JPS6041449B2 - How to reconstitute electrolytic capacitors - Google Patents

How to reconstitute electrolytic capacitors

Info

Publication number
JPS6041449B2
JPS6041449B2 JP55091177A JP9117780A JPS6041449B2 JP S6041449 B2 JPS6041449 B2 JP S6041449B2 JP 55091177 A JP55091177 A JP 55091177A JP 9117780 A JP9117780 A JP 9117780A JP S6041449 B2 JPS6041449 B2 JP S6041449B2
Authority
JP
Japan
Prior art keywords
capacitor element
capacitor
reconstitute
partition wall
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55091177A
Other languages
Japanese (ja)
Other versions
JPS5715414A (en
Inventor
康彦 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Original Assignee
NEC Home Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd filed Critical NEC Home Electronics Ltd
Priority to JP55091177A priority Critical patent/JPS6041449B2/en
Publication of JPS5715414A publication Critical patent/JPS5715414A/en
Publication of JPS6041449B2 publication Critical patent/JPS6041449B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は電解コンデンサの再化成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reconstitution of electrolytic capacitors.

例えば、固体電解コンデンサは次の各工程で製造される
For example, solid electrolytic capacitors are manufactured through the following steps.

まず第1図に示すように、タンタルやチタンなどの弁作
用を有する金属線よりなる陽極リードーの下端部に同じ
弁作用を有する金属粉末を加圧成形して焼結した多孔質
のコンデンサェレメント2を形成する。次にコンデンサ
ェレメント2を各々に有する複数本の陽極リード1の上
端部を第2図に示すように、1枚の金属板3に等間隔で
溶接等で電気的に接続固定して、1つのタィバー部品4
を得る。次に複数のタィバー部品4を整列させて、各コ
ンデンサェレメント2を第3図に示すように、化成用(
陽極酸化用)のリン酸水溶液等の電解液5中に浸潰し、
金属板3から陽極リードーを介してコンデンサェレメン
ト2に所定のプラス電圧を付加し、一方電解液5内に浸
潰した陰極板6にマイナス電圧を印加して、化成処理を
行う。すると多孔質のコンデンサェレメント2の内外表
面に譲蚤体である酸化膜が形成される。例えばタンタル
を焼結したコンデンサヱレメント(2’の場合はTa2
05の酸化膜が形成される。次にこのコンデンサェレメ
ント2を電解液5から引き上げ、次は第4図に示すよう
に半導体母液、例えば硝酸マンガン溶液7に浸潰し内部
に充分に含浸させた後、引き上げ熱分解する。そして、
含浸一熱分解処理を何回か繰り返すことによって、前記
酸化膜上に二酸化マンガンなどの半導体層を形成する。
ところで、この熱分解時の熱でもつて酸化膜が劣化して
欠陥部等が生じるため、何回かの熱処理後にコンデンサ
ェレメント2を第3図に示した要領で再び化成処理(再
化成)して酸化膜を修復する。そして、熱分解と再化成
を何回か行って後、半導体層上にグラフアィト層や銀べ
−スト層などの電極引出し層を形成し、この竜極引出し
層に陰極の外部引出しリードを半田付けする。ところで
、上記コンデンサヱレメント2の再化成を従釆は第3図
に示すように複数のコンデンサェレメント2を一括して
電解液5に浸潰して行っているため、次の問題点があっ
た。即ち、コンデンサヱレメント2はタンタル等の弁作
用を有する金属粉末を100%に近い純度で加圧して嫌
結しているが、どうしても微少な不純物が混入し、ここ
に再化成時の電流が集中して破壊されることがある。又
、コンデンサェレメント2の陽極リードーとの結合部が
外部衝撃で機械的損傷を受け、ここに電流が集中する恐
れがある。又、コンデンサェレメント2の半導体層は熱
分解の熱歪みで部分的にクラックが生じてこのクラック
した部分に電流が集中することがある。このような各種
原因によって再化成時に電流が部分的に集中すると、例
えば半導体層が二酸化マンガンの場合は電流集中部分の
酸化膜が破壊されてイオン化したマンガンが外に飛び出
し、一部は陰極板6に付着するが、残りは隣りのコンデ
ンサェレメント2に衝突して、この隣りのコンデンサェ
レメント2を良品であっても不良品にしてしまう恐れが
あった。又、このような再化成時によるコンデンサェレ
メント2の不良品発生率は再化成電圧が高い程に大きく
、従って従来は不良品の発生を極力押えるために安全な
低い電圧で再化成を行っていた。しかし、再化成電圧と
酸化膜の厚さは略比例の関係にあるため、再化成電圧が
低いとコンデンサの耐圧が劣化する問題点があった。本
発明は上記従釆の再化成による各問題点に鑑み、これを
解決したもので、再化成時に各コンデンサェレメント間
に隔壁を設けて、電流集中によって不良となったコンデ
ンサェレメントから隣りのコンデンサェレメントを保護
する再化成方法を提供する。以下、本発明を図面の実施
例を参照して説明する。本発明は上記第2図に示すタィ
バ一部品4のコンデンサェレメン2に化成処理と熱分解
処理を行ってから、例えば第5図及び第6図に示すよう
な再化成装置8を使って再化成処理を行う。
First, as shown in Figure 1, a porous capacitor element is formed by press-molding and sintering a metal powder that has the same valve action on the lower end of the anode lead made of a metal wire that has a valve action, such as tantalum or titanium. form 2. Next, as shown in FIG. 2, the upper ends of the plurality of anode leads 1 each having a capacitor element 2 are electrically connected and fixed to one metal plate 3 at equal intervals by welding or the like. Two tie bar parts 4
get. Next, the plurality of tie bar parts 4 are arranged to form each capacitor element 2 for chemical conversion (
immersed in an electrolytic solution 5 such as a phosphoric acid aqueous solution (for anodizing),
A predetermined positive voltage is applied from the metal plate 3 to the capacitor element 2 via the anode lead, while a negative voltage is applied to the cathode plate 6 immersed in the electrolytic solution 5 to perform chemical conversion treatment. Then, an oxide film, which is a compromise material, is formed on the inner and outer surfaces of the porous capacitor element 2. For example, a capacitor element made of sintered tantalum (Ta2 in the case of 2'
An oxide film of No. 05 is formed. Next, this capacitor element 2 is pulled up from the electrolytic solution 5, and then, as shown in FIG. 4, it is immersed in a semiconductor mother liquor, for example, a manganese nitrate solution 7, so that the inside is sufficiently impregnated, and then pulled up and thermally decomposed. and,
By repeating the impregnation-pyrolysis process several times, a semiconductor layer of manganese dioxide or the like is formed on the oxide film.
By the way, the heat during this thermal decomposition deteriorates the oxide film and causes defects, so after several heat treatments, capacitor element 2 is subjected to chemical conversion treatment (re-formation) again as shown in Figure 3. to repair the oxide film. After performing thermal decomposition and re-formation several times, an electrode lead layer such as a graphite layer or a silver base layer is formed on the semiconductor layer, and the external lead of the cathode is soldered to this dragon electrode lead layer. do. By the way, since the reconstitution of the capacitor elements 2 is carried out by immersing a plurality of capacitor elements 2 in the electrolytic solution 5 at once as shown in FIG. 3, the following problem occurred. . In other words, although the capacitor element 2 is made by pressurizing metal powder such as tantalum that has a valve action and condensing it to a purity close to 100%, minute impurities are inevitably mixed in, and the current during re-formation is concentrated here. It may be destroyed. Furthermore, the connection portion of the capacitor element 2 with the anode lead may be mechanically damaged by an external impact, and there is a risk that current will be concentrated there. In addition, cracks may occur partially in the semiconductor layer of the capacitor element 2 due to thermal strain caused by thermal decomposition, and current may concentrate in the cracked portions. If the current concentrates locally during re-formation due to various causes such as these, for example, if the semiconductor layer is manganese dioxide, the oxide film in the area where the current is concentrated will be destroyed and ionized manganese will fly out, and some of it will be absorbed into the cathode plate 6. However, the remaining part collides with the adjacent capacitor element 2, which may turn the adjacent capacitor element 2 into a defective product even if it is a good product. Furthermore, the higher the re-forming voltage, the higher the incidence of defective products in the capacitor element 2 during such re-forming, so conventionally re-forming was carried out at a safe low voltage in order to minimize the occurrence of defective products. Ta. However, since the re-forming voltage and the thickness of the oxide film are in a substantially proportional relationship, there is a problem in that when the re-forming voltage is low, the withstand voltage of the capacitor deteriorates. The present invention solves the above-mentioned problems caused by the re-formation of secondary vessels by providing a partition wall between each capacitor element during re-formation, so that a capacitor element which has become defective due to current concentration can be separated from the adjacent capacitor element. A reconstitution method for protecting capacitor elements is provided. Hereinafter, the present invention will be explained with reference to embodiments of the drawings. In the present invention, after chemical conversion treatment and thermal decomposition treatment are performed on the capacitor element 2 of the tie bar part 4 shown in FIG. Perform reconversion treatment.

この再化成装置8は電解層9に再化成用電解液10と陰
極板11を入れ、電解液10の液面に沿ってテフロンや
紙、プラスチック等の絶縁性の隔壁シート12を張設し
たものである。この隔壁シート12はタイバー部品4の
コンデンサェレメント2の配列に応じた配列の複数個所
に、コンヂンサェレメント2の外径より少し大きな例え
ば十文字状の切込み13を有する。この再化成装置8に
よる再化成はまず隔壁シート12の上方から複数のタィ
バー部品4を降下させて、各コンデンサェレメント2を
隔壁シート12の各切込み13に押圧して切込み13を
開け、第7図に示すようにコンデンサェレメント2の下
端部を電解液10‘こ浸債する。この時、隔壁シート1
2の切込み13の周辺四面はコンデンサェレメント2の
挿入によってコンデワサヱレメント2の外周面に接触し
たまま下方に折曲されて、コンデンサェレメント2の囲
い、隣りのコンデソサ2との隔壁12a,12b,12
c,12dとなる。又、コンデンサェレメント2は多孔
質のため、下端部を電解液10‘こ浸済すると電解液1
0はコンデンサェレメント2の内外表面を毛細管現象で
侵入し、コンデンサェレメント2の全表面が電解液10
に浸潰されたのと同じ状態となる。而して、タィバー部
品4の金属板3と陰極板11に再化成の電圧を印加して
、各コンデンサェレメント2を一括して再化成する。こ
の再化成時に、例えば1つのコンデンサェレメント2′
の一部に電流が集中して不良品となった場合、前述した
ようにこのコンデンサェレメント2′からマンガン等の
イオンが放出される。ところが、本発明の場合は不良の
コンデンサェレメント2′が隔壁12a,12b,12
c,12dで囲まれ、而もこのコンデンサェレメント2
′の隣りのコンデンサェレメント2も別の隔壁12a,
12b,12c,12dで囲まれているため、不良のコ
ンデンサェレメント2′からのイオンには陰極板11に
吸着されて、隣りのコンデンサェレメント2へのイオン
の付着防止は電解液10を流動させると、より効果的に
行われる。第9図は上記隔壁シート12の代りに格子状
の絶縁性隔壁枠体14を電解液10の液面部分に一部を
露出させて浸潰した再化成装置8′の実施例を示す。
This re-forming device 8 has an electrolytic layer 9 filled with a re-forming electrolyte 10 and a cathode plate 11, and an insulating partition sheet 12 made of Teflon, paper, plastic, etc. stretched along the surface of the electrolyte 10. It is. This partition sheet 12 has, for example, cross-shaped cuts 13, which are slightly larger than the outer diameter of the capacitor elements 2, at a plurality of locations arranged in accordance with the arrangement of the capacitor elements 2 of the tie bar parts 4. This reconversion device 8 performs reconversion by first lowering a plurality of tie bar parts 4 from above the bulkhead sheet 12, pressing each capacitor element 2 into each notch 13 of the bulkhead sheet 12 to open the notch 13, and then As shown in the figure, the lower end of the capacitor element 2 is immersed in an electrolytic solution 10'. At this time, bulkhead sheet 1
When the condenser element 2 is inserted, the four peripheral surfaces of the notch 13 of No. 2 are bent downward while in contact with the outer circumferential surface of the condenser element 2, thereby forming an enclosure for the condenser element 2, a partition wall 12a between the condenser element 2 and the adjacent condenser element 2, etc. 12b, 12
c, 12d. Also, since the capacitor element 2 is porous, if the lower end is immersed in 10' of electrolyte, the electrolyte 1
0 penetrates the inner and outer surfaces of the capacitor element 2 by capillary action, and the entire surface of the capacitor element 2 is covered with electrolyte 10.
The situation is the same as being immersed in water. Then, a reforming voltage is applied to the metal plate 3 and cathode plate 11 of the tie bar part 4, and each capacitor element 2 is reformed all at once. During this reformation, for example one capacitor element 2'
If the current is concentrated in a part of the capacitor element 2', resulting in a defective product, ions such as manganese are released from the capacitor element 2' as described above. However, in the case of the present invention, the defective capacitor element 2' is connected to the partition walls 12a, 12b, 12
Surrounded by c and 12d, this capacitor element 2
'The capacitor element 2 next to ' is also another partition wall 12a,
12b, 12c, and 12d, the ions from the defective capacitor element 2' are adsorbed by the cathode plate 11, and the adhesion of ions to the adjacent capacitor element 2 is prevented by flowing the electrolyte 10. If you do this, it will be done more effectively. FIG. 9 shows an embodiment of a reconversion device 8' in which a lattice-shaped insulating partition frame 14 is immersed in the electrolytic solution 10 with a portion thereof exposed in place of the partition sheet 12.

この場合は隔壁枠体14の個々の枠部分15にコンデン
サヱレメント2を鉄挿して、コンデンサェレメント2の
下端部を電解液1川こ浸債する。又、隔壁枠体14と電
解槽9の底面との間隔を利用して電解液10を流す。本
発明を実施する装置は上記例に限らず、例えば上記隔壁
枠体を金属で形成してマイナスの電極板を兼用させても
よい。
In this case, the capacitor element 2 is inserted into each frame portion 15 of the partition frame 14, and the lower end of the capacitor element 2 is immersed in an electrolytic solution. Furthermore, the electrolytic solution 10 is allowed to flow by utilizing the gap between the partition wall frame 14 and the bottom surface of the electrolytic cell 9. The device for carrying out the present invention is not limited to the above-mentioned example. For example, the partition frame may be made of metal and also serve as a negative electrode plate.

又、この種隔壁枠体で電極槽内を独立した再化成室に分
割し、各再化成室内に陰極板と電解液を入れてコンデン
サェレメントを夫々に独立させて再化成するようにして
もよい。さらにはコンデンサヱレメントは金属粉末の他
、板材、線材などによって構成することもできる。以上
、説明したように、本発明によれば隣接するコンデンサ
ェレメント間に隔壁を設けて再化成したから、不良とな
ったコンデンサェレメントによって隣接するコンデンサ
ェレメントが悪影響されて不良品となるトラブルが減少
し、コンデンサの良品率の向上が図れ、コストダウン化
が可能をなる。
Alternatively, the inside of the electrode tank may be divided into independent re-forming chambers using this type of partition frame, and the cathode plate and electrolyte may be placed in each re-forming chamber to re-form the capacitor elements independently. good. Furthermore, the capacitor element can be made of plate material, wire material, etc. in addition to metal powder. As explained above, according to the present invention, since a partition wall is provided between adjacent capacitor elements and reconstitution is performed, there is a problem that a defective capacitor element adversely affects adjacent capacitor elements and becomes a defective product. This decreases the number of capacitors, improves the rate of non-defective capacitors, and makes it possible to reduce costs.

又、前記トラブルが減少することにより、再化成時の印
加電圧が大きくでき、ためにコンデンサの耐圧向上が可
能となる。
Further, by reducing the above-mentioned troubles, the voltage applied during re-forming can be increased, and therefore the withstand voltage of the capacitor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は電解コンデンサの従来による製造方
法を説明する各工程での一部断面側面図、第5図は本発
明による再化成方法を実施する装置の一例を示す側断面
図、第6図は第5図装置の一部平面図、第7図は第5図
装置による再化成時の側断面図、第8図は本発明を実施
する装置の変形例を示す再化成時での側断面図、第9図
は第8図A−A線に沿う一部断面図である。 2…コンデンサェレメント、8,8′…再化成装置、1
0・・・電解液、12・・・隔壁(シート)、12a,
12b,12c,12d・・・隔壁、14・・・隔壁(
枠体)。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図
1 to 4 are partially sectional side views showing each step of a conventional manufacturing method of an electrolytic capacitor, and FIG. 5 is a side sectional view showing an example of an apparatus for carrying out the reconstitution method according to the present invention. FIG. 6 is a partial plan view of the device shown in FIG. 5, FIG. 7 is a side sectional view of the device shown in FIG. FIG. 9 is a partial sectional view taken along the line A--A in FIG. 2...Capacitor element, 8,8'...Reformation device, 1
0... Electrolyte, 12... Partition wall (sheet), 12a,
12b, 12c, 12d... partition wall, 14... partition wall (
frame). Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1 弁作用を有する金属部材にて構成され、かつその表
面に酸化膜、半導体層の形成された複数のコンデンサエ
レメントを再化成処理するに際し、再化成用電解液に接
触する夫々のコンデンサエレメント間に隔壁を設けるこ
とを特徴とする電解コンデンサの再化成方法。
1. When performing reconversion treatment on multiple capacitor elements that are made of metal members with valve action and have oxide films and semiconductor layers formed on their surfaces, there is A method for reconstitution of an electrolytic capacitor characterized by providing a partition wall.
JP55091177A 1980-07-02 1980-07-02 How to reconstitute electrolytic capacitors Expired JPS6041449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55091177A JPS6041449B2 (en) 1980-07-02 1980-07-02 How to reconstitute electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55091177A JPS6041449B2 (en) 1980-07-02 1980-07-02 How to reconstitute electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPS5715414A JPS5715414A (en) 1982-01-26
JPS6041449B2 true JPS6041449B2 (en) 1985-09-17

Family

ID=14019173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55091177A Expired JPS6041449B2 (en) 1980-07-02 1980-07-02 How to reconstitute electrolytic capacitors

Country Status (1)

Country Link
JP (1) JPS6041449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161255U (en) * 1984-04-04 1985-10-26 立山アルミニウム工業株式会社 Lattice crosspiece mounting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452821B1 (en) * 2002-09-10 2004-10-15 삼성전기주식회사 A electrobath for solid electrolytic condenser
JP5816839B2 (en) * 2010-09-02 2015-11-18 パナソニックIpマネジメント株式会社 Electrolytic capacitor manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161255U (en) * 1984-04-04 1985-10-26 立山アルミニウム工業株式会社 Lattice crosspiece mounting device

Also Published As

Publication number Publication date
JPS5715414A (en) 1982-01-26

Similar Documents

Publication Publication Date Title
EP0509560A2 (en) Roll type solid electrolytic capacitor
US4876451A (en) Aluminum solid electrolytic capacitor and manufacturing method thereof
US4186423A (en) Solid electrolyte capacitor using oxide of Ru, Rh, Re, Os or Ir as electrolyte
JPS6041449B2 (en) How to reconstitute electrolytic capacitors
JPH11251189A (en) Manufacture of capacitor element in solid-state electrolytic capacitor
JP3463692B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
US6292349B1 (en) Capacitor
US4411969A (en) Battery construction characterized by reactively limited gridless electrode means, and methods of making and operating same
JPH05175085A (en) Chip-shaped solid electrolytic capacitor
JP3294362B2 (en) Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JPH05217811A (en) Chip-shaped solid electrolytic capacitor and its manufacture
JPH08264386A (en) Manufacture of electrolytic capacitor
JPH07106204A (en) Solid electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JPS60949B2 (en) Manufacturing method of solid electrolytic capacitor
JP3208875B2 (en) Chip-shaped solid electrolytic capacitor and its manufacturing method
JP3441095B2 (en) Solid electrolytic capacitors
JPS6023494B2 (en) Manufacturing method of solid electrolytic capacitor
JPH06252009A (en) Structure of solid electrolytic capacitor and manufacture thereof
JPH0312450B2 (en)
JPS593572Y2 (en) solid electrolytic capacitor
JPS6357936B2 (en)
KR840002390B1 (en) Electrolytic condenser
JPS5951737B2 (en) Manufacturing method of solid electrolytic capacitor
JP4119167B2 (en) Manufacturing method of capacitor element used for solid electrolytic capacitor