JPS6235802B2 - - Google Patents

Info

Publication number
JPS6235802B2
JPS6235802B2 JP58144920A JP14492083A JPS6235802B2 JP S6235802 B2 JPS6235802 B2 JP S6235802B2 JP 58144920 A JP58144920 A JP 58144920A JP 14492083 A JP14492083 A JP 14492083A JP S6235802 B2 JPS6235802 B2 JP S6235802B2
Authority
JP
Japan
Prior art keywords
permeate
liquid separation
channel material
stock solution
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58144920A
Other languages
Japanese (ja)
Other versions
JPS6038003A (en
Inventor
Takuo Ito
Hiroshi Takeuchi
Masafumi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14492083A priority Critical patent/JPS6038003A/en
Publication of JPS6038003A publication Critical patent/JPS6038003A/en
Publication of JPS6235802B2 publication Critical patent/JPS6235802B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は半透膜を用いた液体分離装置の改良に
関し、さらに詳しくは、逆浸透膜を用いた液体分
離装置の分離性能及び耐久性を向上せしめた液体
分離装置に関する。 [従来の技術] 従来から半透膜を用いた液体分離装置には、透
析、限外濾過、逆浸透圧などの原理を利用したも
のが多く知られている。特に逆浸透圧などの原理
に係るものは他のものにくらべ、原液(被処理
液)に加える圧力が大きいことに起因して装置の
耐久性が低いという欠点がある。 第4図は従来の装置(たとえば特開昭54−
31087号公報)における原液を分離する機構の断
面図を示している。第4図に示すように、透過液
流路材14に支持された逆浸透膜13の上面から
矢印で示すように原液を加圧下に逆浸透膜と接触
させると、原液の一部は逆浸透膜13を透過し、
残された原液は濃縮されていく。そして透過した
透過液は透過液流路材14の溝21に沿つて流
れ、収集される。この場合における透過液流路材
14としては、通常トリコツト編物が使用され、
その表面に形成される突起25および溝21が利
用される。 しかし、このような態様の装置においては、流
路材14に逆浸透膜13が高圧で押付けられる結
果、図示のように前記流路材14の表面の凹凸に
沿つた形状に逆浸透膜13が変形、引き伸され、
結果として、膜の脱塩率が低下するという悪影響
を与える。更に、変形が進んだり、破壊伸度の小
さな膜の場合には、この変形により、部分的にひ
びが入つたり、破れたりして透過液の品質を低下
させるという欠点がしばしば生じることがあり、
また長時間の運転において経時的に上記の現象が
進行していくという欠陥を避けることができない
ものである。 別の公知例としてプレートを使用するもの(特
開昭57−209603号公報)があるが、これでは可撓
性がないので板状体モジユールしか作れず不都合
であつた。 [発明が解決しようとする問題点] 本発明は、上記のごとき従来技術の欠陥を改善
するため、流路材としてカレンダー加工した布帛
を用いることにより、半透膜を損傷せず、長期に
わたつて、すぐれた性能を発揮することのできる
液体分離装置を提供せんとするものである。 [問題点を解決するための手段] 本発明は上記の目的を達成するため下記の構成
からなる。 「原液流路と透過液流路との間に半透膜を介在
させ、原液を加圧下に半透膜に接触させることに
より、濃縮液と前記半透膜を通過する透過液とに
分離するように構成した液体分離装置において、
2枚の半透膜間に介在する透過液の流路材とし
て、カレンダー加工により溝部と突起部が形成さ
れ、かつ突起部の表面が平滑化された布帛を用い
たことを特徴とする液体分離装置。」 本発明においては、上記カレンダー加工された
布帛が、ポリエステル繊維を用いたトリコツト編
地であることがコストや形態安定性などの実用的
な面において好ましい。 第1図は本発明に係る装置の軸方向断面図であ
り、第2図は、第1図におけるX―X断面図であ
る。 第1〜2図において、円筒容器1は液体分離素
子4を内蔵しており、側面蓋2,3によつて、密
閉されている。また前記円筒容器1には被分離液
体である原液を供給するための原液供給管5と原
液を排出するための原液排出管6が設けられてお
り、さらに液体分離素子4には透過液排出管7が
接続されている。また、液体分離素子4と円筒容
器との間には、原液を後述するように液体分離素
子4の渦巻状に構成された原液通路20に円滑に
導くため、シール部17が設けられている。 第2図に示した如く、液体分離素子4は中心部
の壁面に列状に多数の小孔9をその管軸方向に配
列した中空管8を配置し、前記小孔9を通つて来
た透過液を外部に導くための透過液排出管7が中
空管8に連接されている。中空管8には前記小孔
9を覆うごとく2枚の逆浸透膜13,13′がそ
の一端を接着して取り付けられ、該逆浸透膜1
3,13′の間は透過液流路24が形成され、該
流路24には表面に溝21を有する多孔質の透過
液の流路材14が挿入され、その端部は閉塞部1
0として液密に接着されている。 そして上記のように一端を中空管8に接着し、
他端を閉塞部10で接着した逆浸透膜13,1
3′の間に流路材を挿入し、中空管のまわりに渦
巻線状に巻き付け、この巻き付けたものの端部を
端部シール16,16′によつて固定し、原液通
路20の透過液流路24をそれぞれ液密にシール
したものである。 上記した構造の液体分離装置に対し、原液は原
液供給管5より原液の溶媒、溶質の種類、濃度、
逆浸透膜の種類、厚さなどによつて定まる浸透圧
よりも高い圧力で送り込まれ、円筒容器1の空間
部18を充満した後、液体分離素子4の外周母線
12上に開口している渦巻線状に構成されている
原液通路20に導かれる。原液通路20に沿つて
液体分離素子4の内部に侵入した原液は、中空管
8の近辺において該中空管に沿つた方向に流れの
方向を変換し、端部シール16′に設けた透孔2
3を通り抜け、円筒容器1の側面蓋3と液体分離
素子4の端部シール16′に囲まれた空間部空管
19を経て原液排出口6から系外に排出される。 この過程において、逆浸透膜13,13′を通
過した透過液は、透過液流路材14の多孔性の孔
を通つて該流路材14の溝21に集められ渦巻状
の透過液流路24を通つて中空管8の管壁に至
り、該管壁に設けた小孔9を介して透過液排出管
7より系外に取り出される。 第3図は透過液流路24の構造を示す断面図で
ある。 第3図から明らかな如く逆浸透膜13,13′
を通過した透過液は、さらに流路材14の表面に
設けた溝21を通り中空管8に導かれる。原液か
ら溶媒が逆浸透膜を通つて分離されるためには前
記したように、その系における浸透圧を超える高
い圧力が原液に加えられる結果、逆浸透膜13お
よび13′はそれぞれ流路材14の表面に強く押
しつけられる。この圧力は、たとえば海水から水
を分離する場合には膜の種類にもよるが、40Kg/
cm2(G)、高い場合には70Kg/cm2(G)もの圧力が加えら
れ、この圧力のため半透膜は第4図に示すように
流路材へ押し付けられ、いわゆるエンボス変形を
起こす。 本発明に係る装置は第3図に示す流路材はカレ
ンダー加工により表面の微少な凹凸がつぶされ、
非常に滑らかな面となつている。従つて、第5図
に示すように、膜のエンボス変形は流路材の溝部
のみで発生し最少限に抑えられる。また、カレン
ダー加工において流路材の厚みも減少するため、
その分膜充填密度を上げることができ、分離装置
単位体積当りの透過液量が増加する。そしてこの
傾向は特に長期間使用したときに顕著に発現す
る。すなわち本発明の装置は長期間安定して運転
することができる。 本発明で適用するカレンダー加工の条件は、
各々の流路材の物性に応じて、膜の変形防止の効
果と、流路材が薄くなることに伴なう透過液流路
断面積減少の影響を考慮して、液体分離装置が最
高の性能を発揮するよう設定することが必要であ
る。一般的には、荷重20〜50トン/全幅、温度30
〜180℃、送り速度5〜20m/分の範囲で最適点
を選択できる。 [実施例] 実施例 1 透過液流路材として、ポリエチレンテレフタレ
ートを主原料とする糸をダブルデンビ組織に編成
し、これを熱処理で硬化させたトリコツト編地を
製作した。上記流路材のカレンダー加工品(第3
図の番号14で示す形状で、トリコツト編地の厚
さ220μm、溝部の深さ90μm、溝部の幅200μ
m、突起部の上の平滑面の幅420μmであつて、
溝部はストライプ形状)、及び比較例としてカレ
ンダー加工品してないもののそれぞれを使用し
て、口径8インチのスパイラル型液体分離装置を
製作し、その性能を比較した。3.5%食塩水を原
液とし、圧力56Kg/cm2(G)、温度25℃で運転した結
果を第1表に示す。カレンダー加工により液体分
離装置の塩除去率が向上し、透過液の水質が25%
改善された。また単位体積当りの膜面積も約10%
増加し、ほぼ対応して透過液量も増加した。
[Field of Industrial Application] The present invention relates to an improvement of a liquid separation device using a semipermeable membrane, and more particularly, to a liquid separation device that improves the separation performance and durability of a liquid separation device using a reverse osmosis membrane. . [Prior Art] Conventionally, many liquid separation devices using semipermeable membranes are known that utilize principles such as dialysis, ultrafiltration, and reverse osmosis. In particular, devices based on principles such as reverse osmosis pressure have the disadvantage that the durability of the device is low due to the large pressure applied to the stock solution (liquid to be treated) compared to other devices. Figure 4 shows a conventional device (for example, JP-A-54-
31087) is a cross-sectional view of a mechanism for separating the stock solution. As shown in FIG. 4, when the stock solution is brought into contact with the reverse osmosis membrane under pressure as shown by the arrow from the upper surface of the reverse osmosis membrane 13 supported by the permeate channel material 14, a portion of the stock solution will pass through the reverse osmosis membrane. Transmits through the membrane 13,
The remaining stock solution will be concentrated. The permeated liquid then flows along the grooves 21 of the permeated liquid channel material 14 and is collected. In this case, a tricot knitted fabric is usually used as the permeate channel material 14,
Protrusions 25 and grooves 21 formed on the surface are utilized. However, in the device of this type, as a result of the reverse osmosis membrane 13 being pressed against the channel material 14 under high pressure, the reverse osmosis membrane 13 is shaped to follow the unevenness of the surface of the channel material 14 as shown in the figure. deformed, stretched,
As a result, this has the adverse effect of reducing the salt removal rate of the membrane. Furthermore, in the case of highly deformed membranes or membranes with low fracture elongation, this deformation often has the disadvantage of partially cracking or tearing, which reduces the quality of the permeate. ,
Further, the defect that the above-mentioned phenomenon progresses over time during long-term operation cannot be avoided. Another known example uses a plate (Japanese Unexamined Patent Publication No. 57-209603), but this is inconvenient because it lacks flexibility and can only be used as a plate-like module. [Problems to be Solved by the Invention] In order to improve the above-mentioned deficiencies of the prior art, the present invention uses a calendered fabric as a flow channel material, so that the semipermeable membrane can be maintained for a long period of time without being damaged. Therefore, it is an object of the present invention to provide a liquid separation device that can exhibit excellent performance. [Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. "A semipermeable membrane is interposed between the stock solution flow path and the permeate flow path, and the stock solution is brought into contact with the semipermeable membrane under pressure to separate it into a concentrated liquid and a permeate that passes through the semipermeable membrane. In the liquid separation device configured as follows,
A liquid separation characterized in that a fabric in which grooves and protrusions are formed by calendering and the surface of the protrusions is smoothed is used as a channel material for the permeate interposed between two semipermeable membranes. Device. In the present invention, it is preferable that the calendered fabric is a tricot knitted fabric using polyester fibers from practical aspects such as cost and shape stability. FIG. 1 is an axial sectional view of the device according to the present invention, and FIG. 2 is a sectional view taken along line XX in FIG. In FIGS. 1 and 2, a cylindrical container 1 contains a liquid separation element 4 and is sealed by side lids 2 and 3. Further, the cylindrical container 1 is provided with a stock solution supply pipe 5 for supplying the stock solution as the liquid to be separated and a stock solution discharge pipe 6 for discharging the stock solution, and the liquid separation element 4 is further provided with a permeated liquid discharge pipe. 7 is connected. Further, a sealing portion 17 is provided between the liquid separation element 4 and the cylindrical container in order to smoothly guide the concentrate into a spirally configured concentrate passage 20 of the liquid separation element 4 as described later. As shown in FIG. 2, the liquid separation element 4 has a hollow tube 8 in which a large number of small holes 9 arranged in rows in the axial direction of the tube is arranged on the wall surface of the center part, and the liquid separation element 4 has a hollow tube 8 in which a large number of small holes 9 are arranged in rows in the tube axis direction. A permeate discharge pipe 7 for guiding the permeate to the outside is connected to the hollow tube 8. Two reverse osmosis membranes 13 and 13' are attached to the hollow tube 8 with one end thereof glued so as to cover the small hole 9, and the reverse osmosis membrane 1
A permeate flow path 24 is formed between 3 and 13', and a porous permeate flow path material 14 having grooves 21 on the surface is inserted into the flow path 24, and the end thereof is connected to the blockage part 1.
0 and is liquid-tightly bonded. Then, glue one end to the hollow tube 8 as described above,
Reverse osmosis membrane 13, 1 whose other end is bonded with a closing part 10
A channel material is inserted between 3' and wound spirally around the hollow tube, and the ends of the wound material are fixed by end seals 16 and 16', and the permeated liquid in the stock liquid passage 20 is Each of the flow channels 24 is sealed liquid-tightly. For the liquid separation device having the structure described above, the stock solution is supplied from the stock solution supply pipe 5 by the solvent, solute type, concentration, etc. of the stock solution.
The vortex is fed at a pressure higher than the osmotic pressure determined by the type, thickness, etc. of the reverse osmosis membrane, and after filling the space 18 of the cylindrical container 1, the vortex opens on the outer circumferential generatrix 12 of the liquid separation element 4. It is led to a stock solution passage 20 that is configured linearly. The concentrated liquid that has entered the interior of the liquid separation element 4 along the concentrated liquid passage 20 changes its flow direction to the direction along the hollow tube 8 in the vicinity of the hollow tube 8, and passes through the transparent tube provided in the end seal 16'. Hole 2
3, and is discharged out of the system from the stock solution outlet 6 through an empty tube 19 in a space surrounded by the side cover 3 of the cylindrical container 1 and the end seal 16' of the liquid separation element 4. In this process, the permeate that has passed through the reverse osmosis membranes 13 and 13' passes through the porous pores of the permeate channel material 14 and is collected in the grooves 21 of the channel material 14, forming a spiral-shaped permeate channel. 24 to the tube wall of the hollow tube 8, and is taken out of the system from the permeate discharge tube 7 through a small hole 9 provided in the tube wall. FIG. 3 is a sectional view showing the structure of the permeate flow path 24. As is clear from FIG. 3, reverse osmosis membranes 13, 13'
The permeated liquid that has passed through is further guided to the hollow tube 8 through the groove 21 provided on the surface of the channel material 14. In order for the solvent to be separated from the stock solution through the reverse osmosis membrane, as described above, a high pressure exceeding the osmotic pressure in the system is applied to the stock solution. pressed strongly against the surface of For example, when separating water from seawater, this pressure is 40 kg/kg, depending on the type of membrane.
cm 2 (G), or as high as 70Kg/cm 2 (G), and this pressure forces the semipermeable membrane against the channel material as shown in Figure 4, causing so-called emboss deformation. . In the device according to the present invention, minute irregularities on the surface of the channel material shown in FIG. 3 are crushed by calendering, and
It has a very smooth surface. Therefore, as shown in FIG. 5, the embossed deformation of the membrane occurs only in the grooves of the channel material and is suppressed to a minimum. In addition, since the thickness of the channel material decreases during calendering,
The membrane packing density can be increased, and the amount of permeate per unit volume of the separation device can be increased. This tendency becomes especially noticeable when the product is used for a long period of time. That is, the device of the present invention can operate stably for a long period of time. The conditions for calendering applied in the present invention are as follows:
Depending on the physical properties of each channel material, the best liquid separation device can be selected, taking into account the effect of preventing membrane deformation and the effect of reducing the cross-sectional area of the permeate channel due to the thinning of the channel material. It is necessary to configure settings to maximize performance. Generally, load is 20 to 50 tons/full width, temperature is 30
The optimum point can be selected within the range of ~180℃ and feed rate of 5~20m/min. [Examples] Example 1 As a permeate flow channel material, a tricot knitted fabric was produced by knitting a yarn mainly made of polyethylene terephthalate into a double-density structure and hardening it by heat treatment. Calendared product of the above channel material (3rd
With the shape shown in number 14 in the figure, the thickness of the tricot knitted fabric is 220 μm, the depth of the groove is 90 μm, and the width of the groove is 200 μm.
m, the width of the smooth surface on the protrusion is 420 μm,
A spiral-type liquid separator with a diameter of 8 inches was manufactured using a non-calendered product (grooves in a stripe shape) and a non-calendered product as a comparative example, and their performances were compared. Table 1 shows the results of operation using 3.5% saline as the stock solution at a pressure of 56 Kg/cm 2 (G) and a temperature of 25°C. Calendering improves the salt removal rate of the liquid separator and reduces the water quality of the permeate by 25%
Improved. Also, the membrane area per unit volume is approximately 10%
The amount of permeate increased almost correspondingly.

【表】【table】

【表】 実施例 2 実施例1と同様にしてモジユールを作り、圧力
60Kg/cm2で100時間運転後の流路材(トリコツト
編地)厚さ変化を測定した。その結果、カレンダ
ー加工したものは5%の変化率であつたのに対
し、カレンダー加工しないものは15%厚さが変化
し、薄くなつた。また塩排除率と造水量の変化は
第2表のとおりで、カレンダー加工したものは耐
久性にも優れていた。
[Table] Example 2 A module was made in the same manner as in Example 1, and the pressure
Changes in the thickness of the channel material (tricot knitted fabric) after 100 hours of operation at 60 kg/cm 2 were measured. As a result, the thickness of the calendered material changed by 5%, while the thickness of the non-calendered material changed by 15% and became thinner. Table 2 shows the changes in salt rejection rate and amount of water produced, and the calendered products had excellent durability.

【表】 [発明の効果] 本発明は、上記の如き従来技術を改善し、以下
の効果を有するものである。 (1) 流路材の表面平滑性が向上して、膜の変形が
最少限に抑えられることにより、液体分離装置
の性能低下を防止し、また寿命を大幅に伸ば
す。 (2) 流路材が薄くなるため、その分だけ膜充填密
度を上げることができ、これにより液体分離装
置単位体積当りの透過液量が増加する。 なお、本発明に係る装置はスパイラル型以外に
もチユーブラー型、その他透過液流路材を用いる
構造を有するすべての液体分離装置に適用可能で
あり、その利用分野は極めて広い。
[Table] [Effects of the Invention] The present invention improves the prior art as described above and has the following effects. (1) The surface smoothness of the channel material is improved and the deformation of the membrane is minimized, thereby preventing a drop in the performance of the liquid separation device and significantly extending its life. (2) Since the channel material becomes thinner, the membrane packing density can be increased accordingly, which increases the amount of permeated liquid per unit volume of the liquid separation device. The device according to the present invention can be applied to not only the spiral type but also the tubular type and all other liquid separation devices having a structure using a permeate channel material, and its field of use is extremely wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の軸方向の断面図で
あり、第2図は第1図におけるX―X断面図を示
す。第3図は本発明に係る装置の透過液流路の構
造を示す断面図であり、第4図は従来装置におけ
る加圧時の透過液流路の状態を示す断面図であ
る。第5図は、本発明の採用により膜の変形が減
少する状況を第4図と比較して示したものであ
る。 4:液体分離素子、13,13′:逆浸透膜、
14:透過液流路材、15:原液通路材、20:
原液通路。
FIG. 1 is an axial cross-sectional view of the device according to the invention, and FIG. 2 is a cross-sectional view taken along line XX in FIG. FIG. 3 is a cross-sectional view showing the structure of the permeate flow path in the device according to the present invention, and FIG. 4 is a cross-sectional view showing the state of the permeate flow path during pressurization in the conventional device. FIG. 5 shows a situation in which membrane deformation is reduced by employing the present invention in comparison with FIG. 4. 4: liquid separation element, 13, 13': reverse osmosis membrane,
14: Permeate channel material, 15: Raw solution channel material, 20:
Raw solution passage.

Claims (1)

【特許請求の範囲】 1 原液流路と透過液流路との間に半透膜を介在
させ、原液を加圧下に半透膜に接触させることに
より、濃縮液と前記半透膜を通過する透過液とに
分離するように構成した液体分離装置において、
2枚の半透膜間に介在する透過液の流路材とし
て、カレンダー加工により溝部と突起部が形成さ
れ、かつ突起部の表面が平滑化された布帛を用い
たことを特徴とする液体分離装置。 2 特許請求の範囲第1項において、カレンダー
加工された布帛が、ポリエステル繊維を用いたト
リコツト編地であることを特徴とする液体分離装
置。
[Scope of Claims] 1. A semipermeable membrane is interposed between the stock solution flow path and the permeate flow path, and the stock solution is brought into contact with the semipermeable membrane under pressure, so that the concentrate passes through the semipermeable membrane. In a liquid separation device configured to separate into permeate and permeate,
A liquid separation characterized in that a fabric in which grooves and protrusions are formed by calendering and the surface of the protrusions is smoothed is used as a channel material for the permeate interposed between two semipermeable membranes. Device. 2. The liquid separation device according to claim 1, wherein the calendered fabric is a tricot knitted fabric using polyester fibers.
JP14492083A 1983-08-10 1983-08-10 Liquid separation apparatus Granted JPS6038003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14492083A JPS6038003A (en) 1983-08-10 1983-08-10 Liquid separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14492083A JPS6038003A (en) 1983-08-10 1983-08-10 Liquid separation apparatus

Publications (2)

Publication Number Publication Date
JPS6038003A JPS6038003A (en) 1985-02-27
JPS6235802B2 true JPS6235802B2 (en) 1987-08-04

Family

ID=15373301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14492083A Granted JPS6038003A (en) 1983-08-10 1983-08-10 Liquid separation apparatus

Country Status (1)

Country Link
JP (1) JPS6038003A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647503U (en) * 1987-06-30 1989-01-17
JPH03101602U (en) * 1990-02-03 1991-10-23
JPH03101603U (en) * 1990-02-03 1991-10-23
JPH0524483Y2 (en) * 1987-10-05 1993-06-22
JPH0612009U (en) * 1991-10-04 1994-02-15 株式会社ノダ Laminate
JPH0612010U (en) * 1991-10-11 1994-02-15 株式会社ノダ Laminate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085234A (en) * 2013-10-29 2015-05-07 日東電工株式会社 Forward osmosis membrane element
JP6637232B2 (en) 2014-11-13 2020-01-29 日東電工株式会社 Permeation-side flow path material for spiral-type membrane element and method for producing the same
KR20180103926A (en) * 2016-01-29 2018-09-19 도레이 카부시키가이샤 Membrane element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431087A (en) * 1977-08-11 1979-03-07 Toray Ind Inc Separating apparatus for liquid
JPS57209603A (en) * 1981-06-26 1982-12-23 Nikoraebitsuchi Chi Reonitsudo Membrane element and apparatus for separating mixture of gas and liquid phases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431087A (en) * 1977-08-11 1979-03-07 Toray Ind Inc Separating apparatus for liquid
JPS57209603A (en) * 1981-06-26 1982-12-23 Nikoraebitsuchi Chi Reonitsudo Membrane element and apparatus for separating mixture of gas and liquid phases

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647503U (en) * 1987-06-30 1989-01-17
JPH0524483Y2 (en) * 1987-10-05 1993-06-22
JPH03101602U (en) * 1990-02-03 1991-10-23
JPH03101603U (en) * 1990-02-03 1991-10-23
JPH0612009U (en) * 1991-10-04 1994-02-15 株式会社ノダ Laminate
JPH0612010U (en) * 1991-10-11 1994-02-15 株式会社ノダ Laminate

Also Published As

Publication number Publication date
JPS6038003A (en) 1985-02-27

Similar Documents

Publication Publication Date Title
US4220535A (en) Multi-zoned hollow fiber permeator
US4414113A (en) Liquid purification using reverse osmosis hollow fibers
US4902417A (en) Spiral-wound membrane cartridge with ribbed and spaced carrier layer
US4792401A (en) Spiral wound membrane module and method of manufacture and use
US5628909A (en) Membrane filters with corkscrew vortex generating means
US6902672B2 (en) Open-channeled spiral-wound membrane module
JP2000157845A (en) Hollow fiber membrane cartridge and its fixing structure
US4411785A (en) Reverse osmosis hollow fiber filter element
JP2004522569A (en) Crossflow filtration media and cartridges
US4299702A (en) Liquid separation apparatus
JPS6235802B2 (en)
JPS6082B2 (en) Thin membrane filtration device
Krstićś et al. Static turbulence promoter in cross-flow microfiltration of skim milk
BR112012022720B1 (en) Support geometry and filtration membrane
KR20040086835A (en) Spiral separation membrane element
US3687293A (en) Therapeutic device
CA1086661A (en) Hollow fiber separatory device
KR101787942B1 (en) Membrane module for membrane contactor
JP2005296937A (en) Hollow fiber membrane module and production method therefor
JPS6241764B2 (en)
KR200186206Y1 (en) Fiber carbon filter
JP2004283701A (en) Spiral separation membrane element
JP6069944B2 (en) Gas separation membrane module
US4411787A (en) Reverse osmosis apparatus
JPS6041505A (en) Liquid separator