow passage medium at a low cost by stiffening the whole knitted fabric, which is obtained by knitting thermoplastic synthetic filament yarns having the same fineness and comprising sheath-core type conjugated fibers each having a high melting point component as the core and a low melting point component as the sheath by means of a tricot knitting machine having two reeds, by fusion-bonding the low melting point components to one another. SOLUTION: The tricot knitting fabric is obtained by knitting by means of the tricot knitting machine having two reeds so that a knitted route of a yarn F becomes a base structure part and a knitted route of a yarn B having the same fineness as the yarn F becomes a projected part. The yarn F and the yarn B are respectively supplied through the front reed and the back reed so that the sinker loop parts of the knitted stitches formed by the front reed and the base structure parts are made into the passages X of the permeable liquid and the needle loop parts and the chain parts formed by the back reed are made into the projected parts Y. The heat treatment is carried out at about 180 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液体分離膜モジュー
ルにおいて、原液を受圧する半透膜の裏面側を支持する
流路材を組み込み熱水や高温の原水を処理することを可
能とした耐熱液体分離膜モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid separation membrane module, in which a flow path material for supporting the back side of a semipermeable membrane for receiving a stock solution is incorporated to enable the treatment of hot water or high-temperature raw water. The present invention relates to a separation membrane module.

【0002】[0002]

【従来の技術】半透膜を用いた液体分離膜モジュール
は、その半透膜を長尺の封筒(袋状)に形成すると共に、
その封筒内に半透膜側からかかる原液圧力を支え且つ透
過液を案内する流路となる流路材が内挿し、その流路材
を内挿した封筒解放端側を中空軸に固定してのり巻き状
に高密度に巻き付けてなるスパイラル型が代表的であ
る。このような液体分離膜モジュールは、いずれも封筒
の外側に膜の逆浸透圧以上の高圧の原液を通過させ、膜
を通過した透過液は封筒の内側を通って取り出される。
封筒自体高圧で外側から加圧されるため、透過液の流路
として挿入されている流路材を押しつぶすことになり液
の流れを悪くするので、一般に封筒の内側に封筒の外側
を加圧されても透過液の流路をなす流路材がつぶされな
いように流路材自体を剛直化させ変形に耐えられるよう
にしている。このような液体分離膜モジュールは広くボ
イラ用水の前処理、排水の再利用、海水の淡水化や超純
水などの造水装置として実用化されおり、使用する水温
は40℃以下である。
2. Description of the Related Art In a liquid separation membrane module using a semipermeable membrane, the semipermeable membrane is formed in a long envelope (bag shape),
A channel material serving as a flow path for supporting the undiluted solution applied from the semipermeable membrane side and guiding the permeated liquid is inserted into the envelope, and the open end side of the envelope in which the flow path material is inserted is fixed to the hollow shaft. A spiral type wound in a high-density form is typical. In any of such liquid separation membrane modules, a stock solution having a high pressure equal to or higher than the reverse osmotic pressure of the membrane is passed outside the envelope, and the permeate passed through the membrane is taken out through the inside of the envelope.
Since the envelope itself is pressurized from the outside with a high pressure, it crushes the flow path material inserted as the flow path of the permeated liquid and deteriorates the flow of the liquid, so that the outside of the envelope is generally pressurized inside the envelope. However, the flow path material itself is made rigid so that the flow path material forming the flow path of the permeated liquid is not crushed, so that it can withstand deformation. Such a liquid separation membrane module has been widely used as a pretreatment apparatus for boiler water, reuse of wastewater, desalination of seawater, ultrapure water, and the like, and the water temperature used is 40 ° C. or lower.

【0003】従来、この流路材に用いられているものは
織物、編物などの多孔性でその内部に延びる微細な溝を
もつ布帛が用いられ、特に表面に溝をもつ構造のものが
用いられてきた。これらの布帛は膜を介して原液に加わ
る圧力によっても容易に変形しないようにエポキシ樹脂
やメラミン樹脂などを含浸させて剛直化させていた。こ
の要求を満たすには上記布帛の重量の半分近くまで樹脂
を付着するように樹脂加工する必要がある。しかし、高
純度の透過水を必要とする用途や高温の液体を処理する
用途においては含浸樹脂の溶出による問題が生じてい
た。とくに、膜モジュールの処理対象とする原液が食品
用の液や医薬用の液である場合、無菌であることが要求
される。そのため膜分離処理の開始前あるいは終了後に
雑菌汚染を防ぐために熱水による殺菌を行う。或いは、
汚染防止や粘度を調整するためや結晶化を防止するため
に処理対象とする原液そのものを40℃を超える高温で
処理することがある。
Heretofore, as a material used for the channel material, a porous fabric such as a woven fabric or a knitted fabric having fine grooves extending therein has been used, and in particular, a structure having a groove on the surface has been used. Have been. These fabrics have been impregnated with an epoxy resin or a melamine resin so as to be rigid so that they are not easily deformed by the pressure applied to the stock solution via the membrane. To satisfy this requirement, it is necessary to process the resin so that the resin adheres to almost half of the weight of the cloth. However, in applications that require high-purity permeated water or applications that treat high-temperature liquids, problems have arisen due to elution of the impregnated resin. In particular, when the stock solution to be processed by the membrane module is a liquid for food or a liquid for medicine, it is required to be sterile. Therefore, sterilization with hot water is performed before or after the end of the membrane separation treatment to prevent contamination by various bacteria. Or,
In order to prevent contamination, adjust viscosity, or prevent crystallization, the stock solution itself to be treated may be treated at a high temperature exceeding 40 ° C.

【0004】前記問題を解決するために、3枚オサを用
いたトリコット編機により、地編地の凸部分になる繊維
が地組織の繊維より太い繊度のものを用い、かつ融着繊
維を編み込んで編地全体を剛直構造にした流路材が提案
されている(特公平3−66008号公報)。しかしな
がら、この流路材は3枚オサを用いること及び太い繊度
(デニール)の糸と細い繊度(デニール)の糸を用いる
ため、生産性が低くコストが高くなるという問題があっ
た。とくに低融点成分と高融点成分から成るコンジュゲ
ート糸を使用する場合は、コストアップは無視できない
問題であった。さらに流路材の厚さを薄くすることがで
きないという問題もあった。
[0004] In order to solve the above-mentioned problem, a tricot knitting machine using a three-piece knitting machine uses fibers having a fineness greater than that of the ground structure, and knit fusible fibers. A flow path material in which the entire knitted fabric has a rigid structure has been proposed (Japanese Patent Publication No. 3-66008). However, this passage material has a problem in that the productivity is low and the cost is high because three pieces of material are used and a yarn with a thick fineness (denier) and a yarn with a fine fineness (denier) are used. In particular, when a conjugate yarn comprising a low-melting component and a high-melting component is used, the increase in cost has been a problem that cannot be ignored. Further, there is a problem that the thickness of the channel material cannot be reduced.

【0005】本発明は、前記従来技術の問題を解決する
ため、流路抵抗を上げることなく透過液生産性を損なわ
なずに流路材の構造及び剛直性を長時間維持し、かつ溶
出のない薄い厚さの流路材を組み込んだ液体分離膜モジ
ュールをコスト安く提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art by maintaining the structure and rigidity of the channel material for a long time without increasing the flow channel resistance and without impairing the permeate productivity, and improving the elution. It is an object of the present invention to provide a low cost liquid separation membrane module incorporating a flow path material having a small thickness.

【0006】[0006]

【発明が解決しようとする課題】前記目的を達成するた
め、本発明の耐熱液体分離膜モジュール用流路材は、原
液を受圧する半透膜の裏面側を支持する流路材を配置し
て形成した液体分離膜モジュールにおいて、前記流路材
は、2枚オサを有するトリコット編機により編成された
トリコット編地で、かつ地組織部分と凸部分とを有し、
前記トリコット編地を構成する繊維は、高融点成分が芯
に配置され、低融点成分が鞘に配置された芯鞘型コンジ
ュゲート繊維からなる熱可塑性合成繊維フィラメント糸
条であり、前記地組織部分と凸部分とを構成する熱可塑
性合成繊維フィラメント糸条は、実質的に同一繊度であ
り、前記トリコット編地の構成糸条は前記低融点成分の
融着により、互いに接着され編地全体が剛直化されて流
路材が形成されていることを特徴とする。
In order to achieve the above object, a flow path material for a heat-resistant liquid separation membrane module according to the present invention comprises a flow path material which supports the back side of a semipermeable membrane for receiving a stock solution. In the formed liquid separation membrane module, the flow path material is a tricot knitted fabric knitted by a tricot knitting machine having two pieces, and has a ground structure portion and a convex portion,
The fiber constituting the tricot knitted fabric is a thermoplastic synthetic fiber filament yarn composed of a core-sheath conjugate fiber in which a high melting point component is disposed in a core and a low melting point component is disposed in a sheath, and the ground structure portion The filaments of the thermoplastic synthetic fiber filaments constituting the convex portion and the convex portion have substantially the same fineness. The component yarns of the tricot knitted fabric are adhered to each other by fusion of the low melting point component, and the entire knitted fabric is rigid. And a flow path material is formed.

【0007】前記液体分離膜モジュールにおいては、地
組織部分と凸部分とを構成する熱可塑性合成繊維フィラ
メント糸条の繊度は、45〜55デニールの範囲である
ことが好ましい。
In the liquid separation membrane module, the fineness of the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion is preferably in the range of 45 to 55 denier.

【0008】また前記液体分離膜モジュールにおいて
は、トリコット編地は、一方のオサで形成された編目の
シンカ・ループ部が地組織部分となり、ニードル・ルー
プ部及び他方のオサで形成された鎖部分が凸部分となっ
ていることが好ましい。
In the above liquid separation membrane module, the tricot knitted fabric has a sinker loop portion formed by one boss as a ground structure portion, and a chain portion formed by a needle loop portion and the other boss portion. Are preferably convex portions.

【0009】次に本発明の液体分離膜モジュールの製造
方法は、原液を受圧する半透膜の裏面側を支持する流路
材を用いた液体分離膜モジュールの製造方法において、
高融点成分が芯に配置され、低融点成分が鞘に配置され
た芯鞘型コンジュゲート繊維からなる熱可塑性合成繊維
フィラメント糸条を使用し、2枚オサを有するトリコッ
ト編機により、地組織部分と凸部分とを編成し、その際
に、前記地組織部分と凸部分とを構成する熱可塑性合成
繊維フィラメント糸条は、実質的に同一繊度とし、編地
を編成した後に、コンジュゲート繊維の低融点成分の融
点以上、高融点成分の軟化点未満の加熱処理をし、前記
トリコット編地中の構成糸条を相互に融着固化して編地
全体を剛直化させて流路材を形成し、前記流路材を半透
膜の裏面側に配置して液体分離膜モジュールを形成した
ことを特徴とする。
Next, a method for manufacturing a liquid separation membrane module according to the present invention is directed to a method for manufacturing a liquid separation membrane module using a flow path material supporting a back side of a semipermeable membrane for receiving a stock solution.
Using a thermoplastic synthetic fiber filament yarn consisting of a core-sheath type conjugate fiber in which a high melting point component is disposed in a core and a low melting point component is disposed in a sheath, a tricot knitting machine having two sheets is used to form a ground structure portion. And knitting the convex portion, at this time, the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion has substantially the same fineness, and after knitting the knitted fabric, the conjugate fiber The heat treatment is performed at a temperature equal to or higher than the melting point of the low melting point component and lower than the softening point of the high melting point component, and the component yarns in the tricot knitted fabric are mutually fused and solidified to rigidify the entire knitted fabric to form a channel material. The flow path member is arranged on the back side of the semipermeable membrane to form a liquid separation membrane module.

【0010】前記方法においては、地組織部分と凸部分
とを構成する熱可塑性合成繊維フィラメント糸条の繊度
は、45〜55デニールの範囲であることが好ましい。
[0010] In the above method, it is preferable that the fineness of the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion is in the range of 45 to 55 denier.

【0011】また前記方法においては、トリコット編地
は、一方のオサで形成された編目のシンカ・ループ部を
地組織部分とし、ニードル・ループ部及び他方のオサで
形成された鎖部分を凸部分に形成したことが好ましい。
[0011] In the above method, the tricot knitted fabric may include a sinker loop portion of a stitch formed by one boss as a ground structure portion and a needle loop portion and a chain portion formed by the other boss formed as a convex portion. It is preferable to form it.

【0012】[0012]

【発明の実施の形態】本発明の流路材の素材となるトリ
コット編地は2枚のオサ数のトリコット編機により編成
される。その編地の一例である2枚オサ編地を図1、図
2(図1のAの部分の拡大図)及び図3の(A),
(B)に示した。図1〜2に示す2枚オサ編地は、地組
織部分の糸条Fと同じ太さの凸部分の糸条Bが編込まれ
た構成になっている。上記糸条Fは、フロント・オサに
供給し、図3(A)に示すような[1-0/1-2]に編成す
る。糸条Bはバック・オサに供給して図3(B)に示す
ような[2-3/1-O]に編成する。この編み組織を、バッ
ク(逆)ハーフ組織という。このような編成によってフ
ロント・オサで形成された編目のシンカ・ループ部(デ
ンビー編または1/1トリコット編)が地組織部分とな
り、ニードル・ループ部及びバック・オサで形成された
鎖部分がコード編となり凸部分となる。すなわち、図1
のXの部分が地組織部分となり、ここを透過水が流れ、
図1のYの部分が凸部分となり、地組織部分Xの空間を
保持する。図1の矢印Lは編み立て方向である。
BEST MODE FOR CARRYING OUT THE INVENTION A tricot knitted fabric serving as a material of a flow path material of the present invention is knitted by a tricot knitting machine having two mosaic numbers. FIGS. 1 and 2 (enlarged views of the portion A in FIG. 1) and FIGS.
(B). The two-piece knitted fabric shown in FIGS. 1 and 2 has a configuration in which a thread B of a convex portion having the same thickness as the thread F of the ground structure is knitted. The yarn F is supplied to a front cuff and knitted into [1-0 / 1-2] as shown in FIG. The yarn B is supplied to the back cover and knitted into [2-3 / 1-O] as shown in FIG. This knitting structure is called a back (reverse) half structure. With such knitting, the sinker loop portion (Denby or 1/1 tricot) of the stitch formed by the front ossa becomes a ground structure portion, and the chain portion formed by the needle loop portion and the back ossa is a cord. It becomes a knit and becomes a convex part. That is, FIG.
The part of X becomes the ground organization part, the permeated water flows here,
The portion indicated by Y in FIG. 1 becomes a convex portion, and retains the space of the ground tissue portion X. The arrow L in FIG. 1 is the knitting direction.

【0013】前記の通り、本発明の流路材素材のトリコ
ット編地は同繊度の熱可塑性合成繊維フィラメント糸条
を用い、2枚オサのトリコット編機を使用して編成する
ことができ、一方の糸条により地組織部分を編成し、こ
の糸条が形成するニードル・ループ部にもう一方の糸条
を編むことによって凸部分を形成するもので、これによ
って地組織部分と凸部分とをもったトリコット編地が形
成される。
As described above, the tricot knitted fabric of the flow path material of the present invention can be knitted using a thermoplastic trifilament knitting machine of two pieces using thermoplastic synthetic fiber filament yarn of the same fineness. The knitted fabric has a ground structure portion formed by knitting and forming a convex portion by knitting another yarn in a needle loop portion formed by the yarn, thereby having a ground structure portion and a convex portion. A tricot knitted fabric is formed.

【0014】前記のように編成したトリコット編地は、
さらに糸条相互を接着処理して剛直化させ、高圧の原液
に対して簡単に潰れることがないようにする必要があ
る。
[0014] The tricot knitted fabric knitted as described above,
Further, it is necessary to bond the yarns to each other to make them rigid, so that the yarns are not easily crushed by a high-pressure stock solution.

【0015】低融点成分と高融点成分とからなる熱可塑
性合成繊維フィラメント糸条としては、コンジュゲート
糸(複合糸)の形態にすればよい。複合糸の場合は、鞘
側に低融点成分を配置し、芯側に高融点成分を配置した
芯鞘型複合糸が接着性が優れることから好ましい。
The thermoplastic synthetic fiber filament comprising the low melting point component and the high melting point component may be in the form of a conjugate yarn (composite yarn). In the case of a composite yarn, a core-sheath type composite yarn in which a low melting point component is disposed on the sheath side and a high melting point component is disposed on the core side is preferable because of excellent adhesiveness.

【0016】2種類の異なる成分の比率は接着剤となる
低融点成分が50%を超えない方が好ましいが、溶融後
に骨格となる高融点成分が強度的に十分機能するならば
この限りではない。また、両成分の融点差は少なくとも
10℃、好ましくは20℃以上あれば十分である。
The ratio of the two different components is preferably such that the low melting point component serving as an adhesive does not exceed 50%, but this is not necessary if the high melting point component serving as a skeleton after melting functions sufficiently in strength. . The difference between the melting points of the two components is at least 10 ° C, preferably at least 20 ° C.

【0017】高融点成分と低融点成分との代表的な組合
せは、高融点ポリエステルと低融点ポリエステル、高融
点ポリアミドと低融点ポリアミド、高融点ポリオレフィ
ンと低融点ポリオレフィンなどがあり、このうちでも融
着加工後の剛性などの点から高融点ポリエステルと低融
点ポリエステルとの組合せが好ましい。低融点成分は一
般的に高分子共重合体とすることによって簡単に得るこ
とができ、その融点差は共重合比率の変更、共重合成分
の追加、共重合成分の変更、立体規則性あるいは重合度
の変更等によって変更することができる。また、これと
は別に融点差のある異種重合体との組合せによってもよ
い。ポリエステルの場合は、一般的に1モル%共重合す
ることにより融点が2℃下がる。ポリエステルに共重合
させるモノマー成分は、イソフタル酸、アジピン酸など
の酸成分が一般的である。ポリエチレンテレフタレート
(融点約260℃)を高融点成分として用いる場合、低
融点成分にはポリブチレンテレフタレート(融点約22
5℃)またはポリブチレンテレフタレートに任意のモノ
マーを所定量共重合した共重合体を用いる。例えばポリ
ブチレンテレフタレート(75モル%)−イソフタレー
ト(25モル%)共重合体の融点は、融点約175℃と
なる。
Typical combinations of the high melting point component and the low melting point component include a high melting point polyester and a low melting point polyester, a high melting point polyamide and a low melting point polyamide, a high melting point polyolefin and a low melting point polyolefin. A combination of a high-melting polyester and a low-melting polyester is preferred from the viewpoint of rigidity after processing. In general, the low melting point component can be easily obtained by using a high molecular weight copolymer, and the difference in melting point can be changed by changing the copolymerization ratio, adding a copolymer component, changing the copolymer component, stereoregularity or polymerization. It can be changed by changing the degree or the like. Alternatively, a combination with a different polymer having a different melting point may be used. In the case of polyester, the melting point is lowered by 2 ° C. by generally copolymerizing 1 mol%. As the monomer component to be copolymerized with the polyester, an acid component such as isophthalic acid and adipic acid is generally used. When polyethylene terephthalate (melting point: about 260 ° C.) is used as the high melting point component, polybutylene terephthalate (melting point: about 22
5 ° C.) or a copolymer obtained by copolymerizing a predetermined amount of an arbitrary monomer with polybutylene terephthalate. For example, the melting point of the polybutylene terephthalate (75 mol%)-isophthalate (25 mol%) copolymer is about 175 ° C.

【0018】前記した両成分の組合せからなる熱可塑性
合成繊維フィラメント糸条は、地組織部分及び凸部分の
糸条において使用する必要があり、また、両部分に使用
する低融点成分は同一の融点であることが望ましい。
The thermoplastic synthetic fiber filament yarn comprising the combination of the above two components must be used in the ground texture portion and in the convex portion, and the low melting point component used in both portions has the same melting point. It is desirable that

【0019】図4及び図5は、前記した流路材を使用し
たスパイラル型の液体分離膜モジュールを例示したもの
である。
FIGS. 4 and 5 illustrate a spiral type liquid separation membrane module using the above-mentioned flow path material.

【0020】11は流体分離素子であり、12はこの流
体分離素子11を収納している円筒容器である。流体分
離素子11は円筒容器12内で一端をV字形のシール材
13によりシールされ、他方の端部の透過液排出管14
を円筒容器12の外側へ突出させている。円筒容器12
はV字形のシール材13の開いた方の側壁に原液供給管
15を、またもう一方の側壁に原液排出管16を設けて
いる。
Reference numeral 11 denotes a fluid separation element, and reference numeral 12 denotes a cylindrical container housing the fluid separation element 11. One end of the fluid separation element 11 is sealed in a cylindrical container 12 by a V-shaped sealing material 13, and a permeated liquid discharge pipe 14 is provided at the other end.
Project outside the cylindrical container 12. Cylindrical container 12
The stock solution supply pipe 15 is provided on the opened side wall of the V-shaped sealing material 13, and the stock solution discharge pipe 16 is provided on the other side wall.

【0021】液体分離素子11は、図5に示すように中
心に小孔17を有する中空管からなる透過液排出管22
を有し、その外側を封筒状の半透膜19がスパイラル状
に巻回している。封筒状の半透膜19はその内側に本発
明による透過液流路材20を内挿し、その開口端を上記
小孔17に対向させて透過液排出管22の内側に連通し
ている。またスパイラル状に巻回した封筒状の半透膜1
9の外側面同士の間には原液流路材21が介在してい
る。18は封止部である。
As shown in FIG. 5, the liquid separating element 11 is a permeated liquid discharge pipe 22 composed of a hollow pipe having a small hole 17 at the center.
And an envelope-shaped semipermeable membrane 19 is spirally wound around the outside. The envelope-shaped semi-permeable membrane 19 has a permeate flow channel material 20 according to the present invention inserted therein, and has an open end facing the small hole 17 and communicates with the inside of the permeate discharge pipe 22. Also, an envelope-shaped semipermeable membrane 1 wound in a spiral shape.
An undiluted liquid channel material 21 is interposed between the outer surfaces of the components 9. 18 is a sealing part.

【0022】[0022]

【実施例1】高融点ポリエステル(ポリエチレンテレフ
タレート:融点約260℃)を芯成分(70重量%)に
配置し、低融点ポリエステル(ポリブチレンテレフタレ
ート(75モル%)−イソフタレート(25モル%)共
重合体(融点約175℃))を鞘成分(30重量%)に
配置し、トータル繊度が50デニール、フィラメント数
が12本のフィラメント糸条を用意した。
Example 1 A high-melting polyester (polyethylene terephthalate: melting point of about 260 ° C.) was placed on a core component (70% by weight), and a low-melting polyester (polybutylene terephthalate (75 mol%)-isophthalate (25 mol%)) was used. A polymer (melting point: about 175 ° C.) was placed in a sheath component (30% by weight), and a filament having a total fineness of 50 denier and 12 filaments was prepared.

【0023】上記フィラメント糸条を用い、図1〜3に
示す編組織(バック(逆)ハーフ組織)により28ゲー
ジ2枚オサのトリコット編地を形成した。その後、前記
トリコット編地を精練し、乾燥後、熱処理後のウエル、
コース密度がそれぞれ38本/inch、45本/inchとなる
ようにテンタ条件を決めて180℃で1分間の熱融着加
工を行い、本発明に相当する流路材Pを作成した。
Using the filament yarn, a tricot knitted fabric of 28 gauge two pieces was formed according to the knitting structure (back (reverse) half structure) shown in FIGS. Thereafter, the tricot knitted fabric is scoured, dried, and then subjected to heat treatment,
Tenter conditions were determined so that the course densities were 38 lines / inch and 45 lines / inch, respectively, and heat-sealing was performed at 180 ° C. for 1 minute to prepare a flow path material P corresponding to the present invention.

【0024】一方、芳香族ポリアミド系複合膜(トリメ
シン酸クロライドとm−フェニレンジアミンとを界面重
縮合させた膜、日東電工社製)を準備し、上記流路材P
を分離膜面に配置して、図5に示すように耐熱性スパイ
ラル型分離膜モジュール(膜面積6.5m2)を製作
し、図4に示す円筒容器12内に組み込んだ。
On the other hand, an aromatic polyamide-based composite membrane (a membrane obtained by interfacial polycondensation of trimesic acid chloride and m-phenylenediamine, manufactured by Nitto Denko Corporation) is prepared, and the flow path material P
Was disposed on the surface of the separation membrane to produce a heat-resistant spiral-type separation membrane module (with a membrane area of 6.5 m 2) as shown in FIG. 5 and incorporated into the cylindrical container 12 shown in FIG.

【0025】上記耐熱性スパイラル型分離膜モジュール
を1500ppm NaCl水溶液(PH=6.5に調整)
を原水に用いて、圧力15kgf/cm2 、温度23℃の条件
下で逆浸透試験を行った。
The above-mentioned heat-resistant spiral-type separation membrane module was subjected to a 1500 ppm NaCl aqueous solution (adjusted to PH = 6.5).
Was used as raw water to conduct a reverse osmosis test under the conditions of a pressure of 15 kgf / cm2 and a temperature of 23 ° C.

【0026】次に、温度90℃の熱水にて無加圧で1時
間滅菌処理のため運転した。運転後、前記の逆浸透試験
を行った。その結果、前記加熱滅菌処理前は、透過水量
(m3/day)は7.1であり、処理後は6.9であった。
Next, the apparatus was operated for sterilization for 1 hour without pressure under hot water at a temperature of 90 ° C. After the operation, the above-mentioned reverse osmosis test was performed. As a result, before the heat sterilization,
(m 3 / day) was 7.1 and 6.9 after treatment.

【0027】[0027]

【比較例1】実施例1の熱可塑性合成繊維フィラメント
糸条にかえて、同繊度のレギュラーポリエステルフィラ
メント(ポリエチレンテレフタレート)糸条を用い、上
記実施例と同様にトリコット編地を精錬した後、エポキ
シ樹脂(含浸量18wt%)にて剛直化させた流路材Q
を用いた以外は、実施例1と同様にして温度90℃の熱
水にて無加圧で1時間滅菌処理のため運転した。実施例
1と同様に、前記の逆浸透試験を行い、スパイラル型分
離膜モジュールの性能を評価した。
[Comparative Example 1] Instead of the thermoplastic synthetic fiber filament yarn of Example 1, regular polyester filament (polyethylene terephthalate) yarn of the same fineness was used, and a tricot knitted fabric was refined in the same manner as in the above-mentioned example, and then epoxy Flow channel material Q rigidified with resin (impregnation amount 18 wt%)
The operation was carried out in the same manner as in Example 1 for sterilization treatment with hot water at a temperature of 90 ° C. for 1 hour without pressurization, except that was used. In the same manner as in Example 1, the reverse osmosis test was performed to evaluate the performance of the spiral separation membrane module.

【0028】比較例1の場合は、90℃の1時間滅菌処
理のための運転前後において透過水量(m3/day)は7.1
から4.3に大幅に低下した。しかし、実施例1の本発
明の耐熱性スパイラル型分離膜モジュールを使用すれ
ば、90℃の1時間滅菌処理のための運転前後において
透過水量(m3/day)は7.1から6.9までの低下にとど
めることができた。即ち本発明の分離膜モジュールを用
いることで熱水処理後の透過水量は、従来の分離膜モジ
ュールを用いる場合の1.5倍以上を達成できる。ま
た、比較例1の場合は、90℃の1時間滅菌処理のため
の運転直後に有機成分が透過水に混入していることを紫
外・可視分光光度計を用いて確認したが、実施例1の場
合は、同様の分析を行った結果、上記有機成分が透過水
に混入していないことを確認した。
In the case of Comparative Example 1, the amount of permeated water (m 3 / day) before and after the operation for sterilization at 90 ° C. for 1 hour was 7.1.
From 4.3 to 4.3. However, when the heat-resistant spiral-type separation membrane module of the present invention of Example 1 is used, the permeated water amount (m 3 / day) before and after the operation for sterilization treatment at 90 ° C. for 1 hour is 7.1 to 6.9. We were able to keep down to until. That is, by using the separation membrane module of the present invention, the amount of permeated water after the hot water treatment can be at least 1.5 times that in the case of using the conventional separation membrane module. In the case of Comparative Example 1, it was confirmed using an ultraviolet / visible spectrophotometer that the organic component was mixed into the permeated water immediately after the operation for sterilization at 90 ° C. for 1 hour. In the case of the above, the same analysis was performed, and as a result, it was confirmed that the organic components were not mixed in the permeated water.

【0029】[0029]

【実施例2】実施例1で製作した耐熱性スパイラル型分
離膜モジュールを用い、1500ppm NaCl水溶液
(pH=6.5に調整)を原水に用いて、圧力15kgf/
cm2、温度60℃の条件下で200時間の連続逆浸透試
験を行った。その結果、200時間前後の透過水量(m3/
day)は7.1から6.8とほとんど低下しなかった。
Example 2 Using the heat-resistant spiral-type separation membrane module manufactured in Example 1, an aqueous solution of 1500 ppm NaCl (adjusted to pH = 6.5) was used as raw water, and the pressure was 15 kgf /
A continuous reverse osmosis test for 200 hours was performed under the conditions of cm 2 and a temperature of 60 ° C. As a result, the amount of permeated water around 200 hours (m 3 /
day) fell little from 7.1 to 6.8.

【0030】[0030]

【比較例2】比較例1のスパイラル型分離膜モジュール
を用いた以外は実施例2と同様な試験を行った。
Comparative Example 2 The same test as in Example 2 was performed except that the spiral type separation membrane module of Comparative Example 1 was used.

【0031】比較例2の場合、200時間前後の透過水
量(m3/day)は7.1から3.3に連続的に低下した。こ
れに対し、実施例2の本発明の耐熱性スパイラル型分離
膜モジュールを使用した場合、200時間前後の透過水
量(m3/day)は7.1から6.8とほとんど低下しなかっ
た。また、連続運転により比較例1より比較例2の方が
低下度合いが大きく、この原因として、剛直化させるた
めのエポキシ樹脂が60℃×200時間の連続運転間に
溶出し、流路材Qが操作圧力により潰れ透過側の抵抗が
上昇し透過水量の低下に繋がった。実施例2の場合エポ
キシ樹脂を含浸していないため剛直性が保たれており透
過水量の低下を阻止することができた。
In the case of Comparative Example 2, the amount of permeated water (m 3 / day) around 200 hours continuously decreased from 7.1 to 3.3. On the other hand, when the heat-resistant spiral-type separation membrane module of the present invention of Example 2 was used, the permeated water amount (m 3 / day) after about 200 hours hardly decreased from 7.1 to 6.8. Further, the degree of reduction in Comparative Example 2 was larger than that in Comparative Example 1 due to continuous operation. The reason for this was that the epoxy resin for stiffening was eluted during continuous operation at 60 ° C. × 200 hours, and the flow path material Q was reduced. The operating pressure increased the resistance on the permeation side, leading to a decrease in the amount of permeated water. In the case of Example 2, since the epoxy resin was not impregnated, the rigidity was maintained, and a decrease in the amount of permeated water could be prevented.

【0032】以上の実施例、比較例から本発明の優位性
が確認できた。なお、本発明と特公平3−66008号
公報の3枚オサを用いて凸部分に太繊度の糸を編み込ん
だ場合の比較は、下記の通りとなる。 (1)生産性は、従来技術の3枚オサと比較して、本発
明の2枚オサは約1.5倍、生産性が高く、その分コス
トダウンが可能となる。 (2)従来技術の3枚オサは、3種類の糸を使用するた
めに在庫管理や糸の管理が繁雑となるが、本発明の2枚
オサは繁雑性は軽減される。 (3)3枚オサの経編機は特殊であるが、2枚オサの経
編機は汎用であり、設備的に有利である。 (4)本発明の2枚オサにすることにより、流路を確保
しつつ流路材の厚みを薄くできるので、コンパクトな流
路材が形成できる。
The superiority of the present invention was confirmed from the above Examples and Comparative Examples. The comparison between the present invention and the case where a yarn with a high fineness is knitted in the convex portion using the three-piece mat of Japanese Patent Publication No. 3-66008 is as follows. (1) Compared with the conventional three-sheet material, the two-sheet material of the present invention is about 1.5 times as high in productivity, and the cost can be reduced accordingly. (2) In the conventional three-piece thread, three types of yarns are used, so that inventory management and thread management are complicated, but the two-piece thread in the present invention is less complicated. (3) A three-sheet warp knitting machine is special, but a two-sheet warp knitting machine is general-purpose and advantageous in terms of equipment. (4) By using two sheets of the present invention, the thickness of the channel material can be reduced while securing the channel, so that a compact channel material can be formed.

【0033】[0033]

【発明の効果】以上説明したとおり、本発明の液体分離
膜モジュールは、流路抵抗を上げることなく透過液生産
性を損なわなずに流路材の構造及び剛直性を長時間維持
し、かつ溶出のない薄い流路材を組み込んだ液体分離膜
モジュールをコスト安く提供できる。
As described above, the liquid separation membrane module of the present invention maintains the structure and rigidity of the flow path material for a long time without increasing the flow resistance and without impairing the permeate productivity. A liquid separation membrane module incorporating a thin channel material without elution can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例で用いる2枚オサのトリコッ
ト編地の平面編み立て図。
FIG. 1 is a plane knitting diagram of a two-piece tricot knitted fabric used in one embodiment of the present invention.

【図2】図1のA部の部分拡大編み立て図。FIG. 2 is a partially enlarged knitting diagram of a portion A in FIG. 1;

【図3】本発明の一実施例で用いる2枚オサのトリコッ
ト編地の組織図。
FIG. 3 is a structural diagram of a two-piece tricot knitted fabric used in one embodiment of the present invention.

【図4】本発明の一実施例のスパイラル型の液体分離膜
モジュールの断面図。
FIG. 4 is a sectional view of a spiral type liquid separation membrane module according to one embodiment of the present invention.

【図5】図4のI−I線断面図。FIG. 5 is a sectional view taken along line II of FIG. 4;

【符号の説明】[Explanation of symbols]

11 流体分離素子 12 円筒容器 13 V字形のシール材 14 透過液排出管 15 原液供給管 16 原液排出管 17 小孔 18 封止部 19 逆浸透透膜 20 透過液流路材 21 原液流路材 22 透過液排出管 X 地組織部分で形成される透過液の流路 Y 鎖部で形成される凸部分 DESCRIPTION OF SYMBOLS 11 Fluid separation element 12 Cylindrical container 13 V-shaped sealing material 14 Permeate discharge pipe 15 Raw liquid supply pipe 16 Raw liquid discharge pipe 17 Small hole 18 Sealing part 19 Reverse osmosis membrane 20 Permeate flow path material 21 Raw liquid flow path material 22 Permeated liquid discharge pipe X Permeated liquid flow path formed in ground structure Y Projected part formed in chain

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA05 HA61 JA05A JA05B JA05C JA06A JA06B JA06C KA12 KA72 KC24 MA03 MA09 MB02 MB15 MB16 MC48X MC55X MC90 PA01 PB03 PB05 PB06 PC02 PC31  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA05 HA61 JA05A JA05B JA05C JA06A JA06B JA06C KA12 KA72 KC24 MA03 MA09 MB02 MB15 MB16 MC48X MC55X MC90 PA01 PB03 PB05 PB06 PC02 PC31

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原液を受圧する半透膜の裏面側を支持す
る流路材を配置して形成した液体分離膜モジュールにお
いて、 前記流路材は、2枚オサを有するトリコット編機により
編成されたトリコット編地で、かつ地組織部分と凸部分
とを有し、 前記トリコット編地を構成する繊維は、高融点成分が芯
に配置され、低融点成分が鞘に配置された芯鞘型コンジ
ュゲート繊維からなる熱可塑性合成繊維フィラメント糸
条であり、 前記地組織部分と凸部分とを構成する熱可塑性合成繊維
フィラメント糸条は、実質的に同一繊度であり、 前記トリコット編地の構成糸条は前記低融点成分の融着
により、互いに接着され編地全体が剛直化されて流路材
が形成されていることを特徴とする液体分離膜モジュー
ル。
1. A liquid separation membrane module formed by arranging a flow path material supporting a back side of a semi-permeable membrane for receiving a stock solution, wherein the flow path material is knitted by a tricot knitting machine having two sheets. The tricot knitted fabric has a ground structure portion and a convex portion, and the fiber constituting the tricot knitted fabric has a core-sheath type conjugation in which a high melting point component is disposed on a core and a low melting point component is disposed on a sheath. A thermoplastic synthetic fiber filament yarn comprising a gate fiber, wherein the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion have substantially the same fineness, and a constituent yarn of the tricot knitted fabric. The liquid separation membrane module according to claim 1, wherein the low-melting-point components are fused to each other, and the entire knitted fabric is stiffened to form a flow path material.
【請求項2】 地組織部分と凸部分とを構成する熱可塑
性合成繊維フィラメント糸条の繊度は、45〜55デニ
ールの範囲である請求項1に記載の液体分離膜モジュー
ル。
2. The liquid separation membrane module according to claim 1, wherein the fineness of the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion is in the range of 45 to 55 denier.
【請求項3】 トリコット編地は、一方のオサで形成さ
れた編目のシンカ・ループ部が地組織部分となり、ニー
ドル・ループ部及び他方のオサで形成された鎖部分が凸
部分となっている請求項1に記載の液体分離膜モジュー
ル。
3. In the tricot knitted fabric, a sinker loop portion of a stitch formed by one mosa is a ground structure portion, and a chain portion formed by a needle loop portion and the other mosa is a convex portion. The liquid separation membrane module according to claim 1.
【請求項4】 原液を受圧する半透膜の裏面側を支持す
る流路材を用いた液体分離膜モジュールの製造方法にお
いて、 高融点成分が芯に配置され、低融点成分が鞘に配置され
た芯鞘型コンジュゲート繊維からなる熱可塑性合成繊維
フィラメント糸条を使用し、 2枚オサを有するトリコット編機により、地組織部分と
凸部分とを編成し、 その際に、前記地組織部分と凸部分とを構成する熱可塑
性合成繊維フィラメント糸条は、実質的に同一繊度と
し、 編地を編成した後に、コンジュゲート繊維の低融点成分
の融点以上、高融点成分の軟化点未満の加熱処理をし、
前記トリコット編地中の構成糸条を相互に融着固化して
編地全体を剛直化させて流路材を形成し、 前記流路材を半透膜の裏面側に配置して液体分離膜モジ
ュールを形成したことを特徴とする液体分離膜モジュー
ルの製造方法。
4. A method for manufacturing a liquid separation membrane module using a flow path material supporting a back side of a semipermeable membrane for receiving a stock solution, wherein a high melting point component is disposed on a core and a low melting point component is disposed on a sheath. Using a thermoplastic synthetic fiber filament yarn composed of a core-sheath type conjugate fiber, a ground texture portion and a convex portion are knitted by a tricot knitting machine having two pieces, and at that time, the ground texture portion and the convex portion are knitted. The thermoplastic synthetic fiber filament yarn constituting the convex portion has substantially the same fineness. After knitting the knitted fabric, heat treatment is performed at a temperature higher than the melting point of the low melting component of the conjugate fiber and lower than the softening point of the high melting component. And
The constituent yarns in the tricot knitted fabric are mutually fused and solidified to rigidify the entire knitted fabric to form a flow path material, and the flow path material is disposed on the back side of the semi-permeable membrane to form a liquid separation membrane. A method for manufacturing a liquid separation membrane module, comprising forming a module.
【請求項5】 地組織部分と凸部分とを構成する熱可塑
性合成繊維フィラメント糸条の繊度は、45〜55デニ
ールの範囲である請求項4に記載の液体分離膜モジュー
ルの製造方法。
5. The method for producing a liquid separation membrane module according to claim 4, wherein the fineness of the thermoplastic synthetic fiber filament yarn constituting the ground structure portion and the convex portion is in the range of 45 to 55 denier.
【請求項6】 トリコット編地は、一方のオサで形成さ
れた編目のシンカ・ループ部を地組織部分とし、ニード
ル・ループ部及び他方のオサで形成された鎖部分を凸部
分に形成した請求項4に記載の液体分離膜モジュールの
製造方法。
6. The tricot knitted fabric according to claim 1, wherein the sinker loop portion of the stitch formed by one boss is used as a ground structure portion, and the chain portion formed by the needle loop portion and the other boss is formed as a convex portion. Item 5. A method for producing a liquid separation membrane module according to Item 4.
JP16861099A 1999-06-08 1999-06-15 Liquid separation membrane module Expired - Fee Related JP3559475B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP16861099A JP3559475B2 (en) 1999-06-15 1999-06-15 Liquid separation membrane module
AT99126091T ATE306312T1 (en) 1999-06-08 1999-12-28 MEMBRANE MODULE FOR SEPARATING LIQUIDS AND METHOD FOR PRODUCING IT
EP99126091A EP1059114B1 (en) 1999-06-08 1999-12-28 Liquid separation membrane module and method of producing the same
DE69927674T DE69927674D1 (en) 1999-06-08 1999-12-28 Membrane module for separation of liquids and process for its preparation
ES99126091T ES2249867T3 (en) 1999-06-08 1999-12-28 MEMBRANE MODULE FOR THE SEPARATION OF LIQUIDS AND METHOD TO MANUFACTURE THE SAME.
US09/484,338 US6454942B1 (en) 1999-06-08 2000-01-18 Liquid separation membrane module
CNB001089838A CN1136950C (en) 1999-06-08 2000-05-25 Liquid separating membrane module and its mfg. method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16861099A JP3559475B2 (en) 1999-06-15 1999-06-15 Liquid separation membrane module

Publications (2)

Publication Number Publication Date
JP2000354743A true JP2000354743A (en) 2000-12-26
JP3559475B2 JP3559475B2 (en) 2004-09-02

Family

ID=15871257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16861099A Expired - Fee Related JP3559475B2 (en) 1999-06-08 1999-06-15 Liquid separation membrane module

Country Status (1)

Country Link
JP (1) JP3559475B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342653A (en) * 2004-06-04 2005-12-15 Kurita Water Ind Ltd Membrane separation device
KR100704383B1 (en) 2005-11-08 2007-04-06 주식회사 새 한 Tricot permeate channel for reverse osmosis membrane filter
JP2007167783A (en) * 2005-12-22 2007-07-05 Nitto Denko Corp Spiral type separation membrane element
JP2011245454A (en) * 2010-05-28 2011-12-08 Fukui Tateami Kogyo Kk Tricot knitted fabric for flow passage material to be used in liquid separation apparatus and method for producing the fabric
KR101353830B1 (en) 2006-03-31 2014-01-21 도레이 카부시키가이샤 Liquid separation device, flow channel material and process for producing the same
JP2014070279A (en) * 2012-09-27 2014-04-21 Unitika Trading Co Ltd Warp knitted fabric
WO2015063975A1 (en) * 2013-10-29 2015-05-07 日東電工株式会社 Flow path member, forward osmosis membrane element
JP2015147195A (en) * 2014-02-07 2015-08-20 日東電工株式会社 Spiral type separation membrane element
JP2015529552A (en) * 2012-07-23 2015-10-08 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Filtration articles having a fluoropolymer knit
JP2017000939A (en) * 2015-06-09 2017-01-05 東レ株式会社 Tricot flow passage material
WO2017131031A1 (en) * 2016-01-29 2017-08-03 東レ株式会社 Flow path material
KR20180059838A (en) 2015-09-30 2018-06-05 닛토덴코 가부시키가이샤 Method of manufacturing spiral membrane element
JPWO2018147251A1 (en) * 2017-02-09 2019-06-27 東レ株式会社 Heat-adhesive core-sheath composite fiber and tricot knitted fabric
US10350529B2 (en) 2012-06-21 2019-07-16 Entegris, Inc. Filtration article with fluoropolymer knit
KR20210129305A (en) * 2020-04-17 2021-10-28 도레이첨단소재 주식회사 Spiral membrane module with low elution of heavy metal and preparing method of the same
EP4249106A1 (en) 2022-03-24 2023-09-27 Nitto Denko Corporation Composite semipermeable membrane and spiral membrane element
US12083481B2 (en) 2018-07-31 2024-09-10 Toray Advanced Materials Korea, Inc. Fouling-resistant reverse osmosis membrane, method for producing same, and fouling-resistant reverse osmosis module including same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342653A (en) * 2004-06-04 2005-12-15 Kurita Water Ind Ltd Membrane separation device
KR100704383B1 (en) 2005-11-08 2007-04-06 주식회사 새 한 Tricot permeate channel for reverse osmosis membrane filter
JP2007167783A (en) * 2005-12-22 2007-07-05 Nitto Denko Corp Spiral type separation membrane element
JP4488431B2 (en) * 2005-12-22 2010-06-23 日東電工株式会社 Spiral type separation membrane element
KR101353830B1 (en) 2006-03-31 2014-01-21 도레이 카부시키가이샤 Liquid separation device, flow channel material and process for producing the same
JP2011245454A (en) * 2010-05-28 2011-12-08 Fukui Tateami Kogyo Kk Tricot knitted fabric for flow passage material to be used in liquid separation apparatus and method for producing the fabric
US10350529B2 (en) 2012-06-21 2019-07-16 Entegris, Inc. Filtration article with fluoropolymer knit
JP2015529552A (en) * 2012-07-23 2015-10-08 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Filtration articles having a fluoropolymer knit
JP2017209673A (en) * 2012-07-23 2017-11-30 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Filtration article with fluoropolymer knit
JP2014070279A (en) * 2012-09-27 2014-04-21 Unitika Trading Co Ltd Warp knitted fabric
WO2015063975A1 (en) * 2013-10-29 2015-05-07 日東電工株式会社 Flow path member, forward osmosis membrane element
JP2015085233A (en) * 2013-10-29 2015-05-07 日東電工株式会社 Channel member and forward osmosis membrane element
JP2015147195A (en) * 2014-02-07 2015-08-20 日東電工株式会社 Spiral type separation membrane element
KR20160119142A (en) 2014-02-07 2016-10-12 닛토덴코 가부시키가이샤 Spiral-type separation membrane element
JP2017000939A (en) * 2015-06-09 2017-01-05 東レ株式会社 Tricot flow passage material
US10357747B2 (en) 2015-09-30 2019-07-23 Nitto Denko Corporation Method for producing spiral wound separation membrane element
KR20180059838A (en) 2015-09-30 2018-06-05 닛토덴코 가부시키가이샤 Method of manufacturing spiral membrane element
JPWO2017131031A1 (en) * 2016-01-29 2018-11-15 東レ株式会社 Channel material
WO2017131031A1 (en) * 2016-01-29 2017-08-03 東レ株式会社 Flow path material
JPWO2018147251A1 (en) * 2017-02-09 2019-06-27 東レ株式会社 Heat-adhesive core-sheath composite fiber and tricot knitted fabric
US12083481B2 (en) 2018-07-31 2024-09-10 Toray Advanced Materials Korea, Inc. Fouling-resistant reverse osmosis membrane, method for producing same, and fouling-resistant reverse osmosis module including same
KR20210129305A (en) * 2020-04-17 2021-10-28 도레이첨단소재 주식회사 Spiral membrane module with low elution of heavy metal and preparing method of the same
JP2021171759A (en) * 2020-04-17 2021-11-01 東レ尖端素材株式会社Toray Advanced Materials Korea Inc. Heavy metal non-eluting spiral filter module and manufacturing method thereof
KR102347498B1 (en) * 2020-04-17 2022-01-05 도레이첨단소재 주식회사 Spiral membrane module with low elution of heavy metal and preparing method of the same
EP4249106A1 (en) 2022-03-24 2023-09-27 Nitto Denko Corporation Composite semipermeable membrane and spiral membrane element
KR20230138883A (en) 2022-03-24 2023-10-05 닛토덴코 가부시키가이샤 Composite semipermeable membrane and spiral membrane element

Also Published As

Publication number Publication date
JP3559475B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US6454942B1 (en) Liquid separation membrane module
JP3559475B2 (en) Liquid separation membrane module
KR101483475B1 (en) Support for separation membrane, and method for production thereof
JP4488431B2 (en) Spiral type separation membrane element
JP3430783B2 (en) Liquid separation element, apparatus and processing method
JP5005662B2 (en) Liquid separation channel forming material and method for producing the same
JP3956262B2 (en) Liquid separation membrane module
JP6844533B2 (en) Channel material
JPH0366008B2 (en)
JPS6136964B2 (en)
JPH09141060A (en) Liquid separation element, device and treatment therefor
JP7469058B2 (en) Flow path material for liquid separators
KR100586733B1 (en) Producing method of spiral wound module
JP7358914B2 (en) Channel material
EP0862491A1 (en) A filter member
JP2002095935A (en) Spiral separation membrane element
JP2018094549A (en) Permeation liquid channel material for spiral type separation element
US20040182775A1 (en) Spiral separation membrane element
WO2023281719A1 (en) Flow path material for liquid separation devices
JPH0371166B2 (en)
JPH08243579A (en) Carrier for waste water treatment
JP2000051668A (en) Liquid separation element and water making method
JP2023033010A (en) Passage material for liquid separation device
JP2000288541A (en) Spiral type reverse osmosis membrane and separation method
JP2020110759A (en) Permeation liquid channel material for spiral type separation element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Ref document number: 3559475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160528

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees