JPS6041408B2 - Enclosed contact relay - Google Patents

Enclosed contact relay

Info

Publication number
JPS6041408B2
JPS6041408B2 JP7404579A JP7404579A JPS6041408B2 JP S6041408 B2 JPS6041408 B2 JP S6041408B2 JP 7404579 A JP7404579 A JP 7404579A JP 7404579 A JP7404579 A JP 7404579A JP S6041408 B2 JPS6041408 B2 JP S6041408B2
Authority
JP
Japan
Prior art keywords
contact
gas
adhesion
contact resistance
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7404579A
Other languages
Japanese (ja)
Other versions
JPS55166834A (en
Inventor
明 伴野
武 青木
茂 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7404579A priority Critical patent/JPS6041408B2/en
Publication of JPS55166834A publication Critical patent/JPS55166834A/en
Publication of JPS6041408B2 publication Critical patent/JPS6041408B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Description

【発明の詳細な説明】 本発明は高信頼度にして長寿命の封入形継電器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly reliable and long-life encapsulated relay.

従来、封入形縄電器の封入ガスにはN2とQの混合ガス
またはN2と02の混合ガス等主として2成分系の混合
ガスが用いられてきた。
Conventionally, a two-component mixed gas, such as a mixed gas of N2 and Q or a mixed gas of N2 and 02, has been used as the filler gas in a sealed electric rope device.

このうち、N2と日2の2種混合ガスを用いた封入形継
電器では援点表面が比較的清浄に保たれるため、接触抵
抗の増大は避けられるが、粘着し易い欠点がある。次表
は純窒素ガス雰囲気中で、AgPd40/6仇X%,A
岬d60/4肌t%,Pd各接点を動作試験して得た粘
着障害発生確率の例であり、数%以上の接点で粘着が発
生し、粘着こんの深さも10rm以上にまで達している
。これに日2を添加した従来の雰囲気では表面の清浄化
がより促進されるため粘着障害はさらに増大する傾向に
ある。表 純N2雰囲気中開閉動作 における粘着発生率 注1 粘着発生確率=粘着発生接点数/供試接点数注2
供試接点数;各16コ 注3 開閉条件:機械的開閉 2×1ぴ回一方N2と0
2の2種混合ガスを用いた接点封入形継電器では動作と
ともに酸素を含む被膜層が形成されるため、粘着防止が
可能となる反面、耐食性に劣る材料では接触抵抗が増大
する欠点があった。
Among these, an enclosed type relay using a mixture of two gases, N2 and N2, keeps the contact surface relatively clean, so an increase in contact resistance can be avoided, but it has the disadvantage that it tends to stick. The following table shows AgPd40/6X%, A
This is an example of the probability of occurrence of adhesion failure obtained from operation tests of Cape D60/4 skin t% and Pd contacts. Adhesion occurred in more than a few percent of contacts, and the depth of the adhesion reached 10 rm or more. . In the conventional atmosphere in which H2 is added to this, cleaning of the surface is further promoted, so that adhesion problems tend to further increase. Table Adhesion occurrence rate in opening/closing operation in pure N2 atmosphere Note 1 Adhesion occurrence probability = Number of contacts where adhesion occurs/Number of test contacts Note 2
Number of contacts to be tested: 16 each Note 3 Opening/closing conditions: Mechanical opening/closing 2 x 1 times, N2 and 0 on one side
In contact-encapsulated relays using a two-gas mixture as described in 2, a coating layer containing oxygen is formed during operation, making it possible to prevent adhesion.However, materials with poor corrosion resistance have the disadvantage of increasing contact resistance.

第1図はN2十02(20%)混合ガス雰囲気中で接点
を動作ごせた場合の接触抵抗特性の例を示した図で、A
gPd40/6肌t%,A岬d60/40Wt%及びP
dはそれぞれ、図中のZ,卒及び圭で示してある。
Figure 1 is a diagram showing an example of contact resistance characteristics when the contact is operated in an N2002 (20%) mixed gas atmosphere.
gPd40/6 skin t%, A cape d60/40Wt% and P
d is indicated by Z, Ku, and Kei in the figure, respectively.

(第2図及び第3図も同様に示す。)この場合いずれも
粘着の発生は皆無となるが、動作とともに接触抵抗が増
大し、AgPd40/6傍等質金属暖点でも耐食性にや
や劣る金属では接触抵抗が増大する。このようにN2と
日2または02の2種の混合ガスを封入した場合には材
料を限定する等の措置をとらない限り、粘着あらるし、
は接触抵抗増大のいずれかの障害が発生し易い欠点があ
った。
(Figures 2 and 3 are shown in the same manner.) In both cases, there is no adhesion, but the contact resistance increases with operation, and even at the warm point of homogeneous metals near AgPd40/6, metals with slightly inferior corrosion resistance In this case, the contact resistance increases. If a mixed gas of N2 and Ni2 or 02 is sealed in this way, unless measures are taken such as limiting the materials, it will stick.
However, this method has the disadvantage that one of the problems such as an increase in contact resistance is likely to occur.

本発明はこれらの欠点を除去するため、N2等の不活性
ガス、02等の酸化性ガスおよび日2等の還元性ガスか
ら成る3成分系の混合ガスを封入ガスとして用いたもの
であり、以下実施例に基づき、詳細に説明する。
In order to eliminate these drawbacks, the present invention uses a three-component mixed gas as a filler gas consisting of an inert gas such as N2, an oxidizing gas such as 02, and a reducing gas such as 02, and The following will be described in detail based on examples.

第2図は本発明の−実施例であるN2十02(20%)
十比(1%)からなる3種混合ガス雰囲気中で動作させ
た接点の接触抵抗特性を示す図である。
Figure 2 is an example of the present invention, N2002 (20%).
FIG. 3 is a diagram showing contact resistance characteristics of a contact operated in a three-component mixed gas atmosphere consisting of 10% (1%).

ここではA#d40/6の要点、AuPd60ノ40接
点、Pd接点を供試した。3種の接点とも援触抵抗は4
×1ぴ回にわたって極めて安定であり、かつ粘着障害の
発生はない。
Here, the main points of A#d40/6, 40 contacts of AuPd60, and Pd contacts were tested. The contact resistance for all three types of contacts is 4.
It is extremely stable over 1 times, and no adhesion problems occur.

接触こんも高々3r肌の深さであり、粘着障害を譲発す
る危険性はないといえる。また接点表面をオージェ電子
分光分析機で分析した結果、各接点とも02の高いピー
ク値が検出される被膜層の厚さは数十△以下であり、前
記N2十02(20%)混合雰囲気中での動作で抵抗上
昇のあった接点における被膜層の厚さと比べると1ケタ
以上薄いことが判明した。これらのことはAu,Ag,
Pdから成る合金では、酸素系の被膜層が数十A程度で
あれば、接触抵抗に大きな影響を与えず、しかも金属間
の粘着をも避けることができることを示しており、N2
十02十日2の3種混合雰囲気では動作回数を重ねても
02および日2の酸化還元作用により被膜層の生長が平
衡状態に保たれるため安定な特性が得られるとみること
ができる。第3図は本発明の一実施例であるN2,02
(20%)と弦の3種混合ガス雰囲気中における接点接
触抵抗の日2濃度依存性を示す図である。
The contact depth was at most 3R skin depth, so it can be said that there is no risk of developing adhesion problems. In addition, as a result of analyzing the contact surface with an Auger electron spectrometer, the thickness of the coating layer where the high peak value of 02 was detected for each contact was several tens of △ or less, and it was found that It was found that the coating layer was more than an order of magnitude thinner than the thickness of the coating layer at the contact where the resistance increased during operation. These things are true for Au, Ag,
For alloys made of Pd, it has been shown that if the oxygen-based coating layer is on the order of several tens of amperes, it does not have a large effect on contact resistance and can also avoid adhesion between metals.
In the mixed atmosphere of 3 types of 102 and 10 days 2, stable characteristics can be obtained because the growth of the coating layer is maintained in an equilibrium state due to the oxidation-reduction action of 02 and 10 days 2 even if the operation is repeated many times. Figure 3 shows N2,02 which is an embodiment of the present invention.
(20%) and a string in a three-type mixed gas atmosphere. FIG.

日2濃度1岬pm(日2/02濃度比5×10‐5)で
は日2を混入しない場合と同様、耐食I曲こやや劣る材
料の場合、接触抵抗が増大するが、日2濃度10他pm
(伍/02濃度比5×10‐4)以上混入した場合3種
の競点とも接触抵抗は安定化する。ここで接触抵抗が安
定となる4/02濃度比の下限は薮′点材料の耐食性等
に依存するが、耐食性に劣る材料の場合は/02濃度比
を高めればよい。
At a day 2 concentration of 1 pm (day 2/02 concentration ratio 5 x 10-5), the contact resistance will increase in the case of materials with poor corrosion resistance, as in the case where day 2 is not mixed, but at a day 2 concentration of 10 other pm
(5/02 concentration ratio 5×10-4) or more, the contact resistance becomes stable for all three types of contact points. The lower limit of the 4/02 concentration ratio at which the contact resistance becomes stable depends on the corrosion resistance of the bush point material, but in the case of a material with poor corrosion resistance, the /02 concentration ratio may be increased.

一方日2/02濃度比は爆発限界(0220%の場合2
×10‐1)未満に抑えておく必要があるが、粘着がな
くかつ安定な接触抵抗の得られる日2/02許容濃度比
は少くとも10‐3オーダから10‐1オーダと比較的
広範囲にあり、製造上の精度を考慮しても十分実用に供
しうる。また供試したガスはN2,02,日2であるが
、He等他の不活性ガス、Q02等の他の酸化性ガス、
CO等他の還元性ガスについても同様の特性を示す。
On the other hand, the concentration ratio of 2/02 on the day is the explosive limit (for 0220%, 2
×10-1), but the allowable concentration ratio for day 2/02 to obtain stable contact resistance without adhesion is at least over a relatively wide range from the order of 10-3 to the order of 10-1. Therefore, it can be put to practical use even if manufacturing precision is taken into account. The gases tested were N2,02 and H2, but other inert gases such as He, other oxidizing gases such as Q02,
Similar characteristics are shown for other reducing gases such as CO.

以上説明したように、接点系をN2等の不活性ガス、0
2等の酸化性ガスおよび日2等の還元性ガスで封入する
ことにより粘着がなくかつ安定な接触抵抗を得ることが
できるので、接点の高信頼度化、長寿命化が図れる利点
がある。
As explained above, the contact system is heated with an inert gas such as N2,
By sealing with an oxidizing gas such as No. 2 and a reducing gas such as No. 2, it is possible to obtain a stable contact resistance without adhesion, which has the advantage of increasing the reliability and long life of the contact.

また卑金属を含むような合金で耐食性に劣るような場合
でも、酸化性ガスに対する還元性ガスの濃度比を最適化
すれば、十分実用に供しうろことは容易に推定できるの
で、材料費の経済化が図れる利点もある。
In addition, even if the alloy contains base metals and has poor corrosion resistance, if the concentration ratio of reducing gas to oxidizing gas is optimized, it is easy to estimate the scale for practical use, resulting in economical material costs. There is also the advantage of being able to achieve this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はN2と02(20%)の混合ガス雰囲気中で我
点を動作させた場合の接触抵抗特性の例を示した図、第
2図は本発明の一実施例であるN2,02(20%)と
日2(1%)の3種混合ガス雰囲気中で動作させた接点
の接触抵抗特性を示す図、第3図は本発明の一実施例で
あるN2,02(20%)と日2の3種混合ガス雰囲気
中における接点接触抵抗の比濃度依存性を示す図である
。 第/図 第2図 多う図
Fig. 1 shows an example of contact resistance characteristics when the point is operated in a mixed gas atmosphere of N2 and 02 (20%), and Fig. 2 shows an example of N2,02 which is an embodiment of the present invention. Figure 3 shows the contact resistance characteristics of a contact operated in a mixed gas atmosphere of N2,02 (20%) and N2,02 (1%), which is an example of the present invention. FIG. 2 is a diagram showing the dependence of contact resistance on specific concentration in a three-type mixed gas atmosphere on days 2 and 3. Figure/Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 接点系をN_2等の不活性ガス、O_2等の酸化性
ガスおよびH_2等の還元性ガスから成り、かつ前記酸
化性ガスに対する前記還元性ガスの濃度比が5×10^
−^4以上でしかも爆発限界未満であるフオーミングガ
スで封入したことを特徴とする接点封入形継電器。
1. The contact system consists of an inert gas such as N_2, an oxidizing gas such as O_2, and a reducing gas such as H_2, and the concentration ratio of the reducing gas to the oxidizing gas is 5 x 10^
A contact-filled relay characterized in that it is filled with a forming gas of -^4 or more and less than the explosive limit.
JP7404579A 1979-06-14 1979-06-14 Enclosed contact relay Expired JPS6041408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7404579A JPS6041408B2 (en) 1979-06-14 1979-06-14 Enclosed contact relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7404579A JPS6041408B2 (en) 1979-06-14 1979-06-14 Enclosed contact relay

Publications (2)

Publication Number Publication Date
JPS55166834A JPS55166834A (en) 1980-12-26
JPS6041408B2 true JPS6041408B2 (en) 1985-09-17

Family

ID=13535802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7404579A Expired JPS6041408B2 (en) 1979-06-14 1979-06-14 Enclosed contact relay

Country Status (1)

Country Link
JP (1) JPS6041408B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344905U (en) * 1986-09-08 1988-03-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344905U (en) * 1986-09-08 1988-03-26

Also Published As

Publication number Publication date
JPS55166834A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
US4769345A (en) Process for producing a hermetically sealed package for an electrical component containing a low amount of oxygen and water vapor
US4601958A (en) Plated parts and their production
US3796642A (en) Method and device for measuring the activity of nickel ions
JPS6431475A (en) Superconducting device and forming method thereof
JPH05267299A (en) Semiconductor device
Konetzki et al. Oxidation kinetics of Pb–Sn alloys
JPS6041408B2 (en) Enclosed contact relay
US4065588A (en) Method of making gold-cobalt contact for silicon devices
US3634048A (en) Solderable stainless steel
Lindborg et al. Intermetallic growth and contact resistance of tin contacts after aging
CA1214513A (en) Fuel cell electrolyte matrix and method for manufacturing the same
US2286237A (en) Copper powder
GB2023941A (en) Housing for electrical and electronic components
US3698880A (en) Solderable stainless steel
JPS5524454A (en) Insulating gate type field effect transistor
Potinecke Behavior of contact surfaces consisting of gold alloys in H 2 S-NO 2-SO 2 atmospheres
JPH0156524B2 (en)
JPH10321919A (en) Thermoelectric material having ni-alloy coating film
DiGiacomo et al. AuAgPd Ternary Alloy for Thick-Film Electrodes
JPS5759369A (en) Conductor coated heat resisting silver
US3705796A (en) Contact material
JP2871774B2 (en) Electrical contact material
JP2871773B2 (en) Electrical contact material
JPH0114301B2 (en)
JPS63289949A (en) Manufacture of lead frame