JPS60408B2 - Method for manufacturing non-magnetic hot rolled steel sheet with excellent cold workability - Google Patents

Method for manufacturing non-magnetic hot rolled steel sheet with excellent cold workability

Info

Publication number
JPS60408B2
JPS60408B2 JP54165686A JP16568679A JPS60408B2 JP S60408 B2 JPS60408 B2 JP S60408B2 JP 54165686 A JP54165686 A JP 54165686A JP 16568679 A JP16568679 A JP 16568679A JP S60408 B2 JPS60408 B2 JP S60408B2
Authority
JP
Japan
Prior art keywords
magnetic
hot
steel
present
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54165686A
Other languages
Japanese (ja)
Other versions
JPS5690923A (en
Inventor
智良 大北
千秋 大内
洋司 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP54165686A priority Critical patent/JPS60408B2/en
Publication of JPS5690923A publication Critical patent/JPS5690923A/en
Publication of JPS60408B2 publication Critical patent/JPS60408B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は冷間加工性の優れた非磁性熱延鋼板の製造方法
に係り、板厚が12柳以下、主として6肋以下の薄肉で
高度の透磁率を有すると共に優れた延靭性、特に曲げ加
工性などを具備した高MnヲE磁性熱延鋼板を低コスト
且つ適切に製造することのできる方法を提供しようとす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-magnetic hot-rolled steel sheet with excellent cold workability, which has a thin plate thickness of 12 willow or less, mainly 6 ribs or less, has a high degree of magnetic permeability, and has excellent magnetic permeability. The object of the present invention is to provide a method that can appropriately produce a high MnE magnetic hot rolled steel sheet having good ductility and toughness, especially bending workability, at low cost.

従来のオーステナィト系ステンレス鋼などに代って近時
Fe−C−Mnオーステナイト系の非磁性鋼が開発され
、このものは大量消費型の非磁性鋼として注目されっ)
あり、斯かる非磁性材料を必要とする分野も磁気浮上式
高速鉄道の構造部材から各種電気部材まで次第に拡大し
つ)ある。然してこれらの部材中においてトランスカバ
ーなどに代表される電気部村の多くはその厚さが6側以
下の薄板材が対象となり、大坂から功板として取出し、
しかも曲げ加工等により所定の形状に成形されるが、斯
様な薄板材は厚板圧延機では製造が困難であって、一般
にホットストリップミルによる所謂熱延が行われる。又
9〜12側のような板厚のものについても、例えそれが
厚板圧延機で製造可能としても上記した熱延は厚板圧延
より遥かに生産性が優れていて低コストに目的製品を得
ることができるが、このような比較的薄物の非磁性材料
として、特に上述した冷間加工性に優れた高マンガン非
磁性鋼板の熱延技術は従釆皆無である。即ちこの熱延の
場合においては巻取処理による徐冷効果が与えられるの
でオーステナイトの分解と炭化物の析出及びそれに基く
材質性能の劣化があり、その製造を困難としている。本
発明は上記したような実情に鑑み検討を重ねて創案され
たものであって、熱延プロセスでの加工−熱サイクルで
のオーステナィトの分解や炭化物の析出挙動と材質関係
について高Mn鋼の基本成分たるC、Mnその他の成分
と熱延条件の影響に関し詳細に検討した結果、薄物の非
磁性材に対し従来の高価なものに代えて低コストで充分
な延鋤性、特に袷間加工性の優れた高マンガン非磁性熱
延鋼板を得ることに成功した。
Fe-C-Mn austenitic non-magnetic steel has recently been developed to replace conventional austenitic stainless steel, and this is attracting attention as a mass-consumable non-magnetic steel.)
The fields that require such non-magnetic materials are gradually expanding, from structural members of magnetic levitation high-speed railways to various electrical components. However, among these parts, many of the electrical parts, such as transformer covers, are thin plates with a thickness of 6 sides or less, and are extracted from Osaka as gong plates.
Moreover, although the sheet material is formed into a predetermined shape by bending or the like, it is difficult to manufacture such a thin sheet material using a plate rolling mill, and so-called hot rolling is generally performed using a hot strip mill. In addition, for plates with a thickness of 9 to 12 sides, even if they can be manufactured using a plate rolling mill, the above-mentioned hot rolling is much more productive than thick plate rolling, and it is possible to produce the desired product at a low cost. However, as such a relatively thin non-magnetic material, there is no existing hot rolling technology for high-manganese non-magnetic steel sheets that have particularly excellent cold workability as described above. That is, in the case of hot rolling, since a slow cooling effect is provided by the winding process, there is decomposition of austenite, precipitation of carbides, and deterioration of material properties based on this, making production difficult. The present invention was devised after repeated studies in view of the above-mentioned circumstances, and it is based on the basics of high Mn steel regarding the decomposition of austenite during the processing-thermal cycle in the hot rolling process, the precipitation behavior of carbides, and the material relationship. As a result of a detailed study of the effects of C, Mn and other components and hot rolling conditions, we found that a thin non-magnetic material with sufficient plowing properties, especially lining workability, can be used at low cost in place of conventional expensive products. We succeeded in obtaining high-manganese nonmagnetic hot-rolled steel sheets with excellent properties.

なお本発明でいう非磁性鋼板とは曲げ加工後又はその他
の冷間加工状態で、その透磁率が1.01%以下のもの
であって、従来の非磁性鋼を同等ないしそれ以上のもの
である。
In addition, the non-magnetic steel sheet referred to in the present invention is one whose magnetic permeability is 1.01% or less after bending or other cold working conditions, and is equivalent to or higher than conventional non-magnetic steel. be.

又実際の使用条件としては非磁性であること、即ち透磁
率が低いことに加え、充分な延轍性、就中冷間加工性を
有していることが前提となるもので、これはJIS18
00曲げ試験において最小曲げ半径がlt以下の特性を
有するものを対象とする。上記したような高Mn非磁性
鋼の恒温保持による特性変化について従来報告されてい
るところによると、透磁率やシャルピー値の等値曲線は
600℃附近にノーズを有するC型の曲線になることが
知られており、この変化は一般に強磁性体である炭化物
の析出に塞くものと解されている。
In addition, the actual usage conditions are that it is non-magnetic, that is, has low magnetic permeability, and has sufficient rut spreadability, especially cold workability, which meets JIS 18.
The object is those that have a minimum bending radius of lt or less in the 00 bending test. According to previous reports on the changes in properties of high-Mn non-magnetic steel due to constant temperature holding as described above, the isovalue curves of magnetic permeability and Charpy value often become C-shaped curves with a nose around 600°C. This change is generally understood to be due to the precipitation of carbides, which are ferromagnetic substances.

又熱延においては巻取徐冷過程をとるため多少なりとも
この炭化物析出とそれによる材質劣化が予想されるが、
本発明者等はその成分組成と熱延条件について広汎な検
討の中から透磁率はもとより冷間加工性の基本性能に優
れた条件を求め好ましい熱延鋼板の製造法を確立した。
本発明によるもの)更に具体的な内容について説明する
と、先ず本発明における成分組成限定理由は以下の通り
である。
In addition, since hot rolling involves a winding and slow cooling process, it is expected that carbide precipitation and material deterioration will occur to some extent.
The present inventors conducted extensive studies on the component composition and hot rolling conditions, and found conditions that were excellent not only in magnetic permeability but also in the basic performance of cold workability, and established a preferred method for producing hot rolled steel sheets.
(According to the present invention) To explain more specifically, the reasons for limiting the component composition in the present invention are as follows.

即ちCは、オーステナィトを安定化するのに重要な元素
であって、その増量により他のオーステナィト化元素、
特にMnの量の減少せしめて低コスト化を得しめ、オー
ステナィト強化元素として有効である。
That is, C is an important element for stabilizing austenite, and by increasing its amount, other austenitizing elements,
In particular, it reduces the amount of Mn, resulting in lower costs, and is effective as an austenite-strengthening element.

即ちこのCが0.1%未満では透磁率はもとより限界曲
げ半径としてlt以下となる如くオーステナィトを安定
化するため多量のMnが必要となり実用的経済性の面か
ら不利となるのでこれを下限とする。一方このCが多過
ぎると、仮りに後述するような本発明の熱延巻取条件下
でも炭化物析出による曲げ性能の劣化を免れ得ない。こ
の関係については第1図に示す通りであって、650o
oで巻取った6肌厚のFe−C−25%Mn鋼の曲げ特
性とC量との関係が示されているが、C量が0.1〜0
.4%の範囲で本発明の基本的目的とする最小曲げ半径
1.瓜を満足する。C:0.1%未満では不安定オース
テナィトとなり、又0.4%を超えると炭化物の析出に
よって、何れも曲げ特性が著しく劣化する。これはCが
炭化物の析出を通じて曲げ特性を支配する基本的元素で
あることに原因し「後述する第2図にも示すようにMn
がオーステナィトを安定化させる作用を有していて例え
このMhを25%含有させ該オーステナィト安定化を介
して曲げ加工性を改善するとしてもC量が多過ぎると曲
げ加工性を適切に得ることができないから、このCの上
限を0.4%とした。Mm‘ま、オーステナィトの安定
化元素として他の元素より安価でしかも有効な元素であ
り、基本的には前記したC量とのバランスによりこのM
n量が決定される。
That is, if this C is less than 0.1%, a large amount of Mn is required to stabilize the austenite so that not only the magnetic permeability but also the critical bending radius is less than lt, which is disadvantageous from a practical economical point of view, so this is set as the lower limit. do. On the other hand, if the amount of C is too large, deterioration of bending performance due to carbide precipitation cannot be avoided even under the hot rolling and winding conditions of the present invention as described later. This relationship is as shown in Figure 1, and 650o
The relationship between the bending properties and C content of Fe-C-25%Mn steel of 6 skin thickness wound at
.. Minimum bending radius which is the basic objective of the present invention in the range of 4% 1. Satisfy the melon. C: If it is less than 0.1%, it becomes unstable austenite, and if it exceeds 0.4%, the bending properties will be significantly deteriorated due to the precipitation of carbides. This is because C is a fundamental element that controls bending properties through the precipitation of carbides.
has the effect of stabilizing austenite, and even if 25% of this Mh is contained to improve bending workability through stabilizing the austenite, if the amount of C is too large, it may be difficult to obtain appropriate bending workability. Since this is not possible, the upper limit of C was set at 0.4%. Mm' Well, it is a cheaper and more effective element than other elements as a stabilizing element for austenite, and basically this M
n amount is determined.

従来オーステナイトを安定化するため当該C量に対して
最低のMn量の回帰式が出され、高Cほど低いMm量が
示されているが本発明熱延材の場合,bdま上記C量が
0.1〜0.4%の範囲で曲げ特性を保証する最低Mh
量はC量で殆んど変らず22%である。第2図には0.
12%C「0.25%Cおよび0.45%C系でMn量
に伴う最小曲げ半径の関係を示すが本発明範囲内である
0.12%C、0.25%CではMn:22%以上にお
いてlt以下の最小曲げ半径が保証される。一方0.4
5%C系ではMn約18%以上でオーステナイトは安定
化し、透磁率は1.01以下と低いが、曲げ特性はそれ
ほど良好と言えず、更にMn量を増しても本発明の目的
とするlt以下の最小曲げ半径を保証し得ないから本発
明におけるMnの下限を22%とした。一方このMnは
安定オーステナィトにおいて基本的に材質特性に対する
影響はないが、それが30%を超えるとコスト的に高く
なるばかりでなく、熱間加工性が劣化し、実操業で多く
の問題が生ずることになるので、これを上限とした。N
は、それが0.005%未満ではオーステナィトの安定
化が失われる恐れがあるのでこれを下限とし、一方過剰
のNは銅の熱間加工性を損うので上限を0.04%とし
た。
Conventionally, in order to stabilize austenite, a regression equation of the lowest Mn content with respect to the C content was calculated, and the higher the C, the lower the Mm content, but in the case of the hot-rolled material of the present invention, bd Minimum Mh that guarantees bending properties in the range of 0.1-0.4%
The amount of C remains almost unchanged at 22%. Figure 2 shows 0.
12%C "0.25%C and 0.45%C systems show the relationship of minimum bending radius with Mn content, but for 0.12%C and 0.25%C, which is within the scope of the present invention, Mn: 22 % or more, a minimum bending radius of less than lt is guaranteed.On the other hand, 0.4
In the 5% C system, austenite is stabilized when Mn is about 18% or more, and the magnetic permeability is as low as 1.01 or less, but the bending properties are not so good, and even if the Mn content is increased, the lt Since the following minimum bending radius cannot be guaranteed, the lower limit of Mn in the present invention is set to 22%. On the other hand, Mn basically has no effect on material properties in stable austenite, but if it exceeds 30%, not only does it increase costs, but hot workability deteriorates, causing many problems in actual operation. Therefore, we set this as the upper limit. N
If it is less than 0.005%, the stability of austenite may be lost, so this is set as the lower limit, while excessive N impairs the hot workability of copper, so the upper limit is set as 0.04%.

又本発明において、Crはオーステナィトマンガン鋼で
の強化に有効であり、Cr2%以下の添加で本発明の特
徴、すなわち冷間加工性を何ら害せず高強度化できるの
で適宜必要に応じて用いても良い。
In addition, in the present invention, Cr is effective for strengthening austenitic manganese steel, and by adding 2% or less of Cr, high strength can be achieved without impairing the feature of the present invention, that is, cold workability. May be used.

以上の成分を有する鋼をホットストリップミルにより熱
延するに際しては特に巻取温度に注意を払うことが重要
であるが、以下にこの熱延条件について詳細に述べる。
When hot rolling steel having the above components using a hot strip mill, it is important to pay particular attention to the coiling temperature, and the hot rolling conditions will be described in detail below.

即ちまず鋼塊又はスラブの加熱温度は熱間割れを防ぐ意
味から122000以下が好ましい。圧延仕上温度は末
再結晶組織となる温度城である必要があり、高温仕上と
なって再結晶温度城で圧延が終了することは避けなけれ
ばならない。しかし、通常の熱延スケジュールを探る限
り、前記スラブ加熱温度、スラブ厚と圧延仕上げ寸法と
の関係などから仕上りは90000以下となり本発明鋼
で禾再結晶領域となるので特に規定しない。上記のよう
に圧延された鋼板はランナウトテーブルでの冷却を経て
巻取られるが、この巻取温度は650つ○以上でなけれ
ばならない。
That is, first, the heating temperature of the steel ingot or slab is preferably 122,000 or less in order to prevent hot cracking. The finishing temperature of rolling must be at a temperature where the final recrystallized structure is achieved, and it is necessary to avoid finishing at a high temperature and ending the rolling at the recrystallization temperature. However, as long as the usual hot rolling schedule is investigated, the finish is not particularly specified because the above-mentioned slab heating temperature, the relationship between the slab thickness and the finished rolled dimensions will result in a finish of 90,000 or less, which is a recrystallization region for the steel of the present invention. The steel plate rolled as described above is cooled on a runout table and then coiled, and the coiling temperature must be 650 degrees or higher.

第3図には0.24%−25%Mn鋼についての6肋材
で180o曲げ試験における最小曲げ半径と巻取温度と
の関係を示すが、巻取温度が650℃より低くなると曲
げ特性が劣化することが明かである。蓋し650℃未満
で巻取った鋼板では結晶粒が圧延方向に展伸した組織と
なり、しかもその結晶粒界に炭化物の析出が認められる
のに対し650q0以上で巻取ったものでは再結晶がか
なり進展した組織を呈し、結晶粒内に多数の炭化物が析
出している。このことは本発明成分鋼が通常の熱延仕上
げ状態では上記したように略結晶粒が変形され伸展した
ま)の状態であり、この状態はランナウトテーブル冷却
で巻取り温度まで持ち来され、巻取り後再結晶が進行し
た状態であって、従って巻取温度が低ければ再結晶が進
展せず、最終組織も圧延直後の伸展された未再結晶組織
のま)であり、粒界の移動もないため比較的短時間内に
析出する粒界炭化物はそのま)粒界炭化物として残り材
質にも悪影響を及ぼすこととなる。然して本発明で規定
する巻取温度範囲では炭化物析出ノーズ(皿se)が近
くにあるとは言え、再結晶の進展と炭化物の析出が略同
時に進行するため、例え時々刻々に炭化物が粒界に析出
しても再結晶進展により粒界が移動して最終的には炭化
物析出個所は粒界でなくなり、炭化物析出による影響は
極めて小さいものとなってしまうものと考えられる。な
おこの炭化物析出が起らぬようにするためには巻取温度
を400qo以下のような極端な低温としなければなら
ず、このようなことはコィラーに過大な負荷を与えて実
用性がないだけでなく材質的にも未再結晶状態であって
硬質となり、本発明の目的を達成し得ない。一方捲敗温
度の上限は750qoであって、この捲取り温度が75
0℃以上になると再結晶の進展速度が速くなり、炭化物
の析出に先行して再結晶が終了してしまうため、最終組
織である再結晶粒界に選択的に炭化物が優先析出して加
工性を劣化させることになる。又一般に高温捲取りにな
ると2次スケールが厚く剥離し易くなるもので、この表
面性状からしても750午0以下で捲取ることが必要で
ある。以上の如くして本発明によれば従来技術において
炭化物の析出挙動の関係から考えて製造困難とされてい
た熱延での冷間加工性の優れた非磁性鋼板を低コスト且
つ的確に得ることができる。本発明方法によるもの)具
体的な実施例について説明し、本発明の特徴をより明確
化すると以下の如くである。即ち本発明者等は次の第1
表に示すような鋼種A〜Lを用い、これらの鋼を何れも
1200qoに加熱後「850午0にて6肋に仕上げた
Figure 3 shows the relationship between the minimum bending radius and coiling temperature in a 180o bending test with 6 ribs for 0.24%-25%Mn steel. When the coiling temperature is lower than 650°C, the bending properties deteriorate. It is clear that it deteriorates. Steel sheets covered and rolled at temperatures below 650°C have a structure in which the crystal grains are elongated in the rolling direction, and carbide precipitation is observed at the grain boundaries, whereas steel sheets rolled at temperatures above 650q0 show considerable recrystallization. It exhibits a developed structure, with many carbides precipitated within the crystal grains. This means that when the component steel of the present invention is in a normal hot-rolled finished state, the crystal grains are approximately deformed and elongated as described above, and this state is brought to the coiling temperature by cooling on the runout table and then rolled. After rolling, recrystallization has progressed. Therefore, if the coiling temperature is low, recrystallization will not progress, and the final structure will remain the stretched unrecrystallized structure immediately after rolling, and grain boundaries will not move. Therefore, grain boundary carbides that precipitate within a relatively short period of time remain as grain boundary carbides and have an adverse effect on the material quality. However, in the coiling temperature range specified in the present invention, although the carbide precipitation nose (dish se) is close to each other, recrystallization progresses and carbide precipitation progresses almost simultaneously, so even if carbides are present at grain boundaries from time to time, Even if precipitated, the grain boundaries move due to the progress of recrystallization, and eventually the carbide precipitated location is no longer a grain boundary, and the influence of carbide precipitation becomes extremely small. In addition, in order to prevent this carbide precipitation from occurring, the coiling temperature must be extremely low, such as 400 qo or less, which would place an excessive load on the coiler and be impractical. Moreover, the material is in an unrecrystallized state and becomes hard, making it impossible to achieve the object of the present invention. On the other hand, the upper limit of the winding temperature is 750 qo, and this winding temperature is 75 qo.
At temperatures above 0°C, the rate of recrystallization increases and recrystallization ends before the precipitation of carbides. As a result, carbides preferentially precipitate at recrystallized grain boundaries, which is the final structure, resulting in poor workability. It will cause deterioration. Furthermore, in general, when high temperature winding is performed, the secondary scale becomes thick and easily peels off, and considering this surface quality, it is necessary to wind up at a temperature of 750 mm or less. As described above, according to the present invention, it is possible to precisely obtain a non-magnetic steel sheet with excellent cold workability in hot rolling at a low cost, which was considered difficult to manufacture in the prior art due to the relationship with carbide precipitation behavior. Can be done. The characteristics of the present invention will be further clarified by describing specific examples (methods of the present invention) as follows. That is, the present inventors have proposed the following first
Using steel types A to L as shown in the table, each of these steels was heated to 1200 qo and finished into 6 ribs at 850 qo.

第1表 然して上託したような各鋼A〜Lは夫々その熱延後約1
0oC/secの冷却速度でランプゥトテーブル上で冷
却してから巻取った。
Each of the steels A to L as mentioned above is approximately 1.
It was cooled on a ramp table at a cooling rate of 0oC/sec and then wound up.

これら各鋼種の巻取温度と、得られた鋼板における圧延
直角方向の降伏強度(YS)、引張強さ(TS)、伸び
(EI)、JIS規定による1800の曲げ試験での最
小曲げ半径、および50%冷間加工を行った状態での透
磁率を夫々示すと次の第2表の通りである。
The coiling temperature of each of these steel types, the yield strength (YS), tensile strength (TS), elongation (EI) in the direction perpendicular to rolling, the minimum bending radius in the 1800 bending test according to JIS regulations, and The magnetic permeability after 50% cold working is shown in Table 2 below.

第2表 然して上記したような各鋼は夫々その熱延後、即ちまず
第1表に示す鋼種の内E、F、G、日およびKはC量あ
るいはまたMn量などにおいて成分的に本発明を満足し
ないものである。
2. Obviously, each of the above-mentioned steels has a composition according to the present invention after hot rolling, that is, among the steel types shown in Table 1, E, F, G, J and K have the composition according to the present invention in terms of C content or Mn content. is not satisfied.

たとえばB−ltB−2、F−1、K−1村はいずれも
Cが本発明のC量0.4%を越え、たとえ透磁率は十分
低くても曲げ加工性に劣り、透磁率からみて安定なオー
ステナィトであるが冷間加工性が悪い。鋼Gは厚板圧延
など圧延後空冷材では十分な機械的性質、磁気特性を有
することが知られているが、熱延では透磁率の劣化はも
とより、ほとんど曲げ不能なほど延性に乏しい。又H−
1村はMn量が低く不安定オーステナィトとなって非磁
性鋼の基本性能である透磁率からして、非常に悪い。以
上のような各鋼種に対し、鋼A、B、C、D、1、J、
およびLはいずれも本発明のC−Mn範囲を満足する。
しかし、巻取温度が650qo以上の場合にのみ曲げ特
性が1.仇以下と優れていることが明らかである。さら
に説明すると低温巻取になると一般に強度はや)上昇す
るが、650℃以下となるとEIや曲げ特性が強度上昇
の効果以上に劣化し、透磁率の巻取温度による変化は小
さいものであって、これらの一般的傾向はあっても、鋼
A〜Dは本発明成分範囲でC量を変化させているがいず
れも優れた透磁率、冷間加工性を示している。鋼1、J
は同一C量でMnの影響を示したものでMn量による透
磁率及び袷間加工性に対する基本的な効果はない。この
ことはK−1材の結果ともあわせ、冷間加工性を支配し
ているのはC量であることが明白である。最後にL−1
村はCn添加材であるが1−1材に比べとくにYSが上
昇するCrの効果のあることがわかる。なお上記したと
ころにおいて示した曲げ特性はいずれもC方向であるが
、L方向でも同様であり、本発明鋼の材質、とくに冷間
加工性はS量、介在物等には依存しないもので、基本的
にオーステナィトの安定性と炭化物の析出挙動に基づく
ものであり、C−Mn量、熱延巻取温度がとくに重要な
意味をもつものである。
For example, in B-ltB-2, F-1, and K-1 villages, the C content exceeds the present invention's C content of 0.4%, and even though the magnetic permeability is sufficiently low, the bending workability is poor, and from the viewpoint of magnetic permeability. Although it is a stable austenite, it has poor cold workability. Steel G is known to have sufficient mechanical and magnetic properties when air-cooled after rolling, such as when rolled into a thick plate, but when hot-rolled, not only does it deteriorate in magnetic permeability, but it also has poor ductility to the point that it is almost unbendable. Also H-
One village has a low Mn content and becomes unstable austenite, which is extremely poor in terms of magnetic permeability, which is the basic performance of non-magnetic steel. For each steel type mentioned above, steel A, B, C, D, 1, J,
and L both satisfy the C-Mn range of the present invention.
However, only when the winding temperature is 650 qo or more, the bending properties become 1. It is clear that he is superior to his enemies. To explain further, when winding is performed at a low temperature, the strength generally increases, but at temperatures below 650°C, the EI and bending properties deteriorate more than the effect of increasing the strength, and the change in magnetic permeability due to the winding temperature is small. Even though these general trends exist, steels A to D each exhibit excellent magnetic permeability and cold workability, although the amount of C is varied within the composition range of the present invention. Steel 1, J
shows the influence of Mn at the same amount of C, and there is no fundamental effect of the amount of Mn on magnetic permeability and line workability. This, together with the results for material K-1, makes it clear that the amount of C controls the cold workability. Finally L-1
Although Mura is a Cn-added material, it can be seen that Cr has the effect of increasing YS especially compared to the 1-1 material. Note that the bending properties shown above are all in the C direction, but are also the same in the L direction, and the material properties of the steel of the present invention, especially cold workability, do not depend on the amount of S, inclusions, etc. This is basically based on the stability of austenite and the precipitation behavior of carbides, and the amount of C-Mn and the hot-rolling temperature have particularly important meanings.

以上説明したような本発明によれば優れた延性、特に袷
間加工性を有し高度の透磁率をもった高マンガン非磁性
鋼板を高い生産性を有する熱延によって有利に得しめ、
低コストの該製品を提供することができ、非磁性材料が
要求される各種電気部材等の利用分野において経済的な
採用がなされ、しかも上記した実施例の50%冷間加工
状態における優れた透磁率から理解されるように更に8
0%又はそれ以上に冷間加工して‐もその透磁率は殆ん
ど変化せず上記したような非磁性材において充分な冷間
加工性を具備せしめ、切板などとしてその用途を十こ分
に拡大し得るなどの作用効果を有しており、工業的にそ
の効果の大きい発明である。
According to the present invention as explained above, a high manganese non-magnetic steel sheet having excellent ductility, particularly line workability, and high magnetic permeability can be advantageously obtained by hot rolling with high productivity.
This product can be provided at a low cost, and can be economically adopted in fields of application such as various electrical components that require non-magnetic materials. Furthermore, as understood from the magnetic flux, 8
Even when cold-worked to 0% or more, its magnetic permeability hardly changes, and it has sufficient cold-workability in the above-mentioned non-magnetic materials, making it suitable for many uses such as cutting plates. This invention has the advantage of being able to be expanded over a period of time, and is a highly effective invention industrially.

【図面の簡単な説明】 図面は本発明の技術的内容を示すものであって、第1図
はJIS1800曲げ試験における最小曲げ半径とC量
の関係を示した図表、第2図は同じ最小曲げ半径とMn
量の関係を示した図表、第3図は同じ最小曲げ半径と巻
取温度との関係を示した図表である。 第1図 第2図 第3図
[Brief Description of the Drawings] The drawings show the technical content of the present invention, and Fig. 1 is a chart showing the relationship between the minimum bending radius and C amount in the JIS1800 bending test, and Fig. 2 is a chart showing the relationship between the minimum bending radius and the amount of C in the JIS 1800 bending test. Radius and Mn
FIG. 3 is a chart showing the relationship between the same minimum bending radius and the winding temperature. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 C:0.1〜0.4%、Mn:22〜30%、N:
0.005〜0.04%を含有し、残部が鉄および不可
避不純物より成る鋼をホツトストリツプミルで熱間圧延
し、650〜750℃で巻取ることを特徴とする冷間加
工性の優れた非磁性熱延鋼板の製造方法。 2 C:0.1〜0.4%、Mn:22〜30%、N:
0.005〜0.04%を含有すると共にCr:2%以
下を含有し、残部が鉄および不可避不純物より成る鋼を
ホツトストリツプミルで熱間圧延し、650〜750℃
で巻取ることを特徴とする冷間加工性の優れた非磁性熱
延鋼板の製造方法。
[Claims] 1 C: 0.1-0.4%, Mn: 22-30%, N:
A cold-workable steel containing 0.005 to 0.04% and the remainder consisting of iron and unavoidable impurities is hot rolled in a hot strip mill and coiled at 650 to 750°C. A method for producing excellent non-magnetic hot-rolled steel sheets. 2C: 0.1-0.4%, Mn: 22-30%, N:
A steel containing 0.005 to 0.04% Cr and 2% or less of Cr, with the balance consisting of iron and unavoidable impurities, is hot rolled in a hot strip mill to a temperature of 650 to 750°C.
A method for producing a non-magnetic hot-rolled steel sheet with excellent cold workability, characterized by winding the steel sheet.
JP54165686A 1979-12-21 1979-12-21 Method for manufacturing non-magnetic hot rolled steel sheet with excellent cold workability Expired JPS60408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54165686A JPS60408B2 (en) 1979-12-21 1979-12-21 Method for manufacturing non-magnetic hot rolled steel sheet with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54165686A JPS60408B2 (en) 1979-12-21 1979-12-21 Method for manufacturing non-magnetic hot rolled steel sheet with excellent cold workability

Publications (2)

Publication Number Publication Date
JPS5690923A JPS5690923A (en) 1981-07-23
JPS60408B2 true JPS60408B2 (en) 1985-01-08

Family

ID=15817107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54165686A Expired JPS60408B2 (en) 1979-12-21 1979-12-21 Method for manufacturing non-magnetic hot rolled steel sheet with excellent cold workability

Country Status (1)

Country Link
JP (1) JPS60408B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129320A (en) * 1992-10-16 1994-05-10 Nippondenso Co Ltd Fuel tank internal pressure adjusting device
KR100742823B1 (en) * 2005-12-26 2007-07-25 주식회사 포스코 High Manganese Steel Strips with Excellent Coatability and Superior Surface Property, Coated Steel Strips Using Steel Strips and Method for Manufacturing the Steel Strips

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482320A (en) * 1977-12-14 1979-06-30 Sumitomo Metal Ind Ltd Manufacture of non-magnetic steel products

Also Published As

Publication number Publication date
JPS5690923A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JPH05263191A (en) Hot rolled steel sheet high in young's modulus in width direction and its manufacture
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPS5959827A (en) Manufacture of hot-rolled steel plate with superior processability
JPH0394018A (en) Production of high tensile hot dip galvanized steel sheet excellent in bendability
JPS60408B2 (en) Method for manufacturing non-magnetic hot rolled steel sheet with excellent cold workability
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JP3879164B2 (en) Method for producing ferritic stainless hot rolled steel strip with excellent cold rolling properties
JPH09256064A (en) Production of ferritic stainless steel thin sheet excellent in roping characteristic
JPH06228653A (en) Production of high strength hot rolled steel sheet excellent in bulging property at high yield
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
JPS61276923A (en) Production of cold rolled steel sheet having bh characteristic uniform in transverse direction
JPS6283426A (en) Manufacture of cold rolled steel sheet for deep drawing
JPH09125195A (en) Hot rolled steel plate excellent in workability and its production
JP3619305B2 (en) Manufacturing method of ferritic stainless hot rolled steel strip with excellent workability
JPH04168217A (en) Manufacture of high toughness and high tensile strength hot rolled steel sheet excellent in uniformity
JPS5828329B2 (en) Manufacturing method of thick-walled high-toughness steel plate
JPS5945735B2 (en) Method for manufacturing high-strength cold-rolled steel sheets with excellent ductility through continuous annealing
JPS6289813A (en) Manufacture of hot rolled steel strip for low yield ratio and high tension resistance welded tube
JPS5871330A (en) Production of hot rolled steel strip having excellent uniformity in material quality
JPS5935414B2 (en) Manufacturing method of high-strength steel with excellent weldability
JPS60162731A (en) Production of continuously annealed and cold rolled steel sheet having small ageability
JPH09256103A (en) Hot rolled steel plate capable of providing steel plate member of low yield ratio after hot forming, and the hot rolled steel plate member
JPS6179731A (en) Manufacture of hot-rolled high-tension steel sheet
JPH02104614A (en) Manufacture of hot rolled steel sheet having high workability